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0. Introduction.

Let (M*,J) be an almost complex manifold of dimension 4, S an oriented closed surface,
and f : § — (M, J)a C* mapping. Then f has two sorts of singularities: “complex points”
and “non-immersive points”. As well as these singularities, they appear also multi-singular
points.

Associated to these singularities, we define in this paper two local invariants : the local
self-intersection index ¢ at a point of f(.S) and the Maslov index m at a point of S, for
a generic f belonging to the complement of an infinite codimensional subset in the space
C(S, M) of C* mappings from S to M endowed with the C* topology. (See §1 for the
precise definitions of the genericity and the invariants.)

Immersed surfaces in a four-space are studied by many authors from various aspects
(e.g. [6],[5],(17],[11],[8],[9],[2], see also the reference of [4]). Also remark that similar local
invariants as 1 and m are already defined and investigated in the contrary case, that is, for
(pseudo-)holomorphic curves, ([18], [10]).

Then we show the following formulae

THEOREM 1. Let f : S — (M, J) be generic. Set V = f(S). Then

1) YW+ =xV+V-v, @ Yme)=c

yeV zES

Here x(V),V -V and c are global numerical invariants; x(V) is the Euler characteristic
of V, V-V is the self-intersection index of V in M and ¢ = (¢;(f*T M), [S]) is the Chern
number. Remark that M has the natural orientation from the almost complex structure
J. Since we see below i(y) = —1 and m(z) = 0 except finite points, the left hand side of
each formula has a meaning.

Theorem 1 turns out to unify and generalize two sorts of known formulae.

For an immersion f of S into M, it is known the following formula due to Lai [17],(see
also [3],[4],[2]): If the complex points of f are all transverse, then

dy +d-=x+v, dy —d_ =c.



Here x is the Euler characteristic of S and v is the normal Euler number of f, whereas
d+ = ex — hg with ‘

e+ = j(positive elliptic point), e_ = f(negative elliptic point),

h+ = f(positive hyperbolic point), k_ = j(negative hyperbolic point).

See §1 for the notions. ‘

The immersion f can be approximated so that V' = f(S) has only transverse self-
intersections on non-complex points. Then the invariants appeared in Lai’s formula do not
vary and Theorem 1 implies Lai’s formula in a simple manner, if we calculate : and m for
some special singular points.

In the symplectic situation, on the other hand, it is known a formula due to Givental’ on
the self-intersection index of a “Lagrange cycle” ([13],[14],{1]): Let (M*,w) be a symplectic
manifold of dimension 4 and f : S — (M,w) be an isotropic C*® mapping, (f*w = 0).
Remark that M has the orientation coming from w?. If V = f(S) has the open Whitney
umbrellas and the transverse self-intersections as singularities, then the formula is

V- V=x—-2+T.

Here 6 is the sum of intersection indices of self-intersection points and T is the number of
open Whitney umbrellas. An open Whitney umbrella has a local model f2,1:R%,0— R%0
defined by

f2,1(u,0) = (p1,41,P2,2) = (v*/3, u,uv,v?/2), w=dp; Adgy + dp; A dgo,

([16]). (The original form of the formula in [13]is V-V = x + 2} + T, = 6, because the
orientation of M chosen in [13] differs by sign with the orientation chosen here.)

We remark that, for a symplectic manifold (M,w), there exists an almost complex struc-
ture J unique up to homotopy such that w(-,J-) is positive definite (see [22]). Then an
isotropic immersion has no complex points.

Thus we can apply Theorem 1 to this situation.

Theorem 1 follows also that, if f*TM has a Lagrange subbundle, then ¢;(f*TM) = 0
and therefore the sum of Maslov indices is equal to zero. Th1s fact is first observed also
by Givental’ [13] in the simplest case.

The formula of Givental’ is generalized in some sense to higher dimensional cases as
formulae on “isotropic Thom polynomials” [20].

We also remark that, using Viro’s integral formulation based on Euler characteristics
[21], the formulae of Theorem 1 can be written in the following form:

W [ iwdxw) =V, <2)/ m(y)dx(y) = c,
yev yeV

where m(y) = 3, ¢ f-1(y) ™(2). Regarding the Chern number as the global counterpart of
the Maslov index, we can observe each formula has a natural form that integrating a local
invariant gives a global one.



The proof of Theorem 1 is simple if once the definitions of 7 and m are established.

Next we turn the local situation relatively to S. Let f : R?,0 — (M, J) be a generic
map-germ. Then two invariants i(f) and m(f) can be defined as i(f) = i(f(0)) and
- m(f) = m(0) respectively.

