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Abstract. We give a general product formula for the Milnor class. Using this formula we
obtain a Parusiński-Pragacz-type formula for the Milnor class of a finite Cartesian product

of hypersurfaces and we show that in general it is necessary to also consider the Chern classes
of subbundles of the total vector bundle to obtain a Parusiński-Pragacz-type formula for
the Milnor class of general local complete intersections. Furthermore, we also give another
kind of product formula for the Milnor class of singular hypersurfaces by using the so-called

Thom-Sebastiani construction.

Dedicated to Professor Takuo Fukuda on the occasion of his 60-th birthday

Introduction

A generalization of the Milnor number of higher dimensional singular locus has been
tried by many people and furthermore the Milnor number has been recently extended to
the so-called “Milnor class” of a local complete intersection variety, which is supported
on its singular locus. The Milnor class is by definition, up to sign, the difference between
the virtual class [4, 9] and the Chern-Schwartz-MacPherson class [6, 13, 17, 26]. One of
the main problems is to describe this class in terms of some invariants of the singular
locus (e.g., see [1, 2, 3, 4, 7, 23, 28, 31, 32, 33]). For hypersurfaces Aluffi [3] described the
Milnor class using his µ-class [2] and Parusiński and Pragacz [23] described it using the
Chern-Schwartz-MacPherson class of the closures of Whitney strata (cf. [22]). For local
complete intersections with isolated singularities Suwa [28] showed that the Milnor class
is the sum of the Milnor numbers. More generally, for local complete intersections with
arbitrary singularities, Brasselet, Lehmann, Seade and Suwa [4] described the Milnor
class in terms of the localized Milnor classes, and in a special case when the singular
locus is smooth they described the Milnor class more explicitly, using the Chern class of
the locus and some extra cohomology classes “ω”, precise geometric meanings of which
have not been clarified yet.

In this paper we will give some simple observations and examples on the Milnor class
of local complete intersections with arbitrary singularities, which will provide a hint for
a general formula which one has been looking for. In §2 and §3, we will be concerned
with a simple formula on the Milnor class of a finite Cartesian product of local complete
intersections with arbitrary singularities. By this formula, it turns out that in order
to describe the Milnor class of a local complete intersection with arbitrary singularities
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it is in general not sufficient to consider just the Chern classes of the vector bundle
associated to the normal sheaf, but it requires to also consider the Chern classes of
certain subbundles of the total bundle. This observation gives an explanation for why
some extra cohomology class “ω” should be involved in the Brasselet-Lehmann-Seade-
Suwa’s formula [4, Theorem 7.13 and Corollary 7.18]. In the last section, we will give
another kind of product formula for the Milnor class of singular hypersurfaces, which
should be called “a Thom-Sebastiani type formula”. To obtain this, we will use some
results on the local geometry of function-germs, the proofs of which will be given in
Appendix.

1. Milnor classes

Definition (1.1). ([3, 4, 23, 31]) Let M be an (n + k)-dimensional compact complex
analytic manifold, and let E be a rank k holomorphic vector bundle over M . Let s be
a regular holomorphic section of E , and set X := s−1(0), which is an n -dimensional
local complete intersection. Then the following class is called the Milnor class of Z :

M(X) := (−1)n
(
Cvir(X) − C∗(X)

)
,

where Cvir(X) is the virtual homology class of X defined by

Cvir(X) := c(TM |X − E|X) ∩ [X] =
c(TM |X)
c(E|X)

∩ [X],

and C∗(X) is the Chern-Schwart-MacPherson class of X .

In particular, when X is nonsingular, it holds that Cvir(X) = c(TX)∩ [X] = C∗(X) ,
thus M(X) = 0.

Definition (1.2). ([20], [22]) Let the situation be as in Definition (1.1). Then the
Parusiński’s generalized Milnor number µ(X) of X is defined by:

µ(X) := (−1)n (χ(M |E) − χ(X)) ,

where χ(X) is the topological Euler-Poincaré characteristic of X and χ(M |E) is defined
by

χ(M |E) :=
∫

M

c(E)−1crankE(E)c(TM) ∩ [M ].

