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Abstract. In this note we remark that the degree of any term of Chern-Schwartz-
MacPherson classes of a possibly singular projective variety X can be expressed by linear
combinations of integrals with respect to Euler characteristics (in the sense of O.Y.Viro)
of generic linear sections of X.

1. Integrals

In [7] O. Y. Viro gave a very simple and useful notion of the integral with respect to Euler

characteristics. Consider the Boolean algebra B generated by all the finite CW complices

(or finite simplical complices), namely, the one consisting of any sets constructed by

Boolean operations, that is, taking compliments, union and intersections of finitely many

CW complices. Then the topological Euler characteristics χ behaves as an integer-valued

measure with B being the finitely additive collection of measurable sets:

χ(A ∪ B) = χ(A) + χ(B) − χ(A ∩ B), χ(A × B) = χ(A)χ(B), A,B ∈ B.

An integer valued function α : X → Z (X ∈ B) is called measurable if the image of f is

a finite subset of Z and each level set is measurable, i.e., α−1(s) ∈ B. The integral of a

measurable function α over X with respect to χ is defined by∫
X

α dχ :=
∑
s∈Z

s · χ(α−1(s)).

For a morphism f : X → Y (in B) the pushforward of α is defined to be f∗(α)(y) :=∫
f−1(y) α dχ (y ∈ Y ). Then by the definition it commutes with the integral:

∫
X α dχ =∫

Y f∗α dχ.

On the other hand, in the category of compact complex algebraic varieties, constructible

sets/functions become measurable sets/functions in the above sense. Let F(X) denote

the abelian group of all constructible functions over a variety X, that is freely generated

by characteristic functions 1W of irreducible reduced subvarieties W : 1W (y) = 1 if y ∈ W

otherwise 0. In [3] R. MacPherson showed that there is a unique natural transformation

C∗ : F(X) → H∗(X; Z)

(that is, a homomorphism of abelian groups for each object X with the property C∗(f∗α) =

f∗C∗(α) for morphisms f : X → Y ) so that it satisfies the normalization condition:

C∗(1X) = c(TX) ∩ [X] for nonsinglar X. C∗(1X) is called Chern-Schwartz-MacPherson
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class of X, cf. [3], [5]. In particular, by the definition, the 0-th degree of C∗ is nothing

but the integral with respect to Euler characteristics: for irreducible X, taking the map

f : X → {pt}, we get

the 0-th degree of C∗(α) = f∗C∗(α) = C∗(f∗α) =
∫

X
α dχ.

Further, as proved in [2] it holds that C∗(α × β) = C∗(α) × C∗(β) (the homology cross

product). So the MacPherson transformation is reasonably regarded as a “homology-

valued integral”.

The aim of this note is to show that in the case of complex projective varieties, not

only the 0-th degree but all degrees of C∗ are expressed by integrals with respect to Euler

characteristics in a certain sense.

Let X ⊂ PN be an irreducible projective variety of dimension n. For a constructible

function α =
∑

W nW 1W ∈ F(X), a linear subspace L of codimension i is called generic

with respect to α if L is transverse to any Whitney stratification of each subvariety W

supporting α. Then, we define∫
X∩L

α dχ :=
∑
W

nW χ(W ∩ L).

This number is independent of the choice of generic L. Indeed, all generic linear subspaces

with respect to α form a Zariski open dense subset in the Grassmanian space, so any two

generic L0 and L1 can be joined by a family {Lt}0≤t≤1 of generic linear subspaces. Hence

the Thom’s first isotopy lemma (e.g., [1]) shows that W∩L0 and W∩L1 are homeomorphic

for each W , and thus their Euler characteristics coincide. In particular, it yields a well-

defined homomorphism ∫
i
: F(X) → Z,

∫
i
α :=

∫
X∩L

α dχ.

On one hand, for i = 0, 1, 2 · · · , n, the MacPherson transformation defines a homomor-

phism

C̃i : F(X) → Z, C̃i(α) := γi ∩ Ci(α)

where γ is the restriction to X of the hyperplane class of the ambient projective space.

Theorem 1.1. Let X be any irreducible projective variety of dimension n. Then it holds

that for any α ∈ F(X),

C̃i(α) =
∫

i
α +

n∑
j=i+1

aij ·
∫

j
α, (i)

where the coefficients aij are determined by the generating function
(

x
1−x

)i
=
∑

j≥i aijx
j.

Conversely, it also holds that∫
i
α = C̃i(α) +

n∑
j=i+1

bij · C̃j(α), (ii)

where the coefficients bij are determined by the generating function
(

y
1+y

)i
=
∑

j≥i bijy
j.
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Corollary 1.2. The subgroup of the dual space F(X)∗ ( = Hom(F(X), Z) ) generated by∫
i : F(X) → Z (i = 0, 1, 2 · · · , n) coincides with the one generated by C̃i : F(X) → Z

(i = 0, 1, 2 · · · , n) .

