
CHERN CLASSES AND THOM POLYNOMIALS

TORU OHMOTO

1. Introduction

1.1. Following Jean-Paul Brasselet’s lecture [2] on Chern classes of singular
varieties in this ICTP summer school, I introduce the theory of equivariant
Chern-Schwartz-MacPherson classes and show two different types of appli-
cations.

We work in the complex algebraic context for simplicity; for a variety
X let H∗(X) denote the Borel-Moore homology group of the underlying
analytic space. (In an algebraic (quasi-projective) context over a field of
characteristic 0, the homology means the Chow group A∗(X) of algebraic
cycles under rational equivalence.) Our main theorem is

Theorem 1.1. ([22]) Let G be a complex algebraic group. For the category of
complex algebraic G-varieties X and proper G-morphisms, there is a natural
transformation from the equivariant constructible function functor to the
equivariant homology functor

CG
∗ : FG(X)→ HG

∗ (X)

such that if X is non-singular, then CG∗ (11X) = cG(TX) _ [X]G where
cG(TX) is G-equivariant total Chern class of the tangent bundle of X. CG∗
is unique in a certain sense. In particular, for the trivial G-action, CG∗
coincides with ordinary C∗.

Remark that in general the quotient X/G does not make sense as a va-
riety or a scheme, but the quotient stack [X/G] exists (see 3.5). Thus the
above theorem may be regarded as an extension of original MacPherson’s
transformation C∗ to a wider category of spaces, quotient stacks.

This equivariant setting is based on Totaro-Edidin-Graham’s “algebraic
Borel construction” of classifying spaces ([35], [7]), so first I will talk about
the basic idea of this construction (§3). Second, I will show some applications
of CG∗ . For a compact G-variety X, the constant term (degree) and the top
term of our Chern class CG∗ (11X) coincide with the Euler characteristic and
the equivariant fundamental class respectively:

CG
∗ (11X) = χ(X)[pt] + · · ·+ [X]G.

So, if we are given some formulae of Euler characteristics or fundamental
classes, we may expect similar type formulae for total Chern classes. The
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following §4 and §5 are devoted to two short surveys on such “total class
versions”. We outline about those below.

1.2. “Thom polynomials” (Fundamental class ⇒ total class): [22], [24]
The Tp theory has been newly developed since the mid of 90’s, see M. Kazar-
ian, e.g., [13], [14], R. Rimányi [30], Fehér-Rimányi [9]. Given a pair of a
nonsingular G-variety V and an invariant subvariety η, the Thom polyno-
mial Tp(η) of η in V is defined to be the G-equivariant Poincaré dual to
ι∗[η]G ∈ HG∗ (V ), where ι is the inclusion. A particularly interesting case is
that V is a G-affine space, then the Thom polynomial of η is expressed by
an universal polynomial in G-characteristic classes:

Tp(η) := DualGι∗[η]G ∈ H∗G(V ) ' H∗G(pt) ' H∗(BG).

The recent Tp theory provides a systematic study of such universal polyno-
mials, including especially the method to compute Tp for any “singularity
types” η.

Here I propose a “total class version of Tp(η)” as the “Segre class” for
CG∗ (11η), that gives an “integration of invariant functions” sSM : FG

inv(V )→
H∗(BG), (see 4.2). In fact the lowest degree homogeneous term of sSM (11η)
is just Tp(η),

Historically, Tp has appeared in a modern enumerative theory of singu-
larities of complex analytic or real smooth maps. I will talk a bit about
sSM (µ) where µ is the Milnor number function. In fact the integration of
such local invariants of maps has been a missing part in the Tp theory so
far.

1.3. “Orbifold Chern classes” (Euler characterisitcs ⇒ total class): [23]
Let us consider a typical example, the symmetric product SnX of a complex
(possibly singular) variety X. There have been many studies on generating
funcitons for several “orbifold Euler characteristics” of SnX: Euler charac-
teristics (Macdonald [17]), orbifold Euler characterisitics (e.g., Hirzebruch-
Höfer [12]) and its generalization (Bryan-Fulman [6]). As “total class ver-
sions” of these formulae, I will give generating functions of orbifold Chern
homology classes of SnX. For instance, the generating function formula for
orbifold Euler characterisitics χorb of SnX is generalized to

∞∑

n=0

Corb
∗ (SnX)zn =

∞∏

k=1

(1− zkDk)−C∗(X) (ob)

in the Q-algebra
∑∞

n=0 znH∗(SnX;Q) of the formal power series whose co-
efficients are total homology classes. Here D is a letter indicating diagonal
operators. The result is stated more generally as the “Dey-Wohlfahrt for-
mula” (an exponential formula) for equivariant Chern classes of X associated
to Sn-representations of a group A. In particular, if X is a point, this re-
covers the exponential formula for the numbers |Hom(A,Sn)| (the classical
Dey-Wohlfahrt formula). There is an equivariant version, i.e., the quotient
via a wreath product G ∼ Sn (semidirect product), but we omit it here.
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This direction tends to the further theory of Chern classes and their gener-
ating functions for more complicated graded spaces arising in several moduli
problems.