Here
∫

M
means taking the sum of the 0-th part of the homology class, in other

words, taking the image of the homology class by the homomorphism H∗(M ; Z) →
H∗(one point; Z) = Z induced by a constant map.

The Milnor class M(X) can be viewd certainly as a class version of the Parusiński’s
generalized Milnor number µ(X) . In fact, it is clear that

c(E)−1crankE(E)c(TM) ∩ [M ] = c(E)−1c(TM) ∩ i∗[X] = i∗Cvir(X)

and
∫

M
i∗Cvir(X) =

∫
X

Cvir(X) , where i : X → M is the inclusion, and hence we have

µ(X) = (−1)n

(∫
X

Cvir(X) −
∫

X

C∗(X)
)

=
∫

X

M(X).
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Now let us consider the case when X is a singular hypersurface, that is, X is given
by a holomorphic section s of a holomorphic line bundle L over an (n + 1) dimensional
manifold M . Then the Milnor class M(X) can be expressed by using a Whitney starti-
fication of X and certain Chern-Schwarz-MacPherson classes, that is a recent result due
to Parusiński and Pragacz [23]. Consider the function χ : X → Z defined by, for x ∈ X ,
χ(x) := χ(Fx) the topological Euler-Poincaré characteristic of the Milnor fiber Fx at x .
Then, since the number (−1)n(χ(Fx) − 1) is nothing but the Milnor number of X at x
when x is an isolated singularity, the function µ := (−1)n(χ−11X) shall be provisionally
called the “Milnor number function” ( or the function of “vanishing Euler charcteristics”
). It turns out that for any Whitney stratification of X the above function µ is constant
along each strata [8, 21], therefore the function µ is a constructible function ; thus it
shall be provisionally called the Milnor constructible function, abusing words. Let us
denote the value of the Milnor constructible function µ on the stratum S by µS .

Theorem (1.3). ([23, Theorem 0.2]) Let the situation be as above. Then we have

M(X) = c(L|X)−1 ∩
∑
S∈X

α(S)(iS,X)∗C∗(S),

where iS,X : S → X is the inclusion and α(S) = µS −∑S′ 6=S,S
′⊃S α(S′) .

The above theorem simply says that:

M(X) = c(L|X)−1 ∩ C∗(µ).

In fact, the way Parusiński and Pragacz proved the theorem is to compare the three
characteristic cycles (i.e., the Lagrangian cycles) associated to the three distinguished
constructible functions: the characteristic function 11X , the Euler constructible funcion
χ and the Milnor constructible function µ . They use the work of Briançon-Maisonobe-
Merle [8] , Lê-Mebkhout [17] and Sabbah [24]. For more details see [23].

2. Product formulas

M. Kwieciński [12] (cf. [14]) has proved that the cross product formula holds for the
Chern-Schwartz-MacPherson class, using the resolution of singularities and by induction
of dimension, i.e.,

Theorem (2.1). ([12]) Let α and β be constructible functions on X and Y , respec-
tively. The exterior product α⊗β ∈ F(X×Y ) is defined to be (α⊗β)(x, y) := α(x)β(y) .
Then we have

C∗(α ⊗ β) = C∗(α) × C∗(β) ∈ H∗(X × Y ),

where × is the homology cross product. In particular, we have the product formula for
the Chern-Schwartz-MacPherson class and the product formula for the Chern-Mather
class:

(2.1.1) C∗(X × Y ) = C∗(X) × C∗(Y ),

(2.1.2) CM (X × Y ) = CM (X) × CM (Y ).
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(2.1.1) and (2.1.2) follow from the fact that 1X ⊗ 1Y = 1X×Y and EuX ⊗ EuY =
EuX×Y [17], respectively.

