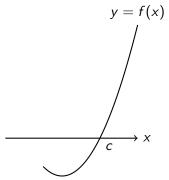
コンピュータ

北海道大学理学部数学科

方程式を解く

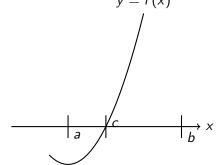
方程式の解を必要な精度の範囲で数値的に与えるアルゴリズムを 2 種類扱う。二分法とニュートン法である。

まず、関数 f(x) が連続なものとする。二次関数 $f(x) = x^2 - 2x$ を考えよう。y = f(x) のグラフを描いてみる。

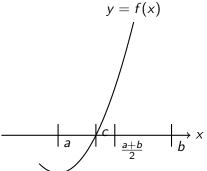


f(x) = 0 の解は x = 0 と x = 2 であり、上のグラフは x = 2 のほうを c として描いている。

aとbの間にf(x) = 0の解cが存在。精度はb-aである。y = f(x)

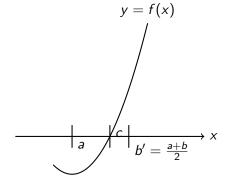


a と b の中点 $\frac{a+b}{2}$ をとる。図では a と $\frac{a+b}{2}$ の間に解 c が存在する。精度は $\frac{a+b}{2}-a=\frac{b-a}{2}$ であり、前の段階の精度 b-a の半分

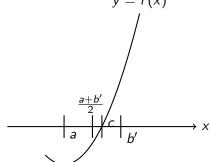


になっている。

aとbの中点 $\frac{a+b}{2}$ をb'とおく。aとb'の間に解cが存在する。



aとb'の中点 $\frac{a+b'}{2}$ をとる。今度は、 $\frac{a+b'}{2}$ とb'の間に解cがある。精度は $b-\frac{a+b'}{2}=\frac{b'-a}{2}$ となって、前段階のさらに半分になる。y=f(x)



- ▶ このようにして、解 c の存在する区間の幅を $|b-a|2^{-n}$ とできる。必要とされる精度を下回ったところで停止すればよい。
- ▶ 二分法は中間値の定理の証明に他ならない。

- 1. f(a) < 0, f(b) > 0
- 2. $b-a<\varepsilon$ であれば aと b の間に精度 ε で解が存在している。
- 3. $f(\frac{a+b}{2}) > 0$ の場合、 $a < c < \frac{a+b}{2}$ である。 $b = \frac{a+b}{2}$ と代入して 1. から繰り返し。
- 4. $f(\frac{a+b}{2}) < 0$ の場合、 $\frac{a+b}{2} < c < b$ である。 $a = \frac{a+b}{2}$ と代入して 1. から繰り返し。
- 5. $f(\frac{a+b}{2}) = 0$ の場合、 $c = \frac{a+b}{2}$ である。

プログラム例

```
def f(x):
    return(x*x*x-2.0)

eps=0.00001
err=10.0
a=0.0
b=10.0

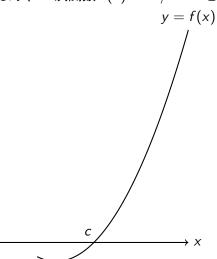
while(eps<err):</pre>
```

プログラム例

```
while( err > eps ):
    c=(a+b)/2.0
    if ____
        b=c
    else:
        a=c
    err=abs(b-a)
    print("(%.10f,%.10f),error=%.10f" % (a, b, err))
```

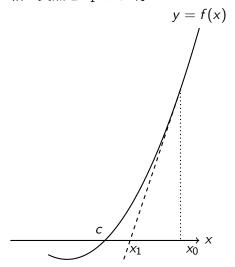
ニュートン法

まず、二次関数 $f(x) = x^2/2 - x$ を考えよう。

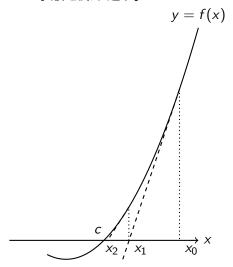


f(x) = 0 の解は x = 0 と x = 2 であり、上のグラフは x = 2 のほうを c として描いている。

まず、初期値を $x_0 = 4$ とおく。この点で接線を引こう。接線と x 軸の交点を x_1 とおく。



続いて、 x_1 で接線を引き、この接線とx 軸との交点を x_2 とおく。この手順を繰り返す。



*x*₁ を求める。

x₀ での接線の方程式:

$$y = f'(x_0)(x - x_0) + f(x_0)$$

x軸との交点は、上の式でy=0とおいて,

$$0 = f'(x_0)(x - x_0) + f(x_0)$$

x について整理すると次のようになり、

$$-f(x_0) = f'(x_0)(x - x_0)$$
$$-f(x_0)/f'(x_0) = x - x_0$$
$$x_0 - f(x_0)/f'(x_0) = x$$

$$x_1 = x_0 - f(x_0)/f'(x_0)$$

*x*₂ を求める。

$$x_1 = x_0 - f(x_0)/f'(x_0)$$
 を求めた手順と全く同様に

$$x_2 = x_1 - f(x_1)/f'(x_1)$$

 x_3, x_4 以降も全く同じく、一般に

$$x_n = x_{n-1} - f(x_{n-1})/f'(x_{n-1})$$

このように、順次 x_1, x_2, x_3, \dots を求めていくプログラムを作る。

プログラム例

```
def f(x):
  y=x*x*x-2
  return(y)
def df(x):
  y=3*x*x
  return(y)
x = 10.0
err=10.0
eps=1.0e-6
while err > eps:
  print(x,err)
  y=____
  err=abs(x-y)
  x=y
```

プログラム例には 1.0e-6 という数値が現れる。 1.0×10^{-6} という意味である。

課題

 $x^4 - 8x^2 + 5 = 0$ の解を $x_1 > x_2 > 0 > x_3 > x_4$ とする。

- 1. $f(x) = x^4 8x^2 + 5$ とおく。y = f(x) のグラフを描け。使用 するパッケージは matplotlib でも sympy でも良い。
- 2. 二分法を用いて x_1, x_2 を求めよ。精度を 1.0×10^{-4} とする。
- 3. ニュートン法を用いて x_4 を求めよ。精度を 1.0×10^{-4} とする。