1.4. I should mention to other characteristic classes or natural transforma-
tion: Brasselet-Schürmann-Yokura [3] have introduced the theory of motivic
Chern classes and Hirtzeburch classes, which unifies the Chern-Schwartz-
MacPherson class class and Baum-Fulton-MacPherson’s (singular) Todd
class. So, it would be a promising task to look for a similar type formu-
lae in (singular) Todd classes as in (ob) above by passing through thier
theory.

I would much like to thank organizers and people whom I met in this
ICTP summer school and workshop; especially thank Jörg Schürmann for
some valuable remarks.

2. Preliminary

This is a quick introduction to Chern classes in connection with [2].

2.1. Chern classes of vector bundles. As seen in [2], the top Chern
class cn(TM) for a compact complex manifold M (n = dim M) is defined as
the obstruction class for non-zero vector fields (the Poincaré-Hopf theorem).
Also the i-th Chern class ci(TM) is given by the obstruction class for the
existence of (n − i + 1)-frames over M : roughly saying, let s be a generic
collection of n−i+1 vector fields over M , then the singular set η(s), at which
s is linearly dependent, represents the obstruction class (ι is the inclusion),

ι∗[η(s)] = ci(TM) _ [M ]

(cf. Example 4.1 (Thom-Porteous formula); later we will define Thom poly-
nomials as this kind of obstruction classes). The total Chern class c(TM)
means the formal sum 1 + c1(TM) + · · ·+ cn(TM) ∈ H∗(M).

Chern classes are actually defined for (topological) complex vector bun-
dles, not only tangent bundles TM . Then Chern classes are characterized
by the function c assigning to a complex vector bundle E →M a total class
c(E) =

∑
ci(E) where ci(E) ∈ H2i(M) so that it satisfies the following

axiom (for the detail, in topology, see [19]; in algebraic geometry, see [10]):
• c0(E) = 1 and ci(E) = 0 for i > rank E;
• c(E) = c(E′)c(E′′) for any exact sequence 0→ E′ → E → E′′ → 0;
• c(f∗E) = f∗c(E) where f∗E is the pullback bundle of E → N via a

base change f : M → N ;
• c1(γ̄1) _ [CP 1] = 1, for the canonical line bundle γ̄1(= O(1)) over

the projective space CP 1.
An important fact in topology is that any rank n vector bundle can be ob-
tained from a universal vector bundle ξn over the classifying space BGL(n):
for any E →M , there is a classifying map (unique up to homotopy) ρ : M →
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BGL(n) so that E = ρ∗ξn. Here BGL(n) and ξn are given by the inductive
limit of the grassmannian of n-dimensional subspaces in (n+k)-dimensional
affine spaces (k →∞) and the limit of tautological vector bundles over the
grassmanianns, respectively. Since H∗(BGL(n)) = Z[c1, · · · , cn] (degree of
ci(= ci(ξn)) is 2i), any Chern classes are obtained from those generators:
ci(E) = ρ∗ci.

In algebraic geometry, Totaro [35] introduced an algebraic construction
of the classifying space BG for algebraic group G, which we will use later.
An algebraic counterpart of classifying maps is given also in [35].

2.2. Chern class for singular varieties. For a singular algebraic variety
X, the tangent bundle does not exist, so we need some “substitutes” for
frames or tangent bundles in order to define reasonable “Chern classes” for
X, see [2]. The most particular feature is that those “Chern classes” are
no longer cohomology classes of X, but are homology classes, because of
the lack of Poincaré duality. In 1965 M. Schwartz [32] defined a certain
obstruction class for “radial vector fields (frames)” on X, which is today
called the Chern-Schwartz-MacPherson class C∗(X) ∈ H∗(X): The degree
C0(X) is equal to χ(X) and the top component Cn(X) is equal to the
fundamental class [X].