Let i = 1, 2. Let Mi be an (ni +ki)-dimensional compact complex analytic manifold,
and let Ei be a rank ki holomorphic vector bundle over Mi . Let si be a regular
holomorphic section of Ei , and set Xi := s−1

i (0), which is an ni -dimension local complete
intersection. Let pi : M1 ×M2 → Mi . Then we have the holomorphic (exterior product)
section s1 ⊕ s2 : M1 × M2 → p∗1E1 ⊕ p∗2E2 , which is defined by (s1 ⊕ s2)(x, y) =
(s1(x), s2(y)). Then X1 × X2 = (s1 ⊕ s2)−1(0). Let ei : Xi → Mi be the inclusion
(i = 1, 2). It is then easy to see the following.

Proposition (2.2).

Cvir(X1 × X2) = Cvir(X1) × Cvir(X2).

In particular,
χ(M1 × M2|p∗1E1 ⊕ p∗2E2) = χ(M1|E1)χ(M2|E2).

It hence follows that

Theorem (2.3). Let {(Mi, Ei, si,Xi)}1≤i≤r(r ≥ 2) be a finite system of compact com-
plex analytic manifolds Mi of dimension ni +ki , holomorphic vector bundles Ei of rank
ki over Mi , regular holomorphic sections si : Mi → Ei and the ni -dimensional local
complete intersections Xi which are the zeros of the holomorphic section si . Then we
have

M(X1 × · · · × Xr) =
∑

Pi=C∗ orM
(P1,··· ,Pr) 6=(C∗,··· ,C∗)

(−1)n1ε1+···+nrεrP1(X1) × · · · × Pr(X),

where

εi =
{

1, if Pi = C∗
0, if Pi = M.

In particular, we have

µ(X1 × · · · × Xr) =
∑

pi=χ or µ
(p1,··· ,pr) 6=(χ,··· ,χ)

(−1)n1ε1+···+nrεrp1(X1) · · · pr(X),

where

εi =
{

1, if pi = χ

0, if pi = µ.

In the above product formula the distinguished part M(X1) × · · · × M(Xr) seems
an interesting object. A study of this class in connection with the Thom-Sebastiani
operation will be done in §§4 and 5.

3. Parusiński-Pragacz-type formulas

Instead of bundles Ei , let us take line bundles Li in the above situation. Let SXi
=

{Si,ji
} be a Whitney stratification of Xi such that the smooth part Xo

i is the top
dimensional stratum, and let α(Si,ji

) be the number defined in the formula of Parusiński-
Pragacz in §2. Then we have
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Corollary (3.1).

M(X1 × · · · × Xr)

=
∑

(S1,j1 ,··· ,Sr,jr ) 6=(Xo
1 ,··· ,Xo

r )

(−1)n1ε1,j1+···+nrεr,jr α(S1,j1)
1−ε1,j1 · · ·α(Sr,jr

)1−εr,jr

c(L1)ε1,j1 · · · c(Lr)εr,jr

c(L1 ⊕ · · · ⊕ Lr)
∩ C∗(S1,j1 × · · · × Sr,jr

).

where

εi,ji
=
{

1, Si,ji
= Xo

i ,

0, dim Si,ji
< ni.

By this corollary we can see that in general the formula for the Milnor class via Chern
cohomology classes of the bundle and the Chern-Schwartz-MacPherson classes of the
closures of Whitney strata, which we are looking for, is not of the following form:

M(X) = Q(c(E)) ∩
∑
S∈X

β(S)C∗(S),

where Q(c(E)) is a polynomial of the Chern cohomology classes c1(E), · · · , crank E(E)
of the vector bundle E and β(S) is some kind of number attached to each stratum like
the number α(S) appearing in Theorem (1.3). It seems reasonable to speculate that

M(X) =
∑

QS(c̃(E)) ∩ C∗(S),

where, if E has the decomposition or splitting E = E1 ⊕ · · · ⊕ Ek , for each stratum
S QS(c̃(E)) would be a polynomial of the Chern classes c1(Ej), · · · , crank Ej

(Ej) (1 ≤
j ≤ k) . Here we put the extra notation ˜ to emphasize that c̃(E) indicates the Chern
cohomology classes of the factor vector bundles Ej , not just the total bundle E . It should
be noted that in general the cohomology class part QS(c̃(E)) cannot be expressed as a
polynomial in the Chern classes of the bundle E , as the following examples show.