After taking a representative f : D* — (M,J), D? = {(u,v) € R? | u? + v? < €’} for
a sufficiently small €, we perturb f into an immersion f with transverse self-intersections

such that all complex points of f are transverse. Then we have the following formula on
perturbations:

THEOREM 2. i(f)=dy+d-—1+25 m(f)=d.—d_.

Notice that the numbers d4,d_ and é§ depend on a perturbation of f. (See Example
2.1.) )

As a corollary we see i(f) = m(f) +1, mod. 2.

Beside the definitions of 1 and m, we need some calculations of them to prove Theorem
2, and also to show that Theorem 1 implies formulae of Lai and Givental’ respectively. We
gather the results into the following table:

Table 3.
type of the singularity t m
non-singular point -1 0
open Whitney umbrella -2 +1
self-intersection of index +1 0 0
self-intersection of index —1 —4 0.
positive elliptic point 0 +1
negative elliptic point 0 -1
positive hyperbolic point -2 -1
negative hyperbolic point -2 +1

We can deduce Theorem 1 contrary from Lai’s formula, perturbing f and applying
- Theorem 2 and the results in Table 3. Thus Lai’s formula is generalized to the simple
formula (Theorem 1), the difficulty being pushed into the calculations of invariants.

In §1 we define ¢ and m. In the next section we prove Theorem 2. The calculation of i
and m (Table 3) are given in §§1 and 2. Theorem 1 is proved in §3.

In this paper manifolds and mappings are assumed of class C'*°.



1. Genericity and local invariants.

Let f: S — (M, J) be a mapping. An immersive point = € S of f is called a complex
pointif f,T,S = J(f.T.S).

DEFINITION 1.1: f is called generic if (1) f is finite to one and for any y € V = f(S),
(2) the germ f : S, f~Y(y) — M,y is an embedding with no complex points outside of
f~(y) and (3) the pull-back by f of a positive definite Morse function around y is of finite
multiplicity at f~1(y).

A map-germ f : S,z — (M, J) is called generic if, for y = f(z), (2) and (3) hold, f~1(y)
being replaced by z.

REMARK 1.2: Non generic mappings form an infinite codimensional subset in C°°(S, M),
even after more strict restrictions on genericity are imposed (see [12] for instance), since, in
the 1-jet space J!(S, M) the totality of immersive 1-jets corresponding to complex points
is of codimension 2, (see [17]).

Let f be generic. Then V is a totally real submanifold of (M, J) except for finite points.

Now we intend to define i(y) € Z for y € V as the self-intersection index V at y. To do
this, we have to assign a perturbation of V near y.

For a sufficiently small sphere S* centered y in M (with respect to some coordinate), f
is transverse to S by the property (3) of Definition 1.1. Considering the link L = V n S3,
we take a tangent vector field v to V defined near L and directed outward. Then the
field Jv does not tangent to V by the property (2). Thus we perturb f into f' along the
direction Jv and count intersection indices of V and f'(S) near y. In other word, we adopt
the following definition:

DEFINITION 1.2: (Local self-intersection index of f at y.) We set i(y) = link(ZL, L"),
where L' = f'(S)n S3.
Clearly i(y) does not depend on the choice of S% and v.

Since, on an immersed surface without complex points, multiplying J maps the tangent
bundle isomorphically to the normal bundle with the reverse orientation, it is easy to verify

LEMMA 1.3. Ify € V is a non-singular point, then i(y) = —1. Ify € V is a transverse self-
intersection (non-complex) point, then i(y) = 0, —4, according to the intersection index is
+1, —1, respectively.

REMARK 1.4: If J; is a homotopy of complex>structures such that Jo = J and V has no
complex points near L with respect to J;. Then the number i(y) with respect to J; does
not depend on J;. Similar result holds also for m defined below.

We next define the Maslov index m(z) for € S, generalizing the definition in [13].

Consider the C2-bu£1dle E = f*TM over S. Let G denote the space of oriented 2-
planes in F, and 7 : G — M the canonical projection. The fiber of 7 is G = Gy,2, the
Grassmannian of oriented 2-planes in C2.

Let C C G be the totality of complex planes. We decompose C = é’+ U C~’_, where an
oriented plane o € C belongs to C if and only if the orientation of a coincides with the
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orientation as the complex plane. Then we see Cx are submanifolds of G of codimension
2 respectively.

