HESSE CUBICS AND GIT STABILITY MCGILL UNIV. MONTREAL, 2014 MAY 22

IKU NAKAMURA

ABSTRACT. The moduli space of nonsing. curves of genus g is compactified by adding Deligne-Mumford stable curves of genus g. The moduli space of stable curves is a projective variety, known as Deligne-Mumford compactification. We compactify in a similar way the moduli space of abelian varieties as the moduli space of some mildly degenerating limits of abelian varieties.

A typical case is the moduli space of Hesse cubics. Any Hesse cubic is GIT-stable, and any GIT stable planar cubic is one of Hesse cubics. Similarly in arbitrary dimension, the moduli space of abelian varieties is compactified by adding only GIT-stable limits of abelian varieties. Our moduli space is a projective "fine" moduli space of (possibly degenerate) abelian schemes for families over reduced base schemes

with non-classical (non-commutative) level structure

over $\mathbf{Z}[\zeta_N, 1/N]$ for some $N \geq 3$. The objects at the boundary are mild limits of abelian varieties, which we call PSQASes, projectively stable quasi-abelian schemes.

Contents

1.	Introduction	1
2.	Hesse cubics	2
3.	Non-commutative level structure	4
4.	The space of closed orbits	7
5.	Limits–Stable reduction theorem	9
6.	Example	10
7.	Stability of PSQASes	11
8.	The moduli space $SQ_{g,K}$	12
References		14

A reference for this talk is [N04].

1. INTRODUCTION

Roughly our problem is the following diagram completion :

Date: May 24, 2014.

The Deligne-Mumford compactification completes the following diagram

the moduli of smooth curves

- = the set of all isom. classes of smooth curves
- \subset the set of all isom. classes of stable curves
- = the Deligne-Mumford compactification M_g

Therefore our problem is to complete the following diagram :

the moduli of smooth AVs (= abelian varieties)

- $= \{ \text{smooth polarized AVs} + \text{extra structure} \} / \text{isom.}$
- \subset {smooth polarized AVs or
 - singular polarized degenerate AVs + extra structure isom.
- = the compactification $SQ_{q,K}$ of the moduli of AVs

The compactification problem of the moduli space of abelian varieties have been discussed by many people

- (i) Satake compactification, Igusa monoidal transform of it
- (ii) Mumford toroidal compactification (Ash-Mumford-Rapoport-Tai [AMRT75])
- (iii) Faltings-Chai arithmetic compactification (arithmetic version of Mumford compactification) [FC90]
- (iv) 1975-76 Nakamura, Namikawa,
- (v) 1999- Nakamura, Alexeev, Olsson

The compactifications (i)-(iii) are not moduli of compact objects,

We wish to construct compactification as a moduli of compact objects, the compactifications in (v) are the moduli of compact objects,

We explain mainly [N99] (1999) of (v). See also [N13]. We construct a natural compactification, projective, as the fine moduli of compact geometric objects for families over reduced base schemes: thereby

- 1. proper = to collect suff. many limits
- 2. separated = to choose the minimum possible among the above
- 3. both are necessary for compactification

2. Hesse cubics

2.1. Hesse cubics. Let k be a closed field of chara. \neq 3. A Hesse cubic curve is defined by

(1)
$$C(\mu) : x_0^3 + x_1^3 + x_2^3 - 3\mu x_0 x_1 x_2 = 0$$

for some $\mu \in k$, or $\mu = \infty$ (in which case we understand that $C(\infty)$ is the curve defined by $x_0x_1x_2 = 0$).

- 1. $C(\mu)$ is nonsingular elliptic for $\mu \neq \infty, 1, \zeta_3, \zeta_3^2$, where ζ_3 is a primitive cube root of unity.
- 2. $C(\mu)$ is a 3-gon for $\mu = \infty, 1, \zeta_3, \zeta_3^2$
- 3. any elliptic $C(\mu)$ has 9 inflection points(=flexes), independent of μ ,

K := 9 flexes

say,
$$(0, 1, -\zeta_3^k)$$
, $(-\zeta_3^k, 0, 1)$, $(1, -\zeta_3^k, 0)$, Note $K \subset C(\mu) \ (\forall \ \mu)$,