Example (3.2). For i = 1, 2 let Mi be a compact complex analytic manifold of dimen-
sion ni + 1 with n1 ≥ 2, Li be a holomorphic line bundle over Mi , si a holomorphic
section of Li and Xi the zero of the holomorphic section si . And assume that the
singular locus Γ of X1 is a smooth curve so that {X1 −Γ,Γ} is a Whitney stratification
and that X2 is smooth. (Note (as pointed out by P. Aluffi) that in general even if the
reduced scheme of the singular locus is smooth, {X1−Γ,Γ} is not necessarily a Whitney
stratification.) Then by Theorem (2.3) we have

M(X1 × X2) = (−1)n2M(X1) × C∗(X2).

Hence, by by Parusiński-Pragacz’s theorem [23, Theorem 0.2] or Brasselet-Lehmann-
Seade-Suwa’s theorem [4, Corollary 7.18] we have

M(X1 × X2) = (−1)n2

(
µΓ

c(L1)
∩ C∗(Γ)

)
× C∗(X2),

= (−1)n2
µΓc(L2)

c(L1 ⊕ L2)
∩ C∗(Γ × X2).
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For this example our claim is that the cohomology class part c(L2)
c(L1⊕L2)

cannot be replaced
by any polynomial of the Chern cohomolgy classes c1(L1 ⊕L2), c2(L1 ⊕L2) of the total
vector bundle L1⊕L2 . Let c(L1) = 1+a and c(L2) = 1+ b . Then, since 1

c(L1)
= 1

1+a =
1 − a + a2 + · · · and Γ is a curve, by the dimension reason we have(

1
c(L1)

∩ C∗(Γ)
)
× C∗(X2) = (C∗(Γ) − a ∩ C∗(Γ)) × C∗(X2).

On the other hand if we assume that QΓ(c(L1 ⊕ L2)) is a polynomial of the Chern
cohomolgy classes c1(L1 ⊕ L2), c2(L1 ⊕ L2) , then we have

QΓ(c(L1 ⊕ L2)) = p0 + p1c1(L1 ⊕ L2) + p11c1(L1 ⊕ L2)2 + p2c2(L1 ⊕ L2) + · · ·
= p0 + p1(a + b) + p11(a + b)2 + p2ab + · · ·
= p0 + p1(a + b) + p11(a2 + b2) + (2p11 + p2)ab + · · ·

If the following equality holds

(3.2.1)
(

1
c(L1)

∩ C∗(Γ)
)
× C∗(X2) = QΓ (c(L1 ⊕ L2)) ∩ (C∗(Γ) × C∗(X2)) ,

i.e.,

((1 − a) ∩ C∗(Γ)) × C∗(X2)

= C∗(Γ) × C∗(X2) − a ∩ C∗(Γ) × C∗(X2)

=
(
p0 + p1(a + b) + p11(a2 + b2) + (2p11 + p2)ab + · · ·) ∩ (C∗(Γ) × C∗(X2)

)
= p0C∗(Γ) × C∗(X2) + (p1a ∩ C∗(Γ)) × C∗(X2) + p1C∗(Γ) × (b ∩ C∗(X2)) + · · · ,

then we have to have that p0 = 1 and p1 = −1. However, the extra term −C∗(Γ) ×
(b ∩ C∗(X2)) is not in the Milnor class. Therefore (3.2.1) does not hold. Thus we can
conclude the above claim.