The axiomatic description is due to R. MacPherson: he showed in [18]
(as a solution of Deligne-Grothendieck conjecture) that there exists a unique
natural transformation C∗ : F(X) → H∗(X), where F(X) is the group of
constructible functions over X, so that

• (natrural transform) C∗ is a homomorphism of additive groups,
and f∗ ◦ C∗ = C∗ ◦ f∗ for proper morphisms f : X → Y ;
• if X is non-singular, then C∗(11X) = c(TM) _ [X].

In [4], it is shown that Schwartz’s class and MacPherson’s one coincide as
C∗(X) = C∗(11X).

In algebraic context, G. Kennedy [15] reformulated MacPherson’s trans-
formation, that is, C∗ : F(X) → A∗(X), through the Lagrange cycle ap-
proach.

In the following sections, based on the algebraic Borel construction, we
will combine two related but different stories as mentioned above.

3. Equivariant Chern class theory

A G-action on a variety X is a morphism G × X → X, (g, x) → g.x,
with properties h.(g.x) = (hg).x (h, g ∈ G) and e.x = x (e is the identity
element of G). We call X a G-variety for short. A morphism f : X → Y
between G-varieties is called G-equivariant if f(g.x) = g.f(x) for any g ∈ G,
x ∈ X. (Precisely, those properties (identities) mean the commutativity of
corresponding diagrams of morphims.)

3.1. Totaro’s construction of BG. Let G be a complex linear algebraic
group of dimension g. Take an l-dimensional linear representation V of G
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and a G-invariant Zariski closed subset S in V so that G acts on U := V −S
freely. Let I(G) denote the collection of such U (that is, all pairs (V, S)).
We say U < U ′ (where U = V −S, U ′ = V ′−S′) if there is a representation
V1 satisfying V ⊕ V1 = V ′, U ⊕ V1 ⊂ U ′ and codim V S < codim V ′ S

′.
Then (I(G), <) is a directed set (in fact U,U ′ < U ⊕ U ′). All quotients
U → U/G form an inductive system over I(G) (via inclusion maps). The
inductive limit is the algebraic counterpart of the universal principal bundle
EG→ BG ([35], [7]).

Let X be a G-variety. For any U ∈ I(G), the diagonal action of G on
X × U , which is always a free action, gives a principal bundle X × U →
X×GU = (X×U)/G, and thus the equivariant projection X×U → U serves
the fibre bundle X ×G U → U/G with fibre X. We denote XU := X ×G U
for short. Roughly saying, the universal fibre bundle X ×G EG → BG is
approximated by those mixed quotients XU → U/G ([7]).

3.2. G-equivariant (co)homology. Let X be a G-variety of equidimen-
sional n. We recall the definition of the equivariant (co)homology ([35],
[7]).

The i-th equivariant cohomology of X is given as the projective limit

H i
G(X) = lim←−H i(XU ).

We denote H∗G(X) = lim←−H∗(XU ). This becomes a contravariant functor
(the pullback of a G-morphism f is denoted by f∗G).

Let ξ be a G-equivariant vector bundle E → X (i.e., E, X are G-varieties
and the projection is G-equivariant so that the action of g sends each fibre Ex

to Eg.x linearly). Then we have a vector bundle EU → XU over the mixed
quotient for each U , denoted by ξU , and define the G-equivariant Chern
class cG(ξ) ∈ H∗G(X) to be the projective limit of Chern classes c(ξU ). When
X = {pt}, an equivariant vector bundle is a representation V (→ {pt}); its
equivariant Chern class is denoted by cG(V ) ∈ H∗G(V ) ' H∗(BG).

Next, let us define the homology as follows: a key point is shifting di-
mensions via pullback. For any pair U < U ′, we have a diagram of natural
projection and inclusion

XU
p← XU⊕V1

ι→ XU ′ (∗)
Put g = dimG, l = dimU , l′ = dimU ′ and s = codimV S (U = V − S).
Note that ι is an open embedding, so the pullback ι∗ is defined and is in
fact isomorphic if 2(n− s) < i ≤ 2n because of the (co)dimensional reason.
We prefer to denote its inverse by ι∗ := (i∗)−1, and then the diagram (∗)
induces

Hi+2(l−g)(XU )
p∗→' Hi+2(l′−g)(XU⊕V1)

ι∗→' Hi+2(l′−g)(XU ′) (∗H)

We then define the i-th equivariant homology group to be

HG
i (X) = Hi+2(dim U−g)(XU )
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for U with codim S high enough. This group is trivial for i > 2n and
nontrivial for any negative i in general. The direct sum is denoted by
HG∗ (X) = ⊕HG

i (X). For a proper G-morphism f : X → Y , the push-
forwad fG∗ is defined by taking limit of (fU )∗ : XU → YU ; thus HG∗ becomes
a covariant functor.

