The moduli of abelian varieties and its compactification

Iku Nakamura
(Hokkaido University)
August 10, Okayama

1 Hesse cubic curves

$$
\begin{gathered}
C(\mu): x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0 \\
\left(\mu \in \mathrm{P}_{\mathrm{C}}^{1}\right)
\end{gathered}
$$

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0
$$

if μ gets close to ∞

$$
\begin{gathered}
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0 \\
\quad \text { if } \mu \text { gets closer to } \infty
\end{gathered}
$$

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0(\mu \in \mathrm{C})
$$

if μ gets much closer to ∞

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0\left(\mu^{3}=1 \text { or } \infty\right)
$$

It degenerates into 3 copies of $\mathrm{P}^{1}\left(=S^{2}\right)$

Thm 1 (Hesse 1849)
(0) $C(\mu)$ is nonsing. iff $\mu \neq 1, \zeta_{3}, \zeta_{3}^{2}, \infty$. $C(\mu)$ is a 3 -gon iff $\mu=1, \zeta_{3}, \zeta_{3}^{2}, \infty$.
(1) $C(\mu)$ has 9 inflection points $[1:-\beta: 0],[0: 1:-\beta]$, $[-\beta: 0: 1]$, where $\beta^{3}=1$.
(2) Any nonsing. cubic curve is isom. to some $C(\mu)$.
(3) $\mu=\mu^{\prime}$ if and only if $C(\mu)$ and $C\left(\mu^{\prime}\right)$ are isom. with 9 points preserved

2 Moduli of cubic curves

Thm 2 (classical form)

$A_{1,3}:=$ \{nonsing. cubics with 9 inflection pts $\}$ / isom.

$$
\begin{aligned}
& \simeq \mathrm{C} \backslash\left\{1, \zeta_{3}, \zeta_{3}^{2}\right\} \simeq \mathrm{H} / \Gamma(3)(\mathrm{H}: \text { upper half plane }) \\
&=\{(\mathrm{C} /(\mathrm{Z}+\mathrm{Z} \tau),(i+j \tau) / 3), \tau \in \mathrm{H}\} / \text { isom } \\
& \tau \mapsto \tau^{\prime}=\frac{a \tau+b}{c \tau+d}, \quad\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \bmod 3
\end{aligned}
$$

$\overline{A_{1,3}}:=\{$ stable cubics with 9 inflection pts $\} /$ isom.
$=\{$ Hesse cubics $\} /$ isom $=\mathrm{id}$
$=A_{1,3} \cup\left\{C(\mu) ; \mu^{3}=1\right.$ or $\left.\infty\right\} \simeq \mathrm{P}^{1}$.

We wish to extend this to aribitrary dimension

1. over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right]$ or over Z (including bad primes)
2. to define a representable functor $F:=S Q_{g, K}$ (fine moduli) of compact obj.
3. to relate to GIT stability, that is,
to aim at $F(k)=$ GIT stable objects for k alg. closed
(This is missing in any other theory such as Alexeev,
Olsson, Faltings-Chai) This is very difficult in general because it classifies stable objects completely.

There are difficulties never seen in dimension one

- Classical level structure $=$ base of \boldsymbol{n}-divison points,
- Since singular limits of Abelian varieties are very reducible in general, level structure may cause nonseparatedness of the moduli
- That is, we need to prove in any dimension,

Lemma. (Valuative Lemma for Separatedness)

Let R be a DVR with frac. fld $K, X, Y \in F(R)$.
If $X_{K} \simeq Y_{K}$, then $X \simeq Y$. Or rather,
if isom over K, then isom over R.

- separated $=$ Hausdorff, (e.g. if \boldsymbol{X} projective, then separated)
- X : non-separated $=$ non Hausdorff,
- If non-Hausdorff, then $\exists P_{n} \in X(n=1,2, \cdots)$,

$$
P=\lim P_{n}, Q=\lim P_{n} . \text { But } P \neq Q
$$

- This really happens in geometry.

Example $R: \mathrm{DVR}, q:$ uniformizer of $R, K=R[1 / q]$,
$\mathrm{E}, \mathrm{E}^{\prime}$: elliptic curves over \boldsymbol{R}

$$
\begin{gathered}
\mathrm{E}: y^{2}=x^{3}-q^{6}, \quad \mathrm{E}^{\prime}: Y^{2}=X^{3}-1, \\
P:=\mathrm{E}_{0}: y^{2}=x^{3}, \quad Q:=\mathrm{E}_{0}^{\prime}: Y^{2}=X^{3}-1, \\
\mathrm{E}_{K}:\left(y / q^{3}\right)^{2}=\left(x / q^{2}\right)^{3}-1, \quad \mathrm{E}_{K}^{\prime}: Y^{2}=X^{3}-1
\end{gathered}
$$

Hence $P_{n}:=\mathrm{E}_{K} \simeq \mathrm{E}_{K}^{\prime}, P=\lim \mathrm{E}_{K}, Q=\lim \mathrm{E}_{K}^{\prime}$, But $P \neq Q$

To overcome the difficulty of level str. we do as follows:

- New level structure $=$ Framing of irreducible reps.
- Use the action of Heisenberg gp instead of n-div. pts
- To prove Val. Lemma for Separatedness, we use

Schur's Lemma over R.

Let R any ring over $\mathbb{Z}\left[\zeta_{N}, 1 / N\right], G:$ Heisenberg $\operatorname{gp} \subset \mathrm{GL}(V \otimes R), V$ irr. rep. of $G,|G|=N$.

Let $h \in \mathrm{GL}(V \otimes R)$. If $g h=h g$ for $\forall g \in G$,
then h is scalar.

Schur's Lemma over R. Let $h \in \mathrm{GL}(V \otimes R)$.

If $g h=h g$ for any $g \in G$, then h is scalar.

Let $R: \mathrm{DVR}, q:$ unif. of $R, K=R[1 / q]$.

1. Given a pair of SQASes X, Y over R s.t. $X_{K} \simeq Y_{K}$
2. If h is isom. of SQASes X_{K}, Y_{K} over K, then $g h=h g$ for any $g \in G$, and $h \in G L(V \otimes K)$.
3. By Schur's Lemma. Then $h=c \mathrm{id}_{V \otimes K}$.
4. Hence $h=\operatorname{id}_{\mathrm{P}(V \otimes K)}$, hence h extends to $\mathrm{id}_{\mathrm{P}(V \otimes R)}$,
5. hence $\boldsymbol{X} \simeq \boldsymbol{Y}$ over \boldsymbol{R}, This proves Valuative Lemma.