Remark (3.3). The above simple example gives an explanation about the “ω” appearing
in the Brasselet-Lehmann-Seade-Suwa’s formula [4, Theorem 7.13 and Corollary 7.18].
Indeed, in the above example the Milnor class M(X1 × X2) is expressed as follows:

M(X1 × X2) = (−1)n2
µΓ

c(L1 ⊕ L2)
∩ C∗(Γ × X2)+

(−1)n2
µΓc1(L1 ⊕ L2)

c(L1 ⊕ L2)
∩ C∗(Γ × X2) − (−1)n2

µΓc1(L1)
c(L1 ⊕ L2)

∩ C∗(Γ × X2).

Then c1(L1) appearing in the third term of the right-hande side of the above equality
is nothing but the “ω1” in the sense of [4]. Thus we can see that the “ω” appearing in
[4, Theorem 7.13] is some necessary and inevitable ingredient to get a general formula
for the Milnor class in the case of local complete intersections with higher dimensional
singular locus when one tries to express the Milnor class in terms of the Chern classes of
the total vector bundle E . It seems that “ω” of [4] is some kind of geometric invariant
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related to the splitting or decomposition of the total vector bundle E , which remains to
be seen.

In the above example we assume that X2 is non-singular. In the next example we
assume that X2 is also singular.

Example (3.4). For i = 1, 2 let Mi be a compact complex analytic manifold of di-
mension ni + 1 with n2 > n1 ≥ 2 , Li be a holomorphic line bundle over Mi , si a
holomorphic section of Li and Xi the zero of the holomorphic section si . And assume
that the singular locus Γ of X1 is a smooth curve so that {X1 − Γ,Γ} is a Whitney
stratification and that X2 has only one isolated singularity x2 . Then by Theorem (2.3)
we have

M(X1 × X2)

= M(X1) ×M(X2) + (−1)n1C∗(X1) ×M(X2) + (−1)n2M(X1) × C∗(X2)

=
(

µΓ

c(L1)
∩ C∗(Γ)

)
×
(

µx2

c(L2)
∩ [x2]

)
+ (−1)n1C∗(X1) ×

(
µx2

c(L2)
∩ [x2]

)
+ (−1)n2

(
µΓ

c(L1)
∩ C∗(Γ)

)
× C∗(X2)

=
µΓµx2

c(L1 ⊕ L2)
∩ C∗(Γ × x2) + (−1)n1C∗(X1 × x2) + (−1)n2

µΓc(L2)
c(L1 ⊕ L2)

∩ C∗(Γ × X2)

Then by the dimension reason as in Example (3.2) we can see that the cohomology class
part c(L2)

c(L1⊕L2)
in the third term of the last line cannot be replaced by any polynomial of

the Chern cohomolgy classes c1(L1⊕L2), c2(L1⊕L2) of the total vector bundle L1⊕L2 .

§4 A Thom-Sebastiani type formula

In the previous sections we studied the Milnor class M(X1 × · · · × Xr) of a finite
Cartesian product of local complet intersections X1, · · · ,Xr . One of our formulas says
that M(X1×· · ·×Xr) = M(X1)×· · ·×M(Xr)+other classes. In this section we focus
our attention on the distinguished part M(X1) × · · · ×M(Xr) for hypersurfaces Xi ’s,
especially in the case of r = 2. We will see that this term can be expressed by another
kind of Milnor class (via a deformation) of a certain variety, denoted by X1⊥ · · · ⊥Xr ,
which is related to the “Thom-Sebastiani construction” [19, 25, 27, 29].

First of all, we recall that the Thom-Sebastiani construction from given two function
singularities is the sum of these functions within different valuables, and also that in the
case of isolated hypersurface singularities, the Milnor number behaves well under this
operation, that is, the Milnor number of f + g is equal to the product of the Milnor
number of f and the one of g (cf. [27]). Now we will describe such a formula in a bit
more general setup, which will be needed later.