For any U , the cycle [XU ] tends to a unique element of HG
2n(X), denoted

by [X]G, called the G-equivariant fundamental class of X. It induces a
homomorphism

_ [X]G : H2n−i
G (X)→ HG

i (X), a 7→ rU (a) _ [XU ]

where rU denotes the restriction. If X is nonsingular, this is isomorphic,
called the G-equivariant Poincaré dual.

Example 3.1. G = GL(1), X = {pt} and Um = Cm+1 − {0} in I(G):

(Um × C)/GL(1) = Pm+1 − {pt}
· · ·

p

↙
ι
↘ · · ·

· · · ⊂ Pm ⊂ Pm+1 ⊂ · · · ⊂ P∞

Then H
GL(1)
−2n (pt) ' H2n

GL(1)(pt) = Z for n ≥ 0, and trivial otherwise.

3.3. Equivariant constructible functions. Let F(X) denote the Abelian
group consisting of all constructible functions over X. The subgroup of G-
invariant constructible functions is denoted by

FG
inv(X) := { α ∈ F(X) | α(g(x)) = α(x), x ∈ X, g ∈ G }.

For any U < U ′ with the projection p : V ′ = V ⊕ V1 → V , we have
p∗ : FG

inv(X × V ) → FG
inv(X × V ′) (α 7→ α ◦ (id × p)). We define the group

of G-equivariant constructible functions associated to X to be the inductive
limit

FG(X) := lim−→ F
G
inv(X × V ).

For a proper G-morphism f , pushforward fG∗ are defined in an obvious way,
so FG becomes a covariant functor. There is a canonical inclusion, denoted
by φ0,

FG
inv(X) ⊂ FG(X), α0 7→ lim(α0 × 11V ).

Note that FG
inv(pt) = Z, but FG(pt) consists of functions over representa-

tions.
Now let us think of the group F(XU ) of (ordinary) constructible functions

over mixed spaces. The previous diagram (∗) induces

F(XU )
p∗→ F(XU⊕V1)

ι∗→ F(XU ′) (∗F )

Note that F(XU ) is canonically identified with FG
inv(X×U). Then the above

composed map ι∗p∗ commutes with p∗ : FG
inv(X × V ) → FG

inv(X × V ′) via
restrictions caused by U ⊂ V and U ′ ⊂ V ′.
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3.4. Equivariant natrual transformation. The space X ×G EG is the
inductive limit (via inclusions) of mixed quotients XU , while the definitions
of HG∗ and FG involve a contravariant operation p∗. Roughly saying, our
idea to define CG∗ (11X) is to take the inductive limit of C∗(XU ) and multiply
it by the inverse Chern class factor “c(TBG)−1”. This factor relates to p∗
via the Verdier-Riemann-Roch theorem (VRR theorem).

Recall that the VRR refers to C∗ with the contravariant operation induced
by f : X → Y ([11]):

Theorem 3.2. ([37], cf. [31]) For a smooth morphism f : X → Y , let
c(f) be the Chern class of the relative tangent bundle. Then the following
diagram commutes:

F(Y ) C∗−→ H∗(Y )
f∗ ↓ ↓ c(f) _ f∗

F(X) C∗−→ H∗(X)

Now we put

CU,∗ := cG(V )−1 _ C∗ : F(XU )→ Htr(XU ).

where Htr means the direct sum of H i over 2(n−s+ l−g) < i ≤ 2(n+ l−g)
(l = dim U , s = codim V S). Note that cG(V ) is the Chern class of the vector
bundle X ×G TU → XU .
• We apply the VRR theorem for p : XU⊕V1 → XU , then it turns out that
CU⊕V1,∗ ◦ p∗ = p∗ ◦ CU,∗.
• For an open embedding ι : XU⊕V1 → XU ′ , it holds that ι∗ ◦ CU⊕V1,∗ =
CU ′,∗ ◦ ι∗ in this renge of dimension.
Consequently, “Radon transforms” (∗)F and (∗)H commute as follows (cf.,
[8]):

F(XU )
CU,∗−→ Htr(XU )

ι∗p∗ ↓ ↓ ι∗p∗

F(XU ′)
CU′,∗−→ Htr(XU ′)

Since p∗ : FG
inv(X × V ) → FG

inv(X × V ′) commutes with the left ι∗p∗ (as
noted in the end of 3.3) , we can take the limit homomorphism

CG
∗ := lim−→ CU,∗ : FG(X)→ HG

∗ (X).