- 4. σ and τ act on $C(\mu)$, where $\sigma(x_k) = \zeta 3^k x_k$ and $\tau(x_k) = x_{k+1}$,
- 5. over C, any Hesse cubic is the image of $E(\omega) := \mathbf{C}/\mathbf{Z} + \mathbf{Z}\omega$, a complex torus by thetas

$$x_{k} = \theta_{k}(q, w) = \sum_{m \in \mathbf{Z}} e^{2\pi i (3m+k)^{2} \omega/6} e^{2\pi i (3m+k)z}$$
$$= \sum_{m \in \mathbf{Z}} q^{(3m+k)^{2}} w^{3m+k}$$

where $q = e^{2\pi i\omega/6}$, $w = e^{2\pi i z}$.

Then K is the image of ker $(3: E(\omega) \to E(\omega)) = \langle \frac{1}{3}, \frac{\omega}{3} \rangle$, 6. It is known by Hecke that $\mu = \vartheta/\chi$ where

$$\vartheta = \sum_{\ell \in \mathbf{Z}^2} \exp(\pi i A[\ell]\tau),$$

$$\chi = \sum_{\ell \in \mathbf{Z}^2} \exp(\pi i A[\ell + (1/3)^t (0, 1)]\tau)$$

$$A = \begin{pmatrix} 2 & 3\\ 3 & 6 \end{pmatrix}, \quad A[\ell] = {}^t \ell A \ell.$$

2.2. The moduli space of Hesse cubics — Neolithic level structure. Consider the moduli space of Hesse cubics.

(i) the moduli space $SQ_{1,3}^{\text{NL}}$:=the set of isom. classes of $(C(\mu), K)$, where the definition of an isom. $(C(\mu), K) \simeq (C(\mu'), K)$: isom. iff

 $\exists f: C(\mu) \to C(\mu')$: an isom. with $f_{|K} = \mathrm{id}_K$,

This extra condition $f_{|K} = id_K$ for isom. is the classical level str.,

- (ii) if $(C(\mu), K) \simeq (C(\mu'), K)$, then $\mu = \mu'$, (iii) $SQ_{1,3}^{\text{NL}} \simeq \mathbf{P}^1$, in fact, $SQ_{1,3}^{\text{NL}} \simeq X(3)$ modular curve over $\mathbf{Z}[\zeta_3, 1/3]$, This compactifies $A_{1,3}^{\text{NL}} := \{ (C(\mu), K); C(\mu) \text{smooth} \} = \mathbf{P}^1 \setminus \{ 4 \text{ points} \}.$

Proof of (i). It suffices to prove (i). Suppose we are given an isomorphism

$$f: (C(\mu), K) \simeq (C(\mu'), K).$$

For simplicity suppose f is given by a 3×3 matrix A.

We shall prove that A is a scalar and f = id. In fact, any line $\ell_{x,y}$ connecting two points $x, y \in K$ is fixed by f. Since the line $x_0 = 0$ connects [0, 1, -1] and $[0, 1, -\zeta_3]$, it is fixed by f. Similarly the lines $x_1 = 0$ and $x_2 = 0$ are fixed by f, whence $f^*(x_i) = a_i x_i$ (i = 0, 1, 2) for some $a_i \neq 0$. Thus A is diagonal. Since [0, 1, -1] and [-1, 0, 1] are fixed, we have $a_0 = a_1 = a_2$, hence A is scalar and f = id, $\mu = \mu'$.

2.3. The moduli space of smooth cubics — classical level structure. Consider the (fine) moduli space of smooth cubics over a closed field $k \ge 1/3$.

Definition 2.3.1. Let $K = (\mathbb{Z}/3\mathbb{Z})^{\oplus 2}$, e_i a standard basis of K. Let e_K : $K \times K \to \mu_3$ be a standard symplectic form of K: in other words, e_K is (multiplicatively) alternating and bilinear such that

$$e_K(e_1, e_2) = e_K(e_2, e_1)^{-1} = \zeta_3, \ e_K(e_i, e_i) = 1.$$

Let C be a smooth cubic with zero O, $C[3] = \text{ker}(3 \text{ id}_C)$ the group of 3-division points and e_C the Weil pairing of C, that is,

 $e_C: C[3] \times C[3] \to \mu_3$ alternating nondegenerate bilinear.