Next Representability of the functor (page 10).
Case $g=1, X_{0}(N)$ the integral model of $\overline{H / \Gamma_{0}(N)}$.

$$
\Gamma_{0}(N)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}(2, \mathrm{Z}) ; c \equiv 0 \quad \bmod N\right\}
$$

Thm 3 (Mazur) $X_{0}(N)(\mathrm{Q})=$ cusps for N large.

Corollary Let g be an autom. of an elliptic curve. $\operatorname{ord}(g) \neq 11$, but ≤ 12.
$F(S)=S Q_{g, K}(S)$ for any S over $\mathbb{Z}\left[\zeta_{N}, 1 / N\right]$, hence in particular, $F\left(\mathrm{Q}\left(\zeta_{N}\right)\right)=S Q_{g, K}\left(\mathrm{Q}\left(\zeta_{N}\right)\right)$.

Conjecture $S Q_{g, K}\left(\mathrm{Q}\left(\zeta_{N}\right)\right) \subset$ Boundary for N large.

We re-start with

Thm 4 (classical form)
$A_{1,3}:=$ \{nonsing. cubics with 9 inflection pts $\} /$ isom. $\overline{A_{1,3}}:=\{$ stable cubics with 9 inflection pts $\} /$ isom.
$=\{$ Hesse cubics $\} /$ isom $=\mathrm{id}$
$=A_{1,3} \cup\left\{C(\mu) ; \mu^{3}=1\right.$ or $\left.\infty\right\} \simeq \mathrm{P}^{1}$.

We convert it into $G(3)$-equivariant theory
$G(3):$ Heisenberg group of level 3
the Heisenberg group $G=G(3)$ of level 3
$G=\langle\sigma, \tau\rangle$ acts on V, order $|G|=27$,

$$
\begin{gathered}
V=\mathrm{C} x_{0}+\mathrm{C} x_{1}+\mathrm{C} x_{2} \\
\sigma\left(x_{i}\right)=\zeta_{3}^{i} x_{i}, \quad \tau\left(x_{i}\right)=x_{i+1} \quad(i \in \mathrm{Z} / 3 \mathrm{Z})
\end{gathered}
$$

ζ_{3} is a primitive cube root of 1 , We will see later (page 22/23)
$x_{0}^{3}+x_{1}^{3}+x_{2}^{3}, x_{0} x_{1} x_{2} \in S^{3} V$ only are G-invariant

$$
\begin{gathered}
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0(\mu \in \mathrm{C}), \\
\text { "Hesse cubic curves" in } \mathrm{P}^{2}
\end{gathered}
$$

\Downarrow generalized
A compactification of moduli of abelian varieties

3 Theta functions

Why-How does $G(3)$ get involved ?, $\boldsymbol{E}(\boldsymbol{\tau})$: an elliptic curve /C

$$
E(\tau)=\mathrm{C} /(\mathrm{Z}+\mathrm{Z} \tau)=\mathrm{C}^{*} / \boldsymbol{w} \mapsto w q^{6}, \quad q=e^{2 \pi i \tau / 6}
$$

Def 5 Theta functions $(k=0,1,2)$

$$
\theta_{k}(\tau, z)=\sum_{m \in \mathrm{Z}} q^{(k+3 m)^{2}} w^{k+3 m}=\sum_{k+y \in k+Y} q^{(k+y)^{2}} w^{k+y}
$$

where $w=e^{2 \pi i z}, Y=3 \mathrm{Z} \subset X=\mathrm{Z}, k \in X / Y=\mathrm{Z} / 3 \mathrm{Z}$.

Define a map $\Theta: E(\tau) \rightarrow \mathrm{P}_{\mathrm{C}}^{2}$ as

$$
z \mapsto\left[\theta_{0}(\tau, z), \theta_{1}(\tau, z), \theta_{2}(\tau, z)\right]
$$

This is a closed immersion, Idenitify $\theta_{k}=x_{k}$
$G(3)$ get involved as follows :
Recall again

$$
\begin{gathered}
\theta_{k}\left(\tau, z+\frac{1}{3}\right)=\zeta_{3}^{k} \theta_{k}(\tau, z), \\
\theta_{k}\left(\tau, z+\frac{\tau}{3}\right)=q^{-1} w^{-1} \theta_{k+1}(\tau, z), \\
{\left[\theta_{0}, \theta_{1}, \theta_{2}\right]\left(\tau, z+\frac{\tau}{3}\right)=\left[\theta_{1}, \theta_{2}, \theta_{0}\right](\tau, z)}
\end{gathered}
$$

where $w=e^{2 \pi i z}, q=e^{2 \pi i \tau / 6}$
σ, τ are liftings of these to $\mathrm{GL}(3)$:

$$
\begin{aligned}
& z \mapsto z+\frac{1}{3} \text { is lifted to } \sigma\left(\theta_{k}\right)=\zeta_{3}^{k} \theta_{k} \\
& z \mapsto z+\frac{\tau}{3} \text { is lifted to } \tau\left(\theta_{k}\right)=\theta_{k+1}
\end{aligned}
$$

(To be more precise, we need to consider contragredient rep.)
Then $G(3):=$ the group $\langle\sigma, \tau\rangle$

Let $V=R x_{0}+R x_{1}+R x_{2}$, char. $R \neq 3, R$ any ring,
Define $\sigma, \tau \in \operatorname{End}(V)$, and $G(3):=$ the group $\langle\sigma, \tau\rangle$

$$
\sigma\left(x_{k}\right)=\zeta_{3}^{k} x_{k}, \quad \tau\left(x_{k}\right)=x_{k+1}
$$

Then $[\sigma, \tau]:=\sigma \tau \sigma^{-1} \tau^{-1}=\left(\zeta_{3} \cdot \mathrm{id}_{\mathrm{V}}\right)$ Thus $G(3)$ is of order 27.

Lemma 6 For R any ring with $1 / 3 \in R, V$ is $G(3)$-irreducible, that is, it has no proper $G(3)$-subspace except $I V, I$ any ideal of R.

Schur's lemma follows, Hence the base x_{j} are unique up to simulataneous constant multiple.