This is our equivariant Chern-MacPherson transformaition in Theorem 1.1.

3.5. Quotient stacks. By definition, a quotient stack X = [X/G] is a cat-
egory itself, whose objects are principal G-bundles p : P → B together with
G-equivariant morphism ϕ : P → X and its arrows are morphisms between
principal bundles which make their equivariant morphisms to X commute.
In [7] (Proposition 16) , Edidin-Graham introduced the integral Chow groups
of a quotient stack X = [X/G] by A∗(X ) := AG∗−g(X) where g = dim G; in
fact it is independent from the choice of the presentation X and G. In the
exactly same way, F(X ) := FG(X) is well-defined.
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As for “arrows”, f : X → Y under consideration is assumed to have
presentations X = [X/G] and Y = [Y/H] so that f is induced from a mor-
phism f̄ : X → Y and a group-scheme homomorphism hf : G → H with
f̄(g.x) = hf (g).f̄(x) (i.e, Y has a G-action via hf and f̄ is G-equivariant).
Then, Theorem 1.1 can be translated as follows:
For the (above) category of quotient stacks X , there is a natural transfor-
mation C∗ : F(X ) → A∗(X ) so that for any nonsingular varieties X = X
(with G = {e}), it holds that C∗(11X) = c(TX) _ [X].

Note that an object of [X/G] means “a family of G-orbits in X which is
parametrized by B”, that admits another interpretation: [X/G] can be also
regarded as the universal space for sections of associated bundles with fibre
X and structure group G. In fact, let P → B be a principal G-bundle and
set E = P ×G X, then an equivariant morphism ϕ : P → X corresponds to
a section s : B → E (s(B) = (graphϕ)/G).

4. Thom polynomials

4.1. Universality. Let V be a G-affine space and η an invariant subvari-
ety. Let i : η → V be the inclusion map. The Thom polynomial Tp(η) ∈
H∗(BG)(= H∗G(V )) is defined to be the G-Poincaré dual to iG∗ [η]G ∈ HG∗ (V )
([13], [9], [29]). By definition, Tp(η) satisfies the following universality:
(u): For any bundle E → M with fibre V and the structure group G over
a manifold M of dimension m, let Eη → M be the associated fibre bundle
with fibre η. For a “generic” section s : M → E (e.g., s is transverse to the
subvariety Eη in E) , we define the singular set of type η

η(s) := s−1(Eη),

which has the expected codimension l = codim η. Let i : η(s) → M be the
inclusion. Then, the fundamental class of the singular set is expressed in M
by

i∗[η(s)] = Tp(η)(c(E)) _ [M ] ∈ H2(m−l)(M)

after substituting ci(E) to universal classes ci.
As a remark, we may drop the condition in (u), “genericity” of the section

and/or “smoothness” of the base space, if we correct the formula by replacing
i∗[η(s)] by a certain localized class (a residue class) of expected dimension.

Example 4.1. (Thom-Porteous formula) Let V := Hom(Cm,Cn) on which
the group G = GL(m,C)×GL(n,C) acts as linear coordinate changes. Take
η := Dk, the closure of the orbit of linear maps with dimker = k. Then
the Thom polyomial is given by a certain Schur polynomial: Tp(Dk)(c) =
∆(k)

k+l(c)(:= det[ck+l−i+j ]), [29]. Namely, for a suitably generic vector bundle
map f : E → F (i.e., a section f : M → Hom(E, F )), where E and F are
vector bundles over a manifold M of rank m and n, respectively, then the
degeneratcy loci Dk(f)(= {x ∈M, dimker fx ≥ k}) is expressed by

ι∗[Dk(f)] = det[ck+l−i+j(F − E)]1≤i,j≤k _ [M ].
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where c(F − E) = (1 + c1(F ) + · · · )(1 + c1(E) + · · · )−1. To correct the
formula without the genericity/smoothness condition, for instance, in alge-
braic context Fulton [10] defines the degeneracy class by the pushforward
of the localized top Chern class of a bundle over the Granssmaiann bundle
Gr(k;E). As for a localization in complex analytic geometry, see e.g. Suwa
[34].

4.2. Segre-Schwartz-MacPherson class. For a subvariety Z in a non-
singular variety M , the Segre-SM class of Z in M is defined (cf. Aluffi [1],
[22])

sSM (Z, M) := c(TM |Z)−1 _ C∗(Z) ∈ H∗(Z)
which is an analogy to the relation between Fulton’s canonical class CF (Z)
and the Segre covariance class s(Z, M): in fact CF (Z) is defined to be
c(TM |Z) _ s(Z, M) ([10]).