Let (X1, x0) ⊂ (Cm1 , x0) and (X2, x0) ⊂ (Cm2 , y0) be germs of analytic spaces. Let
f : (X1, x0) → (C, 0) and g : (X2, y0) → (C, 0) be germs of holomorphic functions, and
then we define

f + g : (X1 ×X2, (x0, y0)) → (C, 0)

by (f + g)(x, y) := f(x) + g(y) . Applying Milnor-Lê’s fibration theorem [15] (see Ap-
pendix) to representatives of f , g and f + g , we get Milnor fibrations , so we let Ff ,
Fg and Ff+g denote the Milnor fibers corresponding to f , g and f + g , respectively.
We can show the following proposition:
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Proposition (4.1). (Join Theorem) Let f : (X1, x0) → (C, 0) and g : (X2, y0) → (C, 0)
be germs of non-constant holomorphic functions. Then the join Ff ∗ Fg and Ff+g have
the same homotopy type.

This theorem was firstly proved by Thom-Sebastiani [27] in the case of isolated sin-
gularities f and g defined over non-singular Xi(= Cmi) , and proved by Sakamoto [25]
in the case of possibly non-isolated singularities of functions over Cmi (also see Oka [19]
for singularities of weighted homogeneous polynomial). The proof in [25] basically works
also in our general case, i.e., the case of arbitrary singularities of fuctions over arbitrary
varieties. The proof will be sketched in Appendix. Another generalized Thom-Sebastiani
formula via derived category has been recently obtained by D. Massey [18].

For germs f : (X , x0) → (C, 0), we set

µ(f, x0) := (−1)dim Ff (χ(Ff ) − 1).

By a standard argument (see also Appendix), it turns out that the number µ(f, x0)
enjoys the following good property under the Thom-Sebastiani construction.

Corollary (4.2). Let f : (X1, x0) → (C, 0) and g : (X2, y0) → (C, 0) be non-constant
holomorphic germs. Then it holds that

µ (f + g, (x0, y0)) = µ(f, x0)µ(g, y0).

The next step is concering the way to produce a global invariant from the local invari-
ant – the vanishing Euler characteristics µ(f, x0) . In the workshop “Classes de Milnor”,
Marseille, February 1999, Jean-Paul Brasselet and Jose Seade [5] introduced the notion
of the Milnor class M(f,X) of X associated to a deformation f : X → Int Dη ⊂ C
of X (= f−1(0)) (Here a deformation is simply meant to be a proper analytic function
over an analytic varieity X ). Let µf : X → Z be the constructible function over the
special fiber X defined by

µf (x) := (−1)dimX−1(χ(Ff,x) − 1)

where Ff,x is the Milnor fiber of f at x ∈ X . Then

Definition (4.3). The following class is called the Milnor class of X associated to the
deformation f :

M(f,X) := C∗(µf ) ∈ H∗(X; Z).

Remark (4.4). (1) We can say that the class M(f,X) is defined rather for the germ of f
over the set-germ (X ,X) . (2) By using Verider’s specialization of constructible functions
σF : F(X ) → F(X) (for the definition, see [23, 29]), the function µf is rewritten in the
following form :

µf = (−1)dimX−1(σF11Xt
− 11X),

where Xt = X ∩ f−1(t) and t ∈ Int Dη is sufficiently near the origin. Furthermore,
we should note that originally Brasselet and Seade ([5]) introduced the Milnor class
M(α; f,X) associated to a deformation f of X and a constructible function α ∈ F(X ) ,
which is defined by replacing σF11Xt

− 11X by σF (α|Xt
) − α|X in the above definition

of µf . Hence M(f,X) = M(11X ; f,X) .
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Remark (4.5). In Parusiński-Pragacz’s paper [23], a prototype of the Milnor class of a
deformation as just described is used in an alternative proof (by specialization argument)
of their main theorem which we quoted as Theorem (1.3). Let X be a singular hyper-
surface given by a section s of a holomorphic line bundle L over a smooth manifold M .
And assume that we are given a generic section s′ of L so that s′ is transverse to the
zero section of L . Take a small disk D ⊂ C centered at the origin such that for each
t ∈ D − {0} , the section (1− t)s + ts′ is generic, i.e., transverse to the zero section. Set
X := { (x, t) ∈ M × D | (1 − t)s(x) + ts′(x) = 0 } and p : X → D to be the canonical
projection to the second factor. In this case, it is clear that M(p,X) = M(X) since
C∗(σF11Xt