Thus $G(3)$ determines x_{j} "uniquely"
x_{j} is viewed as an algebraic theta function.

We recall Formulae:

$$
\begin{gathered}
\theta_{k}\left(\tau, z+\frac{1}{3}\right)=\zeta_{3}^{k} \theta_{k}(\tau, z), \\
\theta_{k}\left(\tau, z+\frac{\tau}{3}\right)=q^{-1} w^{-1} \theta_{k+1}(\tau, z)
\end{gathered}
$$

Define a map $\Theta: E(\tau) \rightarrow \mathrm{P}_{\mathrm{C}}^{2}$ as

$$
z \mapsto\left[\theta_{0}(\tau, z), \theta_{1}(\tau, z), \theta_{2}(\tau, z)\right]
$$

This is a closed immersion, Identify $\theta_{k}=x_{k}$
The cubic curve $\Theta(E(\tau))$ is $G(3)$-invariant,
It is a Hesse cubic curve. Why ? (Compare page 18)

As a G(3)-module,

$$
S^{3} V=2 \cdot 1_{0} \oplus \bigoplus_{j=1}^{8}\left(1_{j}\right)
$$

where

$$
\begin{aligned}
2 \cdot 1_{0} & =\left\{x_{0}^{3}+x_{1}^{3}+x_{2}^{3}, x_{0} x_{1} x_{2}\right\} \\
1_{j} & =\left\{x_{0}^{3}+\zeta_{3}^{j} x_{1}^{3}+\zeta_{3}^{2 j} x_{2}^{3}\right\} \quad(j=1,2) \\
1_{k} & =\left\{x_{0}^{2} x_{1}+\zeta_{3} x_{1}^{2} x_{2}+\zeta_{3}^{2} x_{2}^{2} x_{0}\right\} \quad(k \geq 3)
\end{aligned}
$$

$2 \cdot 1_{0}$ gives the equation of $\Theta(E(\tau))$ (Compare page 18)

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu(\tau) x_{0} x_{1} x_{2}=0
$$

because Hesse cubics form a one parameter family.

4 Stability for compactification

moduli $=$ the set of isomorphism classes, roughly, " moduli" $=X / G$, where G : algebraic group

Comparison Table

GIT	Geometry
\boldsymbol{X}	the set of geometric objects
\boldsymbol{G}	the group of isomorphisms
x, x^{\prime} are isom.	G-orbits are the same $O(x)=O\left(x^{\prime}\right)$
$\boldsymbol{X}_{p s}$	stable objects
$\boldsymbol{X}_{s s}$	semistable objects
$\boldsymbol{X}_{p s} / G$	"moduli"
$\boldsymbol{X}_{s s} / / G$	"compactification" of moduli

- A lot of compactif. of the moduli of abelian varieties are known. Satake, Baily-Borel, Mumford, Namikawa (/C), Faltings-Chai,
- What is nice? What is natural?
- Naively wish "to classify the isomorphism classes by invariants"
(algebraic) moduli $=$ the set of isom. classes distinguished (or identified) by the invariants
- But it is difficult to investigate by the invariants.
- it is easier to investigate geometrically.
- Consider only those geometric objects (= semi-stable objects)
with their invariants well-defined
(algebraic) moduli $=$ the set of isom. classes distinguished (or identified) by the invariants
$=$: the set of semi-stable objects
- Thus Stability and Semistability (Mumford:GIT)

5 The space of closed orbits

\boldsymbol{X}	the set of geometric objects
G	the group of isomorphisms
x, x^{\prime} are isom.	G-orbits are the same $O(x)=O\left(x^{\prime}\right)$
$\boldsymbol{X}_{p s}$	the set of properly-stable objects
$\boldsymbol{X}_{s s}$	the set of semistable objects
$X_{s s} / / G$	"compact moduli""

Rem
stability \Longrightarrow closed orbits \Longrightarrow semistability

Exam 1 Action on C^{2} of $G=\mathrm{G}_{m}\left(=\mathrm{C}^{*}\right)$,

$$
\mathrm{C}^{2} \ni(x, y) \mapsto\left(\alpha x, \alpha^{-1} y\right) \quad\left(\alpha \in \mathrm{G}_{m}\right)
$$

What is the quotient of C^{2} by G ?

- Simple answer: the set of G-orbits (\times)
- Answer: $\operatorname{Spec}($ the ring of all G-invariant poly.) ((O)
- $t:=x y$ (and its polynomials) is the unique G-invariant !

$$
\mathrm{C}^{2} / / G:=\mathrm{Spec} \mathrm{C}[t]=\{t \in \mathrm{C}\}
$$

But this is different from "the set of G-orbits".

- $\mathrm{C}^{2} / / G=\{t \in \mathrm{C}\}$ is the set of all closed orbits !!

- $t=0$ is a point of $\mathrm{C}^{2} / / G$.
- But $\{x y=0\}$ consists of three G-orbits

$$
\mathrm{C}^{*} \times\{0\}, \quad\{0\} \times \mathrm{C}^{*}, \quad\{(0,0)\}
$$

- $\{(0,0)\}$ is the only closed orbit in $\{x y=0\}$

Thm $7 \mathrm{C}^{2} / / G=\{t \in \mathrm{C}\}(t=x y)$ is the set of all closed orbits.

Proof of Thm 7: (Compare page 41)

- $O(t)=\{(x, y) ; x y=t\}$ is a closed orbit for any $t \neq 0$.
- For $t=0,\{(0,0)\}$ is the only closed orbit in $\{x y=0\}$
- Any $t \in \mathrm{C}$ corresp. to a unique closed orbit in $\{x y=t\} \quad \square$

Thm 8 (Seshadri,Mumford) $G:$ reductive, acting on a scheme $X,\left(\mathrm{e} . \mathrm{g} . G=\mathrm{G}_{m}\right)$. Let $X_{s s}=$ the set of semistable points. Then

$$
\begin{aligned}
X_{s s} / / G: & =\operatorname{Spec}(\text { all } G \text {-invariants) } \\
& =\text { the set of closed orbits. }
\end{aligned}
$$

Closed means that the orbit is closed in $\boldsymbol{X}_{s s}$.