Now, for an invariant subvariety η in a non-singular G-variety V , we define
the equivariant Segre-Schwartz-MacPherson class by

sSM
G (η, V ) := cG(TV |η)−1 _ CG

∗ (11η) ∈ HG
∗ (η).

In particular, suppose V is a G-affine space, then we have an additive ho-
momorphism

sSM : FG
inv(V )→ H∗(BG), sSM (11η) := DualG ι∗sSM

G (η, V ).

Theorem 4.2. Let V and η be as above. Then
(1) sSM (η)(:= sSM (11η)) = Tp(η) + higher degree terms;
(2) For G-morphisms ι : V ′ → V being transverse to η, it holds that

sSM (ι∗11η) = ι∗sSM (11η).

(3) (universality) Let E → M and a generic section s be as in (u) of 4.1,
then we have

i∗sSM (η(s),M) = sSM (η)(c(E)) _ [M ] ∈ H∗(M).

In particular, the Euler characteristic χ(η(s)) admits a universal expression,
that is, the degree

∫
M c(TM)sSM (η)(c(E)).

This is an immediate consequence from the definition. A prototype of
sSM appeared implicitly in Parsiński-Pragacz’s work (Theorem 2.1 in [27])
for degeneracy loci of vector bundle maps (cf. Example 4.1).

As a remark on (3), the base space M can be possibly singular: under
suitable “genericity” of s (cf. [27]), the formula is replaced by

i∗C∗(η(s)) = sSM (η)(c(E)) _ C∗(M) ∈ H∗(M).

4.3. Singularities of maps. Let k = C or R. In the Tp theory in Singular-
ity Theory of Differentiable Mappings, V is the space E(m,n) of map-germs
km, 0→ kn, 0 and G is the A-equivalence group Am,n or the K-equivalence
group Km,n. More precisely, we think of their jet spaces which are finite
dimensional. In case that G is the K-equivalence group, we can take a
stabilization of K-orbits via embeddings → E(m,n) → E(m + 1, n + 1) →



10 T. OHMOTO

defined by trivial unfoldings. It turns out that for any K-invariant subva-
riety η, Tp(η) is a universal polynomial in the Chern classes of the virtual
normal bundle ci(f) = ci(f∗TN − TM) ([21], [13], [9]). We also denote
c̄i(f) = ci(TM − f∗TN).

In the above setting, the Segre class sSM can be also defined: sSM (η)
is a formal sum of polynomials in ci = ci(f) (i ≥ 0), whose leading term
is Tp(η). Let us see an example in case that l := m − n ≥ 0. For the
K-invariant “Milnor number constructible function” µ : E(m,n) → Z (off
the germs whose Milnor number is not defined), it can be shown that

Theorem 4.3. ([23]) sSM (µ) = (−1)l+1 ∑
i,j≥0 cic̄l+j+1.

This is a unversal expression arising from the following simple equality
(e.g., Yomdin [39], Nakai [20]):

f∗(11M + (−1)m−n+1µ(f)) = χ(F )11N

for a finite type morphism f : M → N betwen complex manifolds (i.e., the
Milnor number µ(f)(x) <∞ for each x ∈M) with generic fibre F . Further,
this relates to a “relative version” of the Milnor class (cf., [33], [25], [26];
[28], [5]). That suggests a connection between the recent Tp theory and the
geometry of polar varieties (e.g., Lê-Teissier [16]).

In real analytic case (k = R), C∗ should be replaced by the Stiefel-
Whitney homology class W∗: Sullivan’s definition of Wi(X) of a real an-
alytic variety X is the sum of all i-simplices in the barycentric subdivision
of a subanalytic triangulation of X. Let η be a K-invariant subvariety in
V and f : M → N a suitably generic map between real analytic manifolds.
Then the fundamental Z2-cycle of η(f) is expressed by a universal polyno-
mial (with Z2-coefficient) Tp(η)2 in wi(f) = wi(f∗TN − TM), as well its
“Segre-version” is: i∗(w(TM)−1 _ W∗(η(f))) = sSM (η)2(w(f)) _ [M ]2.

Finally, we remark that multiple point formulae are not Tp in the above
sense (i.e., those are not the case of action of a group). In fact, multi-
ple point formulae are included into the Tp theory for multi-singularities
km, S → kn, 0 (S: finite, m < n), that was recently established in topology
by Maxim Kazarian [14] using classical cobordism theory. The “classifying
space BKmulti for multi-singularities” (where Kmulti is a groupoid, not a
group) admits a stratification by classifying spaces Bη for indivisual sin-
gularity types η at least up to homotopy (cf. Thom-Pontragin-Szücs con-
struction for singular maps). Note that the algebraic counterpart has been
missing.