) coincides with the virtual class of the hypersurface X .
Given two deformations f : X1 → IntDη and g : X2 → Int Dη′ of analytic varieties

X1 and X2 , respectively, we define

f + g : X1 ×X2 → IntDη′′ , by (f + g)(x, y) = f(x) + g(y).

Let X1⊥X2 denote the special fiber (f + g)−1(0), following Teissier [29], and i : X1 ×
X2 → X1⊥X2 be the inclusion. Then we obtain the following Thom-Sebastiani type
formula :

Theorem (4.6). It holds that

M(f + g,X1⊥X2) = i∗ (M(f,X1) ×M(g,X2)) .

Note that X1⊥X2 is a non-compact variety, but the LHS of the above fomula makes
sense by using Borel-Moore homology, i.e., homology with closed supports (e.g., see [10]
and also [17]).

Proof of Theorem (4.6). It follows from Corollary (4.2) that µf+g = i∗(µf ⊗ µg). Note
that since i is proper, we can use C∗i∗ = i∗C∗ . Then by using the cross product formula
due to M. Kwieciński (Theorem (2.1)), we can see that

M(f + g,X1⊥X2) = C∗(µf1+f2)

= C∗(i∗(µf1 ⊗ µf2))

= i∗(C∗(µf1 ⊗ µf2))

= i∗(C∗(µf1) × C∗(µf2))

= i∗(M(f1,X1) ×M(f2,X2))

�

Let i = 1, 2 and let pi : Xi → Di be the deformation of a singular hypersurface Xi

in Mi as described in Remark (4.5). Then we can see that the cross product M(X1) ×
M(X2) of Milnor classes is related to the Thom-Sebastiani construction X1⊥X2 as
follows :

Corollary (4.7). It holds that

M(p1 + p2,X1⊥X2) = i∗ (M(X1) ×M(X2)) .
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Remark (4.8). The difference between the LHS of the above formula and the Milnor class
M(X1⊥X2) is still unclear so far. In fact, the variety X1⊥X2 lives in M1 × M2 × D
with codimension 2. Thus, this is related to the problem of finding general formulas for
Milnor classes of local complete intersection varieties of codimention greater than one,
which we mentioned in §3.
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Whitney et condition de Thom, Invent. Math. 117 (1994), 531–550.

9. W. Fulton and K. Johnson, Canonical classes on singular varieties, Manuscripta Math. 32 (1980),
381-389.

10. G.Gonzalez-Sprinberg, L’obstruction locale d’Euler et le théorème de MacPherson, Astérisque 82–
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Appendix

Here we give the proofs of Proposition (4.1) and Corollary (4.2). First of all, we recall
Lê’s Fibration Theorem.

Theorem. (Lê [15, Theorem (1.1)]) Let X be an analytic space in a neighborhood U
of x0 ∈ Cm , and Let f : X → C be a holomorphic function with f(x0) = 0 . Then there
exist ε > 0 and η > 0 such that the restriction map induced by f

f−1(IntDη − {0}) ∩ X ∩ Bε → IntDη − {0}
is a topological fibration, where Bε is a closed ball cetered at x0 with radius ε and IntDη

is an open disc centered at the origin of C with radius η .

Note that as in [15, Remark (1.3)], the small ball Bε in the above theorem can be
replaced by a sufficiently small polydisc Pε .