Thm 9 (Seshadri-Mumford) Let X be a projective scheme over a closed field k, G a reductive algebraic k-group acting on X. Let $X_{s s}$ be an open subscheme of all semistable points in X, Then \exists (cat.) quotient $Y=X_{s s} / / G$. To be more precise,
(0) \exists a proj. k-scheme Y and a G-invariant $\pi: X_{s s} \rightarrow Y$ such that
(1) π is universal
(2) For $a, b \in X_{s s}, \quad \pi(a)=\pi(b)$ iff $\overline{O(a)} \cap \overline{O(b)} \neq \emptyset$
where the closure is taken in $X_{s s}$,
(3) $Y(k)=$ the set of G-orbits closed in $X_{s s}$.

Def 10 We keep the same notation as in Theorem 9 (SeshadriMumford). Let $p \in X$.
(1) the point p is said to be semistable if there exists a G-invariant homogeneous polynomial F on X such that $F(p) \neq 0$,
(2) the point p is said to be Kempf-stable if the orbit $O(p)$ is closed in $X_{s s}$,
(3) the point \boldsymbol{p} is said to be properly-stable if \boldsymbol{p} is Kempf-stable and the stabilizer subgroup of p in G is finite.

We note that if $a, b \in \boldsymbol{X}_{p s}$, (or if a, b Kempf-stable)

$$
\begin{aligned}
\pi(a)=\pi(b) & \Longleftrightarrow \overline{O(a)} \cap \overline{O(b)} \neq \emptyset \\
& \Longleftrightarrow O(a) \cap O(b) \neq \emptyset \\
& \Longleftrightarrow O(a)=O(b) \\
& \Longleftrightarrow a \text { and } b \text { are isomorphic. }
\end{aligned}
$$

1. Each point of $\boldsymbol{X}_{p s}$ gives a closed orbit and
2. the first moduli $X_{p s} / / G=X_{p s} / G$ (just the orbit space),
3. Moreover $X_{p s} / / G$ is compactified by $X_{s s} / / G$.

This is currently one of the most powerful methods for compactifying moduli spaces.

Thus we consider only those objects with closed orbits
As its consequence we will see

- Abelian varieties have closed orbits (Kempf), and
- our SQASes have closed orbits,
- Conversely, any degenerate abelian scheme with closed orbit is one of our SQASes
- There is a simple characterization of our SQASes,
- This characterization enables us to compactify of the moduli of abelian varieties.

6 GIT-stability and stable critical points

Recall

- Definition of GIT-stability (born in 1965) has nothing to do with stable critical points
- But it has to do with stable critical points.

Let V : vector space, G : reductive group acting on V,
K : a max. compact subgp of G,
$\|\cdot\|: K$-inv. metric

$$
p_{v}(g):=\|g \cdot v\|(v \in V)
$$

Thm 11 (Kempf-Ness 1979) The following are equivalent
(1) the orbit $O(v)$ is closed (= GIT-stable)
(2) p_{v} attains a minimum on $O(v)$
(3) p_{v} has a (stable) critical point on $O(v)$

Exam $2 \quad$ Let $G=\mathrm{C}^{*}, K=S^{1}, V=\mathrm{C}^{2}$,

$$
\begin{gathered}
\mathrm{C}^{2} \ni(x, y) \mapsto\left(t x, t^{-1} y\right) \quad(t \in G) \\
p_{v}(g):=\|(x, y)\|^{2}=|x|^{2}+|y|^{2}, \quad v=(x, y)
\end{gathered}
$$

- If $v=(x, y)$ and $x y=t \neq 0$,
then p_{v} attains the min. when $|t x|=\left|t^{-1} y\right|$
because $|t x|^{2}+\left|t^{-1} y\right|^{2} \geq 2\left|t x \cdot t^{-1} y\right|=2|x y|$.
- If $x y=0$, then p_{v} attains min. at $(0,0)$.
- When $x y=0, p_{v}$ has no min. on $\mathrm{C}^{*} \times\{0\},\{0\} \times \mathrm{C}^{*}$ where $\{x y=0\}=\{(0,0)\} \cup \mathrm{C}^{*} \times\{0\} \cup\{0\} \times \mathrm{C}^{*}$

$7 \quad$ Stable curves of Deligne-Mumford

Def $12 \quad C$ is a stable curve of a genus g if
(0) it is a connected projective reduced curve
(1) with finite automorphism group,
(2) the singularities of C are like $x y=0$
(3) $\operatorname{dim} H^{1}\left(O_{C}\right)=g$

Thm 13 (Deligne-Mumford 1969+ Knudsen)

Let $\overline{M_{g}}$: moduli of stable curves of genus g,
M_{g} : moduli of nonsing. curves of genus g.
Then $\overline{M_{g}}$ is projective (compact),
M_{g} is a Zariski open subset of $\overline{M_{g}}$.

Caution: Definition of stable curves is irrelevant to GIT stability
Nevertheless we have

Thm 14 The following are equivalent
(1) C is a stable curve (moduli-stable)
(2) any Hilbert point of $\Phi_{|m K|}(C)$ is GIT-stable (GIT-stable)
(3) any Chow point of $\Phi_{|m K|}(C)$ is GIT-stable (GIT-stable)
$(1) \Leftrightarrow(2)$ Gieseker 1982 (actually done before Mumford's work)
$(1) \Leftrightarrow(3)$ Mumford 1977 (suggested by Gieseker's work)

CUBIC CURVES	STABILITY	STAB GP.
smooth elliptic	stable	finite
3-gon	closed orbits	2-dim
a line+a conic (transv.)	semistable	1-dim
irred. with node	semistable	finite
others	unstable	1-dim

Thm 15 For a cubic C, the following cond. are equiv.
(1) C has a closed $\operatorname{SL}(3)$-orbit in $\left(S^{3} V\right)_{s s}$
(2) C is a Hesse cubic curve, that is, $G(3)$-invariant
(3) C is either smooth elliptic or a 3 -gon

Exam 3

$$
\begin{equation*}
C_{a, b, c}: a x_{0}^{3}+b x_{1}^{3}+c x_{2}^{3}-x_{0} x_{1} x_{2}=0 \tag{1}
\end{equation*}
$$