There exists a symplectic (group) isomorphism

$$\iota: (C[3], e_C) \to (K, e_K).$$

If $C = \mathbf{C}/\mathbf{Z} + \mathbf{Z}\omega$, then

$$1/3 \mapsto e_1, \omega/3 \mapsto e_2,$$
$$e_C(1/3, \omega/3) = \zeta_3.$$

For instance, in this case, we can identify $C(\mu)[3]$ with K by

(2)
$$O = [0, 1, -1], e_1 = [0, 1, -\zeta_3], e_2 = [1, -1, 0].$$

Definition 2.3.2. The triple $(C, C[3], \iota) \in SQ_{1,3}^{CL}$ is called a cubic with classical level-3 structure. We define $(C, C[3], \iota) \simeq (C', C'[3], \iota')$ to be isomorphic iff there exists an isom. $f: C \to C'$ such that $f_{|C[3]}: C[3] \to C'[3]$ is a symplectic (group) isom. subject to

$$\iota' \cdot f = \iota.$$

This is ess. the same as isoms of Neolithic level str. which fix K, so

$$SQ_{1,3}^{\text{CL}} = \{(C, C[3], \iota)\} / isom. = \{(C(\mu), K, \text{id}_K)\} = SQ_{1,3}^{\text{NL}}.$$

3. Non-commutative level structure

Remark 3.1. If we stick to the definition of classical level structure

$$K = C[3] \subset C,$$

we will have nonseparated moduli in higher dimension.

Instead we consider the actions of $(K \text{ and}) \mathcal{G}_H$ on C and L.

3.2. Non-commutative interpretation of Hesse cubics. Interpret the theory of Hesse cubics as follows: Fix $O = [0, 1, -1] \in C(\mu)$.

- 1. $C = C(\mu), L := O_C(1)$ hyperplane bundle,
- 2. $K := \ker(3 \operatorname{id}_C) \simeq (\mathbb{Z}/3\mathbb{Z})^{\oplus 2}$ with Weil pairing e_K (alt. nondeg.)
- 3. any T_x ($x \in K$), translation by $x \in K$, is lifted to $\gamma_x \in \mathcal{G}_H \subset \mathrm{GL}(3)$: a lin. transf. of \mathbf{P}^2 ,
- 4. translation by 1/3 is lifted to σ (Recall that x_k is theta) $\theta_k(z+1/3) = \zeta_3^k \theta_k(z)$
- 5. translation by 1/3 is lifted to τ $[\theta_0, \theta_1, \theta_2](z + \omega/3) = [\theta_1, \theta_2, \theta_0](z)$
- $\begin{bmatrix} v_0, v_1, v_2 \end{bmatrix} (z + \omega/3) = \begin{bmatrix} v_1, v_2, v_0 \end{bmatrix} (z)$
- 6. $\sigma(x_k) = \zeta_k x_k, \ \tau(x_k) = x_{k+1}.$ 7. $[\sigma, \tau] = \zeta_3$, not commute,
- 8. $G(3) := \langle \sigma, \tau \rangle$ a finite group of order 27,
- 9. $H^{0}(C, L) = \{x_{0}, x_{1}, x_{2}\}$ is an irreducible G(3)-module of weight one, "weight one" means that $a \in \mu_{3}$ (center) acts as $a \operatorname{id}_{V}$,
- 10. the action of G(3) on $H^0(C, L)$ is a special case of Schrödinger repres.,

11. Matrix forms

$$\sigma = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \zeta_3 & 0 \\ 0 & 0 & \zeta_3^2 \end{pmatrix}, \quad \tau = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},$$
$$\sigma\tau = \begin{pmatrix} 0 & 0 & 1 \\ \zeta_3 & 0 & 0 \\ 0 & \zeta_3^2 & 0 \end{pmatrix}, \quad \tau\sigma = \begin{pmatrix} 0 & 0 & \zeta_3^2 \\ 1 & 0 & 0 \\ 0 & \zeta_3 & 0 \end{pmatrix}$$