Proof of Proposition (4.1). As written in Lê’s paper [15], by means of Hironaka’s theorem
[11], there are Whitney stratifications Si of Xi (i = 1, 2) so that they satisfy Thom
condition (i.e., af -condition) respect to f and g , and also so that the special fiber is
a union of strata (i.e., they are usually called good stratifications), by which we get the
Milnor-Lê fibrations for f and g . Set

f × g : X1 × X2 → Int Dη1 × Int Dη2 , (f × g)(x, y) := (f(x), g(y))

and take a stratification of Int Dη1 × Int Dη2 consisting of {(0, 0)} , (Int Dη1 − {0}) ×
{0} , {0} × (Int Dη2 − {0}) and thier complement. Then, the pair of S1 × S2 and the
stratification of Int Dη1 × Int Dη2 produces a Thom stratification of f × g . By taking
a suitable refiniment of S1 × S2 , we obtain a Whitney stratification S of X1 ×X2 such
that S satisfies the Thom condition repsect to f + g and the special fiber is a union of
strata. This yields the Milnor-Lê fibration for f + g .

Let ε > 0, η > 0 be sufficiently small numbers as appearing in the above fibration
theorem for f , g and f + g . For small t ∈ C , set lt = {(z, w) ∈ C2, z + w = t, |z| <
η1, |w| < η2} . Also set Pε = Bm1

ε × Bm2
ε and

Ff (t) = f−1(t) ∩ X1 ∩ Bm1
ε ,

Fg(t) = g−1(t) ∩ X2 ∩ Bm2
ε ,

Ff+g(t) = (f × g)−1(lt) ∩ (X1 ×X2) ∩ Pε.
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Fix a non-zero small complex number t so that 0 < |t| < η and take a closed real-line
segment J in lt connecting two points (t, 0) and (0, t) . By standard argument, it can
be shown that

(1) the map induced by f × g

Ff+g(t) − (f × g)−1({(t, 0), (0, t)}) → lt − {(t, 0), (0, t)}

is a topological fibration, the fiber of which is homeomorphic to Ff (t) × Fg(t) ;
(2) the inclusion map (f × g)−1(J) → Ff+g(t) is a homotopy equivalence ;
(3) (f × g)−1(J) has the same homotopy type of the join Ff (t) ∗Fg(t) . This can be

shown by (1) and the fact that Ff (0) and Fg(0) are contractible.
Thus, it follows that Ff+g(t) ∼ Ff (t) ∗ Fg(t) . �
Proof of Corollary (4.2). In general there is a well-known formula, due to J. Milnor,
concerning the reduced homology of the join X ∗ Y of topological spaces X and Y :

H̃r+1(X ∗ Y ; Q) ' ⊕i+j=rH̃i(X; Q) ⊗ H̃j(Y ; Q).

Note that the Milnor fibers Ff , Fg and Ff+g are finite CW complexes of dimension n1 ,
n2 and n1 + n2 + 1, respectively, and that Ff+g is always connected. In particular,

µ(f, 0) = (−1)n1(χ(Ff ) − 1) = (−1)n1

n1∑
i=0

(−1)i dim H̃i(Ff ; Q).

It hence follows that

µ(f + g, 0) = (−1)n1+n2+1
n1+n2+1∑

k=1

(−1)k dim H̃k(Ff+g; Q)

= (−1)n1+n2+1
n1+n2+1∑

k=1

(−1)k dim H̃k(Ff ∗ Fg; Q)

= (−1)n1+n2+1
n1+n2+1∑

k=1

(−1)k
∑

i+j=k−1

dim H̃i(Ff ; Q) · dim H̃j(Fg; Q)

= (−1)n1+n2

n1+n2∑
i+j=0

(−1)i dim H̃i(Ff ; Q) · (−1)j dim H̃j(Fg; Q)

=

(
(−1)n1

n1∑
i=0

(−1)i dim H̃i(Ff ; Q)

)
·
(−1)n2

n2∑
j=0

(−1)j dim H̃j(Fg; Q)


= µ(f, 0)µ(g, 0)

This completes the proof. �
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