The diagonal subgroup $G \simeq\left(\mathrm{G}_{m}\right)^{2}$ of $\mathrm{SL}(3)$ on the parameter space $\operatorname{Spec} k[a, b, c]$ acts by

$$
\begin{equation*}
(a, b, c) \mapsto(s a, t b, u c) \tag{2}
\end{equation*}
$$

where $s t u=1$, and $s, t, u \in \mathrm{G}_{m}$. We also see
(i) $\left(\mathrm{G}_{m}\right)^{2}$-Kempf-stable points are $a b c \neq 0$ or $(a, b, c)=(0,0,0)$,
(ii) $\left(\mathrm{G}_{m}\right)^{2}$-semistable points which are not $\left(\mathrm{G}_{m}\right)^{2}$-Kempf-stable are $a b c=0$ except $(0,0,0)$. (Compare page 30$)$

9 Stability in higher-dim.

Thm 16 (N.1999) k is alg. closed, char. k and $|K|$ are coprime $K\left(\cong \boldsymbol{H} \oplus \boldsymbol{H}^{\vee}\right):$ a finite symplectic abelian group, large enough $G(K):$ Heisenberg gp assoc. to $K, V=k\left[H^{\vee}\right]:$ gp ring of H^{\vee} Assume \boldsymbol{X} is a limit of abelian varieties with \boldsymbol{K}-torsions (Here K large enough implies $X \subset \mathrm{P}(V)$)

Then the following are equivalent:
(1) X has a closed $\mathrm{SL}(V)$-orbit in Hilb ${ }_{s s}$ (GIT-stable)
(2) X is invariant under $G(K) \quad(G(K)$-stable $)$
(3) X is one of our SQASes (moduli-stable)

Thm 17 For cubics the following are equiv:
(1) it has a closed SL(3)-orbit (GIT-stable)
(2) it is a Hesse cubic, that is, $G(3)$-invariant $\quad(G(3)$-stable $)$
(3) it is smooth elliptic or a 3-gon. (moduli-stable)

This is generalized into

Thm 18 Let X be a degenerate abelian variety (posssibly nonsingular). The following are equivalent under natural assump.:
(1) it has a closed $\operatorname{SL}(V)$-orbit (GIT-stable)
(2) X is invariant under $G(K) \quad(G(K)$-stable $)$
(3) it is one of our SQASes (moduli-stable)

10 Moduli over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right]$

Thm 19 (a new version of the theorem of Hesse)

$$
S Q_{1,3}=\mathbf{P}_{\mathrm{Z}\left[\zeta_{3}, 1 / 3\right]}^{1}
$$

the projective fine moduli
(1) The universal cubic curve

$$
\mu_{0}\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}\right)-3 \mu_{1} x_{0} x_{1} x_{2}=0
$$

where $\left(\mu_{0}, \mu_{1}\right) \in S Q_{1,3}=\mathrm{P}^{1}$.
(2) when k is alg. closed and char. $k \neq 3$

$$
\begin{aligned}
& S Q_{1,3}(k)=\left\{\begin{array}{l}
\text { closed orbit cubic curves } / k \\
\text { with level 3-structure }
\end{array}\right\} / \text { isom. } \\
& =\left\{\begin{array}{l}
\text { Hesse cubics } / k \\
\text { with level 3-structure }
\end{array}\right\} / \text { isom } .=\mathrm{id} . \\
& A_{1,3}(k)=\left\{\begin{array}{l}
\text { closed orbit nonsingular cubic curves } / k \\
\text { with level 3-structure }
\end{array}\right\} / \text { isom. } \\
& =\left\{\begin{array}{l}
\text { nonsingular Hesse cubics } / k \\
\text { with level 3-structure }
\end{array}\right\} / \text { isom. }=\mathrm{id} .
\end{aligned}
$$

Thm 20 (N. 1999) There exists the fine moduli $S Q_{g, K}$ projective over $\mathbb{Z}\left[\zeta_{N}, 1 / N\right], N=\sqrt{|K|}$

For k : alg. closed, if char.k and $N=\sqrt{|K|}$ are coprime

$$
\begin{aligned}
S Q_{g, K}(k) & =\left\{\begin{array}{l}
\text { degenerate abelian schemes } / k \\
\text { with level } G(K) \text {-structure } \\
\text { and a closed SL-orbit }
\end{array}\right\} / \text { isom. } \\
& =\left\{\begin{array}{l}
G(K) \text {-invariant degenerate } \\
\text { abelian schemes } / k \\
\text { with level } G(K) \text {-structure }
\end{array}\right\} \\
& =\left\{\begin{array}{l}
G(K) \text {-invariant SQAS } / k \\
\text { with level } G(K) \text {-structure }
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& A_{g, K}(k)=\left\{\begin{array}{l}
(\text { nonsingular) abelian schemes } / k \\
\text { with level } G(K) \text {-structure } \\
\text { and a closed SL -orbit }
\end{array}\right\} / \text { isom. } \\
& =\left\{\begin{array}{l}
G(\boldsymbol{K}) \text {-invariant (nonsingular) } \\
\text { abelian schemes } / k \\
\text { with level } G(\boldsymbol{K}) \text {-structure }
\end{array}\right\} \\
& =\left\{\begin{array}{l}
G(K) \text {-invariant nonsingular SQAS } / k \\
\text { with level } G(K) \text {-structure }
\end{array}\right\}
\end{aligned}
$$

Compare page 78.

11 Tate curve and SQAS

SQAS : a generalization of Tate curve, R :DVR
Tate curve : $\quad \mathrm{G}_{m}(\boldsymbol{R}) / \boldsymbol{w} \mapsto \boldsymbol{q} \boldsymbol{w}$
Hesse cubics at $\infty: \mathrm{G}_{m}(\boldsymbol{R}) / \boldsymbol{w} \mapsto \boldsymbol{q}^{3} \boldsymbol{w}$

Rewrite Tate curve as: $\quad \mathrm{G}_{m}(R) / w^{n} \mapsto q^{m n} w^{n}(m \in \mathrm{Z})$
Hesse cubics at $\infty: \quad \mathrm{G}_{m}(R) / w^{n} \mapsto q^{3 m n} w^{n}(m \in \mathrm{Z})$

The general case : B pos. def. symmetric
$\mathrm{G}_{m}(\boldsymbol{R})^{g} / \boldsymbol{w}^{x} \mapsto \boldsymbol{q}^{B(x, y)} b(x, y) w^{x}, \quad b(x, y) \in \boldsymbol{R}^{\times} \quad(x \in X, y \in \boldsymbol{Y})$
"natural limit as $q \rightarrow 0 " \Longrightarrow$
3-gon and SQAS are born