Definition 3.3. $\mathcal{G}(K) = \mathcal{G}_H$: Heisenberg group;

 U_H : Schrödinger representation

$$K = K_H = H \oplus H^{\vee}, H \text{ finite abelian}, N = |H|$$

$$H = H(e), H(e) = \bigoplus_{i=1}^{g} (\mathbf{Z}/e_i \mathbf{Z}), e_i | e_{i+1}, e_{\min}(K) := e_1,$$

$$\mathcal{G}(K) = \mathcal{G}_H = \{(a, z, \alpha); a \in \mathbf{G}_m, z \in H, \alpha \in H^{\vee}\},$$

$$G(K) = G_H = \{(a, z, \alpha); a \in \mu_N, z \in H, \alpha \in H^{\vee}\},$$

$$V := V_H = \mathcal{O}[H^{\vee}] = \bigoplus_{\mu \in H^{\vee}} \mathcal{O}v(\mu),$$

$$(a, z, \alpha)v(\gamma) = a\gamma(z)v(\alpha + \gamma)$$

where $\mathcal{O} = \mathcal{O}_N = \mathbf{Z}[\zeta_N, 1/N].$

$$1 \to \mathbf{G}_m \to \mathcal{G}_H \to K_H \to 0 \quad (\text{exact})$$

The action of \mathcal{G}_H on V is denoted U_H .

In the Hesse cubics case, $\mathcal{O} := \mathbf{Z}[\zeta_3, 1/3], H = H^{\vee} = \mathbf{Z}/3\mathbf{Z}$, we identify G(3) with G_H :

$$\sigma = (1, 1, 0), \tau = (1, 0, 1) \in \mathcal{G}_H, N = 3.$$
$$V_H = \mathcal{O}[H^{\vee}] = \mathcal{O} \cdot v(0) \oplus \mathcal{O} \cdot v(1) \oplus \mathcal{O} \cdot v(2)$$

Lemma 3.4. \mathcal{G}_H (and G_H) has a unique irreducible representation of weight one over $\mathbf{Z}[\zeta_N, 1/N]$.

3.5. New formulation of the moduli problem.

- 1. classical level 3 str. = to choose a syml. basis of K
- 2. new level 3 str.= to choose an action of \mathcal{G}_H on $V \simeq H^0(C, L)$

Definition 3.6. For C any cubic with $L = O_C(1)$, (C, ψ, τ) is a level- \mathcal{G}_H structure if

- 1. τ is a \mathcal{G}_H -action on the pair (C, L),
- 2. $\psi: C \to \mathbf{P}(V_H) = \mathbf{P}^2$ is the inclusion (it is a \mathcal{G}_H -equivariant closed immersion by τ , hence $\phi^* O(1)$ very ample)

Any smooth cubic (C, L) with $L = O_C(1)$, always has a \mathcal{G}_H -action τ . Define : $(C, \psi, \tau) \simeq (C', \psi', \tau')$ isom. iff $\exists (f, F) : (C, L) \to (C', L') \quad \mathcal{G}_H$ -isom. with $\psi' \cdot f = \psi$ (This is equivalent to $f_{|K} = \mathrm{id}_K$ in the classical case.)

Lemma 3.7. Any (C, ψ, τ) is isom. to a unique Hesse cubic $(C(\mu), i, U_H)$.

Proof. Let \mathbf{P}^2 be $\mathbf{P}(V_H)$ and \mathbf{H} the hyperplane bundle of \mathbf{P}^2 . U_H induces an action on $H^0(\mathbf{P}^2, O_{\mathbf{P}^2}(1)) = V_H$.

Any (C, ψ, τ) is isomorphic to some Hesse cubic $(C(\mu), i, U_H)$. Here we prove the uniqueness of it only.

$$H^{0}(O_{C(\mu)}(1)) \simeq H^{0}(O_{\mathbf{P}^{2}}(1))$$
$$H^{0}(U_{H}, O_{C(\mu)}(1)) \simeq H^{0}(U_{H}, O_{\mathbf{P}^{2}}(1)) = U_{H} \quad \text{on } V_{H}$$

where $H = \mathbf{Z}/3\mathbf{Z}$.