Remark 1.3.
∫
i : F(X) → Z (i = 0, 1, 2 · · · , n) are linearly independent over Z, and

hence C̃i : F(X) → Z are so.

Example 1.4. The lowest and highest terms of C̃∗(1X) are

C̃0(1X) =
∫
0
1X ( =

∫
X

1X = χ(X) ),

C̃n(1X) =
∫

n
1X =

∫
X∩PN−n

1X = the degree of the variety X

For a possibly singular surface X, C̃1 =
∫
1 +

∫
2. For a possibly singular 3-fold, C̃1 =∫

1 +
∫
2 +

∫
3 and C̃2 =

∫
2 +2

∫
3. For a possibly singular 4-fold, C̃1 =

∫
1 +

∫
2 +

∫
3 +

∫
4,

C̃2 =
∫
2 +2

∫
3 +3

∫
4, C̃3 =

∫
3 +3

∫
4, and so on.

2. Proof

Let X be an irreducible projective variety of dimension n in PN and set X(i) = X ∩ L,

L being a generic linear subspace of codimension i. Let ι : X(i) → X be the inclusion

map. Our key lemma is the following one:

Lemma 2.1. It holds that in H∗(X)

γi ∩ C∗(1X) = (1 + γ)i ∩ ι∗C∗(1X(i)).

This “adjunction formula” is a special case of Proposition 1.3 in Parusiński-Pragacz [4].

The formula can also be read off as a variant of Vierdier-type Riemann-Roch formula.

Proof of Theorem : Looking at the 0-th part of the equality in Lemma 2.1, we have

C̃i(1X) = γi ∩ Ci(1X)

= 0-th part of (1 + γ)i ∩ ι∗C∗(1X(i))

=
i∑

k1=0

(
i

k1

)
γk1 ∩ ι∗Ck1(1X(i)).

Repeat the same procedure for each term, and then

γk1 ∩ ι∗Ck1(1X(i)) = ι∗(ι
∗γk1 ∩ Ck1(1X(i)))

= 0-th part of (1 + γ)k1 ∩ ι′∗C∗(1X(i+k1))

=
k1∑

k2=0

(
k1

k2

)
γk2 ∩ ι′∗Ck2(1X(i+k1)),
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where ι′ : X(i+k1) → X is the inclusion. Thus we have (notations of induced homomor-

phisms by inclusions are omitted)

C̃i(1X) = γi ∩ Ci(1X) =
i∑

k1=0

(
i

k1

)
γk1 ∩ Ck1(1X(i))

= C̃0(1X(i)) +
i∑

k1=1

(
i

k1

)
k1∑

k2=0

(
k1

k2

)
γk2 ∩ Ck2(1X(i+k1))

= · · · · · ·

= C̃0(1X(i)) +
∑
I

(
i

k1

)(
k1

k2

)
· · ·

(
ks−1

ks

)
C̃0(1X(i+k1+···+ks)),

where the sum takes over all I = (k1, · · · , ks) so that i ≥ k1 ≥ k2 ≥ · · · ≥ ks > 0 and

i + k1 + · · · + ks ≤ n.

This computation is the same as follows. Set f0(x, t) = x, φ(x, t) = t(1 + x), and

fs(x, t) = fs−1(φ(x, t), t) inductively: f1(x, t) = t(1 + x), f2(x, t) = t(1 + t(1 + x)), · · · ,
and so on. Putting t = x and taking s large enough, it holds module 〈xn+1〉 that

fs(x, x)i = xi(1 + x(1 + · · · + x(1 + x(1 + x)) · · · ))i = xi
i∑

k1=0

(
i

k1

)
fs−1(x, x)k1

= · · · ≡ xi +
∑
I

(
i

k1

)(
k1

k2

)
· · ·

(
ks−1

ks

)
xi+k1+···+ks .

This is also congruent to

xi(1 + x + x2 + · · · )i =
(

x

1 − x

)i

=
∑
j≥i

aijx
j.

Therefore we have

C̃i(1X) =
∫

i
1X +

n∑
j=i+1

aij

∫
j
1X .

Hence the formula (i) in Theorem follows from the linearity of C̃i and
∫
i for any α =∑

W nW 1W ∈ F(X).

Also the formula (ii) follows from Lemma 2.1:∫
i
α =

∫
X(i)

α dχ = 0-th part of ι∗C∗(α|X(i))

= 0-th part of

(
γ

1 + γ

)i

∩ C∗(α)

=
n∑

j=i

bijγ
j ∩ Cj(α) =

n∑
j=i

bijC̃j(α).

This completes the proof. 2

Remark 2.2. Obviously, bij = (−1)i+jaij and the matrix [bij] is the inverse of [aij].

In fact, substituting y
1+y

for x in the equality
(

x
1−x

)i
=
∑

j≥i aijx
j, we have that yi =(∑j

k=i aikbkj

)
yj for each pair i ≤ j.
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