12 Faltings-Chai degeneration data

R : a discrete valuation ring R, m the max. ideal of R,
$k(0)=R / m, k(\eta):$ the fraction field of R
Let (G, L) a quasi abelian scheme over R,
That is, $\left(G_{\eta}, L_{\eta}\right)$: abelian variety over $k(\eta)$
and suppose that G_{0} is a split torus over $k(0)$,
$\left({ }^{t} \boldsymbol{G},{ }^{t} L\right)$: the (connected) Neron model of $\left({ }^{t} \boldsymbol{G}_{\eta},{ }^{t} \boldsymbol{L}_{\eta}\right)$
May then suppose that $\left({ }^{t} G_{0},{ }^{t} L_{0}\right)$ is a split torus over $k(0)$
Then we have a Faltings Chai degeneration data ass. to (G, L)

$$
\text { Let } X=\operatorname{Hom}\left(G_{0}, \mathrm{G}_{m}\right), \quad Y=\operatorname{Hom}\left({ }^{t} G_{0}, \mathrm{G}_{m}\right) .
$$

Hence $\boldsymbol{X} \simeq \mathrm{Z}^{g}, \boldsymbol{Y} \simeq \mathrm{Z}^{g}, \boldsymbol{Y}:$ a sublattice of \boldsymbol{X} of finite index.

BECAUSE \exists a natural surjective morphism $G \rightarrow^{t} G$,
\exists a surjective morphism $G_{0} \rightarrow^{t} G_{0}$, $\exists \operatorname{Hom}\left({ }^{t} G_{0}, \mathrm{G}_{m}\right) \rightarrow \operatorname{Hom}\left(G_{0}, \mathrm{G}_{m}\right)$,

Hence \exists an injective homom. $\boldsymbol{Y} \rightarrow \boldsymbol{X} \square$

Consider always over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right]$,
Let $\boldsymbol{K}=\boldsymbol{X} / \boldsymbol{Y} \oplus(\boldsymbol{X} / \boldsymbol{Y})^{\vee}, \boldsymbol{G}(\boldsymbol{K})$: Heisenberg group

$$
\begin{gathered}
1 \rightarrow \mu_{N} \rightarrow G(K) \rightarrow K \rightarrow 0(\text { exact }) \\
\left.R[X / Y]=\oplus_{x \in X / Y} R v(x) \quad \text { (the group algebra of } X / Y\right) \\
(a, z, \alpha) \cdot v(x)=a \alpha(x) v(z+x)
\end{gathered}
$$

$H^{0}(G, L): G(K)$-irreducible $\simeq R[X / Y]$
\Rightarrow a unique basis $v(x)=\theta_{x} \in H^{0}(G, L)$ (theta functions)
Let $G_{\text {for }}$: the formal completion of G along G_{0}

$$
G_{\mathrm{for}} \simeq\left(\mathrm{G}_{m, R}^{g}\right)_{\mathrm{for}}
$$

$\theta_{x}(x \in X / Y)$ are expanded on $G_{\text {for }}$ as

$$
\theta_{x}=\sum_{y \in Y} a(x+y) w^{x+y}
$$

These $a(x)$ satisfy the conditions:
(1) $a(0)=1, a(x) \in k(\eta)^{\times} \quad(\forall x \in X)$,
(2) $b(x, y):=a(x+y) a(x)^{-1} a(y)^{-1}$ is bilinear $(x, y \in X)$
(3) $B(x, y):=\operatorname{val}_{q}\left(a(x+y) a(x)^{-1} a(y)^{-1}\right)$ is positive definite $(x, y \in X)$

These $a(x)$ are called a degeneration data of (G, L)

Exam 4 If $g=1, N=3$, then theta functions $(k=0,1,2)$

$$
\boldsymbol{\theta}_{k}=\theta_{k}(\tau, z)=\sum_{m \in \mathrm{Z}} q^{(3 m+k)^{2}} \boldsymbol{w}^{3 m+k}=\sum_{3 m \in \boldsymbol{Y}} a(3 m+k) \boldsymbol{w}^{3 m+k}
$$

where $w \in \mathrm{G}_{m}, a(x)=q^{x^{2}}, X=\mathrm{Z}$ and $Y=3 Z, B(x, y)=2 x y$.

Def 21

$$
\widetilde{R}:=R\left[a(x) w^{x} \vartheta, x \in X\right]
$$

Define an action of \boldsymbol{Y} on $\widetilde{\boldsymbol{R}}$ by

$$
S_{y}\left(a(x) w^{x} \vartheta\right)=a(x+y) w^{x+y} \vartheta
$$

$\operatorname{Proj}(\widetilde{\boldsymbol{R}})$: locally of finite type over \boldsymbol{R}
$\mathcal{X}:$ the formal completion of $\operatorname{Proj}(\widetilde{\boldsymbol{R}})$
$\mathcal{X} / \boldsymbol{Y}$: the top. quot. of \mathcal{X} by \boldsymbol{Y}
$O_{\mathcal{X}}(1)$ descends to \mathcal{X} / Y : ample

Grothendieck (EGA) guarantees
\exists a projective R-scheme $\left(Z, O_{Z}(1)\right)$
s.t. the formal completion $Z_{\text {for }}$ of Z

$$
\begin{gathered}
Z_{\text {for }} \simeq \mathcal{X} / Y \\
\left(Z_{\eta}, O_{Z_{\eta}}(1)\right) \simeq\left(G_{\eta}, L_{\eta}\right)
\end{gathered}
$$

(the stable reduction theorem)
The central fiber $\left(Z_{0}, O_{Z_{0}}(1)\right)$ is our (P)SQAS.

If we take the normalization $Z^{\text {norm }}$ of Z with $Z_{0}^{\text {norm }}$ reduced, we get a bit different central fiber $\left(Z_{0}^{\text {norm }}, O_{Z_{0}^{\text {norm }}}(1)\right)$, we call it TSQAS.