We define orientations of G,C, and C_ as follows (cf. [17],9],3],[4]): For each z € S,
we take a local frame ey, €5, €3, €4 of E as R*-bundle near z with Je; = €5, Jes = 4. Then
we set

3 = p12 + P34, Y1 = P12 — P34,
T2 = P23 + P14, Y2 = P23 — P14,
= p31 + P24, Y3 = P31 — P24,

for the Plicker coordinate p;;. Then we identify G with (R = 0)/Rso x (R® — 0)/Rs¢ &
52 x 52 by these coordinates. The fiber of Cy (resp. C_) corresponds to Cy =n x 52
(resp. C_ = s x §%), where n =(1,0,0),s = (~1,0,0).

We orient G (resp Cy, C._) from the orientations of S and G (resp. Cj, C_). We
denote by —C_ the C_ with the reverse orientation.

Let X C S be the set of non-immersive points of f. Then we define the Gauss mapping
g:5— 2—>Gbyg(:z:).—-f*(TS) z€S-L.

For z € S, we take a small loop £ around z. Then g o £ extends to a section § over the
disk, since G is a S? x S2-bundle. We count the intersection number of § § with CLU(—~CL).
In other word, we adopt the following definition:

DEFINITION 1.5: (The Maslov index of f at z.) We set m(z) = link(g 0 £,Cy U (—C_)).
If z € S is a complex point, then g(z) € C.

DEFINITION 1.6: A complex point z € S is called positive (resp. negatwe) if g(x) € C’.,_
(resp. g(z) € C'._) A complex pomt z € S is called transverse if ¢ is transverse to C at
z. A transverse complex point z is elliptic (resp. hyperbolic) if the intersection index of ¢

and € = C; UC. at g(z) is equal to +1 (resp. -1).
Then the following is straightforward.
LEMMA 1.7. Let z € S —X. Ifz is not a complex point, then m(z) = 0. If z is a positive

elliptic or negative hyperbolic point, then m(z) = +1. If z is a negative elliptic or positive
hyperbolic point, then m(z) = —

Next Lemma is used to show Theorem 1.(2).

LEMMA 1.8. The homology class [Cy U (—=C.)] € H4(G,Z) is the Pioncaré dual of
™ Cl(E) € HZ(G Z)

ProoF: Consider the complex line bundle 7*(E A E) over G. Then ¢;(7*(E A E)) =

c1(r*E), (see [H]). Taking a metric of E compatible with J, we define the section s of
7*(E A E) over G by s(a) = v A w, where a € G and v,w are orthonormal basis of
a compatible with the orientation of a. If, in above, e, e,,€3,¢e4 are orthonormal, then
locally s is represented by s = (—z3 + \/:-—11‘2)61 Aesz. Therefore we see that the zero locus
of s with the induced orientation is equal to C U(—C_). This shows the required result.

To end this section, we prove the following:

5



LEMMA 1.9. If z is an elliptic (resp. hyperbolic) point, then i(z) =0 (resp. —2).

ProOOF: First we follow the arguments in [4, §4.1]. Let z be a transverse complex point.
Then, by [5], [19], there exist coordinates (u,v) : S,z — RZ,0 and (p1,q1;p2,42) :
M, f(z) — CZ%,0 such that

F) = (u, vy (1429062 + (1= 2002 + §(u,0), $(u,0)),

withy€R, 0<vy# 1 3> orde¢ > 3, ordey > 3, and J=Jy+ higher order terms, for the
standard complex structure Jy on C2 If 0 <y < § (resp. ¥ > ), then z is elliptic (resp.
hyperbolic).

To compute i(z), we take the Euler field E = u(9/0u) + v(8/8v). Then

0 0 0 ‘ a
\E) = (—v+ P;)— AR - W 27)u? + (1 — 29)0? —
T(FE) = (= Pu) g (u+ Qo) + Page + (21420007 + (1= 29)0) + Q)
with ordo Py > 2, ordgQ1 2 2, ordoP, > 3, ordy@; > 3. We set, for sufficiently small e,
0< e <[1-4v2,

fe(u,v) = (u—ev+A,v+eu+B, (1427)u? +(1-27)v? +C, 2¢((1427)u?+(1-29)v*)+ D),

where A = e¢P;,B = te, C=¢+eP,,D =1+ ¢eQ,. Consider the map-germ F : R*,0 —
R*,0 defined by F(u,v,u',v') = f(u,v) — f(u',v").

Let B, denote the R-algebra of function-germs on R%,0 and m the unique maximal
ideal of E4. For the ideal I(F) C E4 generated by the components of F, we easily see
that m® C I(F) + m*, therefore m® C I(F) by Nakayama’s lemma. Hence F is a finite
map-germ and we see z(:z:) = degoF.