Suppose $h : (C(\mu), i, U_H) \simeq (C(\mu'), i, U_H)$ is a $\mathcal{G}(3)$ -isomorphism. Since h is linear by $\psi h = \psi'$, so $h^* \psi^* O(1) = (\psi')^* O(1)$, h induces an autom. of $(\mathbf{P}^2, O_{\mathbf{P}^2}(1))$ (also denoted h) so that we have a commutative diagram

TTO (1 +)

whence we have

$$U_H(g)H^0(h^*) = H^0(h^*)U_H(g) \in \text{End}(V_H)$$

for any $g \in \mathcal{G}(3)$, where we also regard $H^0(h^*) \in \text{End}(V_H)$. Since U_H is irreducible, $H^0(h^*)$ is a scalar by Schur's lemma. Hence $H^0(h^*) = c \operatorname{id}_{V_H} \in \operatorname{PGL}(V_H)$, $h = \operatorname{id}_{\mathbf{P}(V_H)}$, $C(\mu) = C(\mu')$, $\mu = \mu'$.

Proposition 3.8. Over a closed field of char. $\neq 3$,

$$\begin{aligned} SQ_{1,3} &:= \{ (C, \psi, \tau) : level - \mathcal{G}(3) \} / isom \\ &= \{ (C(\mu), i, U_H) : level - \mathcal{G}(3) \} / isom = \{ \mu \in \mathbf{P}^1 \} \\ &= \{ (C(\mu), K) : Neolithic \ level - 3 \} = SQ_{1,3}^{\mathrm{NL}} \end{aligned}$$

In other words,

 ${cubic with level-G(3)-str.} = {cubic with (Neo. or) classical level 3-str.}$

We call this new level 3-structure level- \mathcal{G}_H structure. This is the noncommutative level structure that we can generalize into higher dimension.

Summary 3.9. Nonsingular Hesse cubics are $\mathcal{G}(3)$ -invariant abelian varieties embedded in the projective space. This suggests that the following will compactify the moduli of abelian varieties:

- 1. consider all \mathcal{G}_H -invariant abelian varieties embedded in $\mathbf{P}(V_H)$,
- 2. collect all the limits of \mathcal{G}_H -invariant abelian varieties,
- 3. then what are the limits? The answer is our PSQASes.
- 4. Caution: an example in dimension two, $H = (\mathbf{Z}/3\mathbf{Z})^2$ shows that it is too hard to see what happens. In fact, abelian varieties embedded in $\mathbf{P}(V_H) = \mathbf{P}^8$ are defined by 12 equations.

6

HESSE CUBICS AND GIT STABILITY

4. The space of closed orbits

Let us forget the above Hesse cubic case for a while.

4.1. **Example.** To convince that the compactif. is natural, we recall GIT. Let us look at the following example. Let \mathbf{C}^2 be the complex plane, (x, y) its coordinates. Let us consider the action of \mathbf{C}^* on \mathbf{C}^2 :

(3)
$$(\alpha, x, y) \mapsto (\alpha x, \alpha^{-1} y) \quad (\alpha \in \mathbf{C}^*)$$

What is the quotient space of \mathbf{C}^2 by the action of \mathbf{C}^* ? There are four kinds of orbits:

(4)

$$O(a, 1) = \{(x, y) \in \mathbf{C}^{2}; xy = a\} \quad (a \neq 0),$$

$$O(0, 1) = \{(0, y) \in \mathbf{C}^{2}; y \neq 0\},$$

$$O(1, 0) = \{(x, 0) \in \mathbf{C}^{2}; x \neq 0\},$$

$$O(0, 0) = \{(0, 0)\}$$

where there are the closure relations of orbits

$$\overline{O(1,0)} \supset O(0,0), \ \overline{O(0,1)} \supset O(0,0).$$

If we define the quotient to be the orbit space, its natural topology is not Hausdorff, because

(5)
$$O(1,0) = \lim_{x \to 0} O(1,x) = \lim_{x \to 0} O(x,1) = O(0,1)$$

because $O(a, 1) = O(1, a) \ (a \neq 0)$.