Exam $5 \quad g=1, X=Z, Y=3 Z$.

$$
\mathcal{X}=\operatorname{Proj}(\widetilde{R}), \quad a(x)=q^{x^{2}},(x \in X)
$$

The scheme \mathcal{X} is covered with affine

$$
\begin{aligned}
& V_{n}=\operatorname{Spec} R\left[a(x) w^{x} / a(n) w^{n}, x \in X\right] \\
& V_{n} \simeq \operatorname{Spec} R\left[x_{n}, y_{n}\right] /\left(x_{n} y_{n}-q^{2}\right) \quad(n \in \mathrm{Z}) \\
& \quad x_{n}=q^{2 n+1} w, y_{n}=q^{-2 n+1} w^{-1} . \\
& \\
& \left(V_{n}\right)_{0}=\left\{\left(x_{n}, y_{n}\right) \in k(0)^{2} ; x_{n} y_{n}=0\right\}
\end{aligned}
$$

$$
\mathcal{X}_{0}: \text { a chain of infinitely many } \mathrm{P}_{k(0)}^{1}
$$

$$
\begin{gathered}
Y \text { acts on } \mathcal{X}_{0} \text { as } V_{n} \xrightarrow{S_{-3}} V_{n+3}, \\
\left(x_{n}, y_{n}\right) \stackrel{S_{-3}}{\mapsto}\left(x_{n+3}, y_{n+3}\right)=\left(x_{n}, y_{n}\right)
\end{gathered}
$$

\mathcal{X}_{0} / Y : a cycle of $3 \mathrm{P}_{k(0)}^{1},(\mathcal{X} / Y)_{\eta}^{\text {alg }}$: a Hesse cubic over $k(\eta)$,

13 Limits of theta functions

$\boldsymbol{E}(\tau)$ is embedded in P^{2} by theta θ_{k} :

$$
\begin{gathered}
\theta_{k}(q, w)=\sum_{m \in \mathrm{Z}} q^{(3 m+k)^{2}} w^{3 m+k} \quad(k=0,1,2) \\
\theta_{0}^{3}+\theta_{1}^{3}+\theta_{2}^{3}=3 \mu(q) \theta_{0} \theta_{1} \theta_{2}
\end{gathered}
$$

Let R DVR, q uniformizer, $I=q R, w=q^{-1} u$

$$
\begin{aligned}
& u \in R \backslash I, \bar{u}=u \bmod I \\
& \theta_{k}=\sum_{y \in Y} a(y+k) w^{y+k}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{0}\left(q, q^{-1} u\right)=\sum_{m \in \mathrm{Z}} \boldsymbol{q}^{9 m^{2}-3 m} \boldsymbol{u}^{3 m} \\
& =1+q^{6} u^{3}+q^{12} u^{-3}+\cdots \\
& \theta_{1}\left(q, q^{-1} u\right)=\sum_{m \in \mathrm{Z}} \boldsymbol{q}^{(3 m+1)^{2}-3 m-1} u^{3 m+1} \\
& =u+q^{6} u^{-2}+q^{12} u^{4}+\cdots \\
& \theta_{2}\left(q, q^{-1} u\right)=\sum_{m \in \mathrm{Z}} \boldsymbol{q}^{(3 m+2)^{2}-3 m-2} \boldsymbol{u}^{3 m+2} \\
& =q^{2} \cdot\left(u^{2}+u^{-1}+q^{18} u^{5}+\cdots\right) \\
& \Downarrow \\
& \lim _{q \rightarrow 0}\left[\theta_{k}\left(q, q^{-1} u\right)\right]=[1, \bar{u}, 0] \in \mathrm{P}^{2}
\end{aligned}
$$

In P^{2}
$\lim _{q \rightarrow 0}\left[\theta_{k}\left(q, q^{-1} u\right)\right]_{k=0,1,2}=[1, \bar{u}, 0]$ Similarly

$$
\begin{aligned}
\lim _{q \rightarrow 0}\left[\theta_{k}\left(q, q^{-3} u\right)\right]_{k=0,1,2} & =[0,1, \bar{u}] \\
\lim _{q \rightarrow 0}\left[\theta_{k}\left(q, q^{-5} u\right)\right]_{k=0,1,2} & =[\bar{u}, 0,1]
\end{aligned}
$$

$$
\begin{gathered}
w=q^{-2 \lambda} u \text { and } u \in R \backslash I . \\
\lim _{q \rightarrow 0}\left[\theta_{k}\left(q, q^{-2 \lambda} u\right)\right]= \\
\begin{cases}{[1,0,0]} & (\text { if }-1 / 2<\lambda<1 / 2), \\
{[0,1,0]} & (\text { if } 1 / 2<\lambda<3 / 2), \\
{[0,0,1]} & (\text { if } 3 / 2<\lambda<5 / 2) .\end{cases}
\end{gathered}
$$

When λ ranges in R, the same limits repeat $\bmod Y=3 Z$.
Thus $\lim _{\tau \rightarrow \infty} C(\mu(\tau))$ is the 3 -gon $x_{0} x_{1} x_{2}=0$.

Def 22 For $\lambda \in X \otimes_{z} R$ fixed

$$
F_{\lambda}(x)=x^{2}-2 \lambda x \quad(x \in X=Z)
$$

Define $\boldsymbol{D}(\boldsymbol{\lambda})$ (a Delaunay cell) by
the conv. closure of all $a \in X$ s.t. $F_{\lambda}(a)=\min \left\{F_{\lambda}(x) ; x \in X\right\}$.

Exam 6 1-dim. $B(x, x)=x^{2}$.

14 The shape of SQAS

"Limits of theta functions are described by the Delaunay decomposition."

SQAS is a geometric limit of theta functions
SQAS is a generalization of 3 -gons.
which is described by the Delaunay decomposition.

SQAS : a generalization of Tate curve, R :DVR

Tate curve : $\quad \mathrm{G}_{m}(R) / \boldsymbol{w} \mapsto \boldsymbol{q} \boldsymbol{w}$
Hesse cubics at $\infty: \mathrm{G}_{m}(R) / w \mapsto q^{3} w$

Rewrite Tate curve as: $\quad \mathrm{G}_{m}(\boldsymbol{R}) / w^{n} \mapsto q^{m n} \boldsymbol{w}^{n}(m \in \mathrm{Z})$
Hesse cubics at $\infty: \quad \mathrm{G}_{m}(\boldsymbol{R}) / w^{n} \mapsto q^{3 m n} w^{n}(m \in \mathrm{Z})$

The general case : B pos. def. symmetric
$\mathrm{G}_{m}(\boldsymbol{R})^{g} / \boldsymbol{w}^{x} \mapsto q^{B(x, y)} b(x, y) \boldsymbol{w}^{x}, \quad b(x, y) \in R^{\times} \quad(x \in X, y \in Y)$
"natural limit as $q \rightarrow 0 " \Longrightarrow$
3-gon and SQAS are born

Let $\boldsymbol{X}=\mathrm{Z}^{g}, \boldsymbol{B}$ a positive symmetric on $\boldsymbol{X} \times \boldsymbol{X}$.

$$
\|x\|=\sqrt{B(x, x)}: \text { a distance of } X \otimes \mathrm{R}(\text { fixed })
$$

Def 23 Let $\alpha \in X_{\mathrm{R}}$. a Delaunay cell $D=D(\alpha)$ is defiend to be the convex closure of points of X closest to α.