Following [7], we calculate degoF. The algebra Q(F) = E4/I(F) is generated by 1,u, v
and u? over R. The class s of Jacobian of F' is equal to —64ey(1+ 2y + l_f;,y)uz in Q(F).
Define the functional ¢ : Q(F) — R by ¢(u?) = —1, (1) = ¢(u) = ¢(v) = 0. Then we see
¢(s) > 0.and the matrix of the bilinear form ( , ), : Q(F) x Q(F) — R, (a, b)e = ¢(ab),
is equal to ’

1 0 o0 -1
0 -1 0 0
142
0 0 HZ o
-1 0 0 0

If 0 <+ < 4 (vesp. ¥ > 1), then we have degyF = signature of , ), = 0 (resp. —2).



2. Perturbations.

PROOF OF THEOREM 2: (1) As in §0, we denote by ey, e_, b, h_ the numbers of positive
elliptic, negative elliptic, positive hyperbolic, negative hyperbolic complex points of f
respectively. Further denote by §4,6_ the numbers of self-intersection points of index
+1,—1 respectively. Then d; = ey — hy,d- =e_ —h_and § =6, — 6.

We may assume that the self-intersections do not occur on the complex points. We set
W = f(D?). We takea tangent vector field v to W along § such that v are directed outward
on W, near all complex points and all self-intersection points. We perturb f to f' along
the direction of Jv. Set W' = f'(D?). Then i(f) is equal to the sum of intersection indices
of W and W', which is equal to Y i(y) — x(W;), where the sum runs over all complex
points and self-intersection points, and Wy means W minus small balls centered at complex
points and self-intersection points. Then x(Wo) = 1—(e4 +e_)— (h4 +h_) —2(64 +6).
By Lemmas 1.3 and 1.9, we have } i(y) = —2(hy + h_) — 46_. Hence,

i(f)=6+—h++6_—h_~'1+2(6+—6_)=d++d_—1+26.

(2) The Maslov index m(f) is equal to Y m(z), the sum running over all complex points
of f. Then by Lemma 1.7, m(f) = e+ —e— —hy +h_ =dy —d_.
Q.E.D.

Now we apply Theorem 2 to calculate 1 and m for the open Whitney umbrella using
concrete perturbations.

EXAMPLE 2.1: We perturb the local model f : R%,0 — R*%, 0 of the open Whitney umbrella
into f. : R%,0 — R*,0 defined by f.(u,v) = (‘;—a,u, uv, ”72 + ev), for sufficiently small € > 0.
Then we have § = 0,h- = 1 and ey = e_ = hy = 0. By Theorem 2, we see i(f) = -2
and m(f) = 1. For the map-germ f' defined by f'(u,v) = f(u,v), we see i(f) = —2 and
m(f) = ~1.

For another perturbation f of f, for instance, fe(u,v) = (-'-’; + ev, u, uv, ”72), we have
6=0,h_=1,e+=e._=h+=0,Whene>0,and6=—1,e+=1,e_=h+=h__=0,
when € < 0.

Combined with Lemmas 1.3, 1.7, 1.9, Remark 1.4 and Example 2.1, we get Table 3.



3. Implications.
First we deduce the formulae of Lai and Givental’ from Theorem 1.

THE FORMULA OF LAlL By Table 3, we have 3 {i(y) + 1} = dy +d_ + 6, — 36_,
V- V=v+2(y-6-), x(V)=x(S)—(6+ +6-), >, m(z) = d4 —d—, where 64 and 6_
are similar numbers as in the proof of Theorem 2. Thus x(V)+V -V =v+x+64 —36_.
By Theorem 1, we have dy +d_ =v+ xy and dy —d- =c.

THE FORMULA OF GIVENTAL’: By Table 3, we have

i) +1} =64 =36 =T, x(V)+V-V=x—(65+6)+V V.
yev

By Theorem 1.(1), we have -V -V =x — 26 4+ T.

PROOF OF THEOREM 1: (1) Denote by X the set of singular points of V. We remove from
V small balls centered at points of X. Denote by V' the resulting surface with boundary.
Let v be a vector field over V' directed inward (relatively to V') along 8V'. Using Jv, we
perturb V. Then we see

V-V=D i) - x(VY), x(V) = x(V) - iX.

pEX

Thus we have V- V = 37« {i(y) + 1} — x(V).

(2) For z € X, take a small disk D, C S around z. We extend the Gauss map ¢ :
S —Uzes Dz — G to a section g: S — G. Then the sum > zesm(z) is equal to the
intersection number of §(S) and Cy U(—C_). By Lemma 1.8, this number is equal to

(x*er(B), :[S]) = (5" n"es (), [S]) = (e1(E), [S]) =

Q.E.D.
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