In order to avoid this, we use the ring of invariants. By (3) we define the quotient space to be

(6)
$$\mathbf{C}^2 / / \mathbf{C}^* = \{t; t \in \mathbf{C}\} \simeq \operatorname{Spec} \mathbf{C}[t].$$

where t = xy. Let $\pi : \mathbb{C}^2 \to \mathbb{C}^2 / / \mathbb{C}^*$ be the natural morphism. Hence π sends $(x, y) \mapsto t = xy$, so

$$O(1,0), O(0,1), O(0,0) \mapsto t = 0$$

where O(0,0) is the unique closed orbit.

We summarize:

Theorem 4.2. The quotient space $\mathbf{C}^2//\mathbf{C}^*$ is set-theoretically the space of closed orbits.

The same is true in general.

Theorem 4.3. (Seshadri-Mumford) Let X be a projective variety, G a reductive group acting on X. Let X_{ss} be the open subscheme of X consisting of all semistable points in X. Let R be the graded ring of all G-inv. homog. polynomials on X. Let $Y := X_{ss}//G = \operatorname{Proj}(R)$. Then

 $Y = the space of orbits closed in X_{ss}$.

Moreover let $\pi : X_{ss} \to Y$ be the natural morphism. Then $\pi(a) = \pi(b)$ if and only if $\overline{O(a)} \cap \overline{O(b)} \neq \emptyset$ where $a, b \in X_{ss}$.

A reductive group in Theorem 4.3 is by definition an algebraic group whose maximal solvable normal subgroup is an algebraic torus; for example SL(n) and G_m are reductive.

Now we give the definition of the term "semistable" in Theorem 4.3.

Definition 4.4. We keep the same notation as in Theorem 4.3. Let $p \in X$.

(1) p is *semistable* if there exists a G-invariant homogeneous polynomial F on X such that $F(p) \neq 0$, or equivalently,

 $X \setminus X_{ss}$ = the common zero locus of all *G*-invariant homogeneous polynomials on *X* = the subset of *X* where no *G*-invariant

functions are defined (0/0 !).

- (2) p is Kempf-stable or closed orbit if the orbit O(p) is closed in X_{ss} ,
- (3) p is properly-stable if p is Kempf-stable and the stabilizer subgroup of p in G is finite.

We denote by X_{ps} or X_{ss} the set of all properly-stable points or the set of all semistable points respectively. The implications are

properly stable \implies Closed orbit \implies Semistable

We note that if $a, b \in X_{ps}$, (hence they have closed orbits)

$$\pi(a) = \pi(b) \Longleftrightarrow \overline{O(a)} \cap \overline{O(b)} \neq \emptyset \Longleftrightarrow O(a) \cap O(b) \neq \emptyset$$
$$\iff O(a) = O(b) \iff a \text{ and } b \text{ are isom.}$$

Very roughly speaking our moduli of abelian varieties is

 $X_{ps}//G = X_{ps}/G =$ the set of abelian varieties

where abelian varieties have closed orbits by [Kempf78].

The compactification of $X_{ps}//G$ is

Compactification = $X_{ss}//G = Y$ = the set of closed orbits.

By slightly modifying the formulation so as to fit in the classical theory, we will see that there exists a projective scheme $SQ_{q,K}$

 $SQ_{q,K} =$ Compactification = the set of closed orbits

= the set of level- \mathcal{G}_H PSQASes

where \mathcal{G}_H is the Heisenberg group. If $H = (\mathbf{Z}/n\mathbf{Z})^g$,

$$SQ_{q,K} = X_{ss} / / G \supset X_{ps} / / G = A_{q,K} = \mathbf{H}_q / \Gamma(n)$$

Thus $SQ_{g,K}$ compactifies $\mathbf{H}_g/\Gamma(n)$.