- All Delaunay cells form a the Delaunay decomp. ass. to B
- Each SQAS (its scheme struture) and its decomposition into torus orbits (its stratification) are described by the Delaunay decomposition
- Each positive symmetric B defines a Delaunay decomp.
- Different B can yield the same Delaunay decomp. and the same SQAS.

15 Delaunay decompositions

Exam 7 1-dim. $B(x, y)=2 x y, X / Y=Z / n Z$, then SQAS Z_{0} is an n-gon of P^{1}

Exam $8 \quad B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad$ This $(\bmod Y)$ is a union of $\mathrm{P}^{1} \times \mathrm{P}^{1}$

| Exam 9 |
| :---: |\(\quad B=\left(\begin{array}{cc}2 \& -1

-1 \& 2\end{array}\right)\)

1. This $(\bmod Y)$ is a SQAS.

It is a union of P^{2}, each triangle denotes a P^{2},
2. each line segment is a P^{1}
3. two P^{2} intersect along P^{1}
4. six P^{2} meet at a point, locally $k\left[x_{1}, \cdots, x_{6}\right] /\left(x_{i} x_{j},|i-j| \geq 2\right)$

Red one is the decomp. dual to the Delaunay decomp. called Voronoi decomp.

Voronoi decomposition

Def $24 D$: for Delaunay cells

$$
V(D):=\left\{\lambda \in X \otimes_{\mathrm{z}} \mathrm{R} ; D=D(\lambda)\right\}
$$

We call it a Voronoi cell
$\overline{V(0)}=\left\{\lambda \in X \otimes_{\mathrm{Z}} \mathrm{R} ;\|\lambda\| \leqq\|\lambda-q\|,(\forall q \in X)\right\}$

This is a crystal of mica.

$$
\begin{gathered}
\text { For } B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\text { We get } \overline{V(0)}, \text { a cube (salt), }
\end{gathered}
$$

$$
\text { For } B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

then we get a hexagonal pillar (calcite), and then

$$
B=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

A Dodecahedron (Garnet)

$$
B=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

Apophyllite $\mathrm{KCa}_{4}\left(\mathrm{Si}_{4} \mathrm{O}_{10}\right)_{2} \mathrm{~F} \cdot 8 \mathrm{H}_{2} \mathrm{O}$

$$
B=\left(\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right)
$$

A Trunc. Octahed. - Zinc Blende ZnS

16 The Second Compactification over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right]$

Recall
Grothendieck (EGA) guarantees
\exists a projective R-scheme $\left(Z, O_{Z}(1)\right)$
s.t. the formal completion $Z_{\text {for }}$ of Z

$$
Z_{\text {for }} \simeq \mathcal{X} / Y, \quad\left(Z_{\eta}, O_{Z_{\eta}}(1)\right) \simeq\left(G_{\eta}, L_{\eta}\right)
$$

(the stable reduction theorem)
The central fiber $\left(Z_{0}, O_{Z_{0}}(1)\right)$ is our (P)SQAS.

The normalization $Z^{\text {norm }}$ of Z with $Z_{0}^{\text {norm }}$ reduced gives a bit different central fiber $\left(Z_{0}^{\text {norm }}, O_{Z_{0}^{\text {norm }}}(1)\right)$, we call it TSQAS.

Thm 25 (N. 2010) \exists a complete separated reduced-coarse moduli alg. space $S Q_{g, K}^{\text {toric }}$ (Comapre page $46 / 47$) :moduli of TSQASes with level- $G(K)$ str. over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right]$.

Moreover, \exists cano. bij. birat. morphism

$$
\mathrm{sq}: S Q_{g, K}^{\text {toric }} \rightarrow S Q_{g, K}
$$

Corollay
The normalizations of $S Q_{g, K}^{\text {toric }}$ and $S Q_{g, K}$ are isom.

Proof of Existence of $S Q_{g, K}^{\text {toric }}$.

1. Consider all TSQAS (\boldsymbol{X}, L) with level $G(K)$. Then can embed (X, L) by L^{n}, any $n \equiv 1 \bmod N, n \geq 2 g+1$
2. $\left(X, L^{n}\right) \times\left(X, L^{m}\right) \in \operatorname{Hilb} \times \operatorname{Hilb}^{\prime}$ for any rel. prime pair (n, m)
3. $\boldsymbol{H}^{0}\left(\boldsymbol{X}, L^{n}\right) \simeq V \otimes W_{n}, H^{0}\left(X, L^{m}\right) \simeq V \otimes W_{m}$ as $G(K)-\bmod$. where $V \simeq H^{0}(X, L)$
4. U a good reduced subsch. on which $G L\left(W_{n}\right) \times G L\left(W_{m}\right)$ acts
5. take quotient of U by $G L\left(W_{n}\right) \times G L\left(W_{m}\right)$ by Keel-Mori
6. $S Q_{g, K}^{\text {toric }}:=U / / G L\left(W_{n}\right) \times G L\left(W_{m}\right)$ is independent of n, m

Construction of a canonical morphism

1. For a given TSQAS over S with generic fibre AV, S any reduced scheme, we construct a PSQAS over S,
2. We can take U a subscheme of Hilb \times Hilb' $^{\prime}$ over which universal TSQAS exists
3. (X, L) universal TSQAS, Then $|L|$ is base point free, we have a morphism $\Phi_{|L|}: X \rightarrow \mathrm{P}$
4. The image $\Phi_{|L|}(X)$ of (X, L) by $|L|$ is PSQAS.
5. Prove flatness of PSQAS
6. The map $\boldsymbol{X} \mapsto \Phi_{|L|}(X)$ defines a morphism

$$
\mathrm{sq}: S Q_{g, K}^{\text {toric }} \rightarrow S Q_{g, K}
$$