5. Orbifold Chern classes

5.1. Canonical constructible functions. At first, recall that for a quo-
tient variety (an orbifold) X = X/G of a possibly singular variety X with
an action of a finite group G, there are two kinds of Euler characteristics
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(ordinary one and physist’s one):

χ(X/G) =
1
|G|

∑

g∈G

χ(Xg), χorb(X;G) =
1
|G|

∑

gh=hg

χ(Xh,g).

Here Xg is the set of fixed points of g and Xh,g := Xh ∩ Xg, and the
second sum runs over all pairs (h, g) ∈ G × G such that gh = hg (see e.g.,
Hirzebruch-Höfer [12]).

Now let G be an algebraic group and X a G-variety. Let A be a group, and
assume that Hom(A,G) is a scheme, on which G acts by (g.ρ)(a) := ρ(a)g.
We put

Z := { (x, ρ) ∈ X ×Hom(A,G) | ρ(a).x = x (∀a ∈ A) }
(with the diagonal action of G). The projection to the first factor is denoted
by π : Z → X, which is a G-morphism. We define the integer canonical
constructible functions over X associated to (all G-representations of) a
group A by

α
(A)
X/G := πG

∗ 11Zred
∈ FG

inv(X).

In particular, if G is a finite group, then we define the rational cannonical
function to be the average 11(A)

X/G = 1
|G|α

(A)
X/G in FG

inv(X)⊗Q. If A = Zm, we

denote the canonical funciton simply by 11(m)
X/G.

We call CG∗ (α(A)
X/G) ∈ HG∗ (X) (resp. CG∗ (11(A)

X/G)) the integer (resp. ratio-
nal) canonical quotient Chern class associated to A.

In the case that G is a finite group and X/G is a variety, it immediately
follows that

∫

X
11(1)

X/G = χ(X/G),
∫

X
11(2)

X/G = χorb(X;G).

Furthermore, in this case, it holds that HG∗ (X;Q) ' H∗(X/G;Q) (cf.,
[7]). By this identification, in rational coefficients the canonical Chern class
CG∗ (11(1)

X/G) is identified with the ordinary Chern-SM class C∗(X/G) of the
quotient variety (In (ob) in Introduction, we used the notation Corb to mean
the corresponding class to CG∗ (11(2)

X/G)).

5.2. Symmetric products. From now on, we concentrate the case that
G = Sn, the n-th symmetric group acting the n-th Cartesian product Xn

of a variety X as σ(x1, · · · , xn) := (xσ−1(1), · · · , xσ−1(n)). F and H∗ are
assumed to have rational coefficients and omit the notation ⊗Q.

For α ∈ FSm
inv (Xm) and β ∈ FSn

inv(X
n) (or corresponding homologies), we

define the product ¯ by

α¯ β :=
1

|Sm+n|
∑

σ∈Sm+n

σ∗(α× β),
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where σ∗ is the pushforward induced by σ : Xm+n → Xm+n. This produces
commutative and associative graded Q-algebras of formal power series

FX,sym[[z]] :=
∞∑

n=0

znFSn
inv(X

n), HX,sym[[z]] :=
∞∑

n=0

znHSn
2∗ (Xn).

We denote α ¯ · · · ¯ α (c times) by αc or α¯c. For a proper morphism f :
X → Y , the n-th cartesian product fn : Xn → Y n induces a homomorphism
of algebras (as well homology case) fsym

∗ : FX,sym[[z]] → FY,sym[[z]] given
by fsym

∗ (
∑

αnzn) :=
∑

fn∗ αnzn.

Theorem 5.1. The following Csym
∗ gives a natural transformation (as a

Q-algebra homomorphism)

Csym
∗ : FX,sym[[z]]→ HX,sym[[z]],

∞∑

n=0

αnzn 7→
∞∑

n=0

CSn∗ (αn)zn.

5.3. Types of permutations. A collection c = [c1, · · · , cn] of non-negative
integers satisfying |c| := ∑n

i=1 ici = n is called a type of weight n. We put
]c := n!/1c1c1!2c2c2! · · ·ncncn!, which is equal to the number of elements of
a conjugacy class in Sn (each element has ci cycles of length i).

For a group A, we denote by jr(A) the number of the subgroups of A
with index r. Here is the “Dey-type formula” on canonical constructible
functions:

Lemma 5.2. The canonical function 11(A)
Xn/Sn

is equal to the sum

∑

|c|=n

][c1, · · · , cn]
n!

· (j1(A) · 11∆X)c1 ¯ · · · ¯ (jn(A) · 11∆Xn)cn .

5.4. Diagonal operators. The standard n-th diagonal operator Dn (n =
0, 1, · · · ) is defined to be the pushforward homomorphisms: D0 = 1, D1 =
D = id∗ (id : X → X) and

Dn := (∆n)∗ : F(X)→ FSn
inv(X

n)

(as well homology case) where ∆n : X → Xn is the diagonal inclusion map,
∆n(x) := (x, · · · , x). We call U :=

∑
n≥1 anznDn (an ∈ Q) a standard

diagonal operator; in particular, we put Log(1 + zD) :=
∑

n≥1
zn

n Dn.
The mixed n-th diagonal operator of type c = [c1, · · · , cn] means the maps

Dc : F(X)→ FSn
inv(X

n) (as well homology case) given by

D[c1,··· ,cn](α) := (D1(α))c1 ¯ (D2(α))c2 ¯ · · · ¯ (Dn(α))cn .

We also define a formal diagonal operator as a formal series T =
∑∞

n=0 znTn

of linear combinations Tn =
∑
|c|=n vcDc. Every formal operator T operates

on F(X) and H∗(X). By using ¯ we define exp(T ) :=
∑∞

n=0
1
n!T
¯n for T

with zero constant term, and we make a convention of notation

(1 + U)α := exp(Log(1 + U)(α)) for a standard U .
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5.5. Exponential formula. For a group A, let ΩA(r) (resp. ΩA) denote
the set of all subgroups B in A of index |A : B| = r (resp. subgroups of
finite index) and jr(A) := |ΩA(r)|. A direct computation shows

Proposition 5.3. It holds that
∞∑

n=0

11(A)
Xn/Sn

zn = exp

( ∞∑

r=1

jr(A)
r

zrDr(11X)

)
.

Apply Csym
∗ to the both sides of this equality of constructible functions.

Since it holds that T ◦ C∗ = Csym
∗ ◦ T for any T , we obtain the following

theorem:

Theorem 5.4. “Dey-Wohlfahrt formula for Chern classes”: Assume
that jr(A) <∞ for any r. Then it holds that

∞∑

n=0

CSn∗ (11(A)
Xn/Sn

)zn = exp


 ∑

B∈ΩA

1
|A : B|(zD)|A:B|C∗(11X)


 .

Remark 5.5. When X = pt, this theorem gives the classical Dey-Wohlfahrt
formula on the enumeration of Sn-representations of a group, [36]

∞∑

n=0

|Hom(A,Sn)|
n!

zn = exp


 ∑

B∈ΩA

z|A:B|

|A : B|


 .

5.6. Examples.

(1) A = Z (Hom(Z, Sn) ≡ Sn). Our Chern class formula (Theorem 5.4)
is written as

∞∑

n=0

C∗(SnX)zn = (1− zD)−C∗(X).

This generalizes well-known Macdonald’s formula of Euler charac-
teristics of SnX ([18]):

∞∑

n=0

χ(SnX)zn = (1− z)−χ(X).

(2) A = Zm (Hom(Zm, Sn) corresponds to the set of mutually comm-
muting m-tuples of Sn);

∑

n≥0

CSn∗ (11(m)
Xn/Sn

) zn =
∞∏

r=1

(1− zrDr)−jr(Zm−1)C∗(X).

The case m = 2 is the formula given in §1 (there, instead I wrote
Corb∗ in LHS), which is the class version of the generating function
of orbifold Euler charactersitics χorb(Xn;Sn) given by Hirzebruch-
Höfer [12]. For general m, the degree part of the above formula gives
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the generating function of generalized orbifold Euler charactersitics
in Bryan-Fulman [6]:
∞∑

n=0

χm(Xn;Sn) zn =
∏

ji≥1

(1− zj1j2···jm−1)−jm−2
1 jm−3

2 ···jm−2 χ(X).

(3) A = Z/dZ, the cyclic group of order d:

∞∑

n=0

CSn∗ (11(Z/dZ)
Xn/Sn

) zn = exp


∑

r|d

1
r
(zD)rC∗(11X)


 .

(4) A = Zp = lim← Z/pkZ (as an additive group, p is a prime number).
“the Artin-Hesse exponential for the Chern class of X”

∞∑

n=0

CSn∗ (11(Zp)
Xn/Sn

) zn = exp

( ∞∑

k=0

1
pk

(zD)pk
C∗(11X)

)
.
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