5. LIMITS-STABLE REDUCTION THEOREM

Our goal of constructing a compactification is achieved by

- 1. finding limit objects PSQAS and TSQAS (Theorem 5.2)
- 2. constructing the moduli $SQ_{g,K}$ as a projective scheme (Section 7) so as to fit in the classical theory, for example, $SQ_{g,K}$ compactifies $A_{g,K} = \mathbf{H}_q/\Gamma(n)$ if $H = (\mathbf{Z}/n\mathbf{Z})^g$,
- 3. proving that any point of $SQ_{g,K}$ is the isom. class of a PSQAS (Q, ϕ, τ) with level- \mathcal{G}_H str. (Ths. 5.2 (4), 7.2, 8.4)

5.1. Limit objects. First we note

• Any PSQAS is a scheme-theoretic limit of the images of AV by theta functions. It is also a compactification of a generalized Tate curve.

Let R be a CDVR, and $k(\eta)$ the fraction field of R. We start with an abelian scheme $(G_{\eta}, \mathcal{L}_{\eta})$ and a polarization morphism $\lambda(\mathcal{L}_{\eta}) : G_{\eta} \to G_{\eta}^{t}$. Let $K_{\eta} = \ker(\mathcal{L}_{\eta})$ the finite group scheme, and $\mathcal{G}(K_{\eta}) := \operatorname{Aut}(\mathcal{L}_{\eta}/G_{\eta})$: the autom. gp of the pair $(G_{\eta}, \mathcal{L}_{\eta})$ linear in the fibers of \mathcal{L}_{η} over G_{η} .

For simplicity, we assume the characteristic of $k(0) = R/m_R$ is prime to rank K_η . Then there exists a finite symplectic abelian group K such that $K_\eta \simeq K$ and $\mathcal{G}(K_\eta) \simeq \mathcal{G}_H$ by some base change

$$1 \to \mathbf{G}_m \to \mathcal{G}_H \to K \to 0 \quad (\text{exact})$$

Theorem 5.2. (A refined version of Alexeev-Nakamura's stable reduction theorem) ([AN99], [N99]) For an abelian scheme $(G_{\eta}, \mathcal{L}_{\eta})$ and a polarization morphism $\lambda(\mathcal{L}_{\eta}) : G_{\eta} \to G_{\eta}^{t}$ over $k(\eta)$, there exist proper flat projective schemes (Q, \mathcal{L}_{Q}) (PSQAS) over R, by a finite base change if necessary, such that

(1) $(Q_{\eta}, \mathcal{L}_{\eta}) \simeq (G_{\eta}, \mathcal{L}_{\eta}),$

IKU NAKAMURA

- (2) if $e_{\min}(K) \geq 3$, then \mathcal{L}_Q is very ample, and in general, (Q, \mathcal{L}_Q) is an étale quotient of some PSQAS (Q^*, \mathcal{L}_{Q^*}) with \mathcal{L}_{Q^*} very ample,
- (3) \mathcal{G}_H acts on (Q, \mathcal{L}_Q) extending the action of it on $(G_\eta, \mathcal{L}_\eta)$,
- (4) (Q, \mathcal{L}) is uniquely determined by $(G_{\eta}, \mathcal{L}_{\eta})$ if it satisfies (1)-(3).
 - (1) [AN99]; (2)-(4) [N99]
 - (1) proves that the moduli is proper,
 - (4) shows that the moduli is separated.
 - The construction of Q is explicit.
 - Summary. \mathcal{L} very ample if $e_{\min}(K) \geq 3$; and \mathcal{G}_H acts on (Q, \mathcal{L}) .

6. Example

We show an example in dimension one to illustrate Th. 5.2.

We know that Hesse cubics are the images of $E(\omega)$ by theta functions. Nonsingular Hesse cubics have limits 3 gons. Thus the next Summary follows.

Remark 6.1. Limits of abelian varieties would be obtained from limit of (normalized, that is, properly ordered by \mathcal{G}_H) theta functions.

- 6.2. The complex case. Come back to Hesse cubics, θ_k . Let $X = \mathbb{Z}$.
 - 1. θ_k is Y-inv. where $Y = 3\mathbf{Z}$,
 - 2. we wish to think

$$E(\omega) \simeq \operatorname{Proj} \mathbf{C}[\theta_k \vartheta, k = 0, 1, 2]$$

=* Proj ($\mathbf{C}[[a(x)w^x \vartheta, x \in X]])^{Y-\operatorname{inv}}$
\approx Proj $\mathbf{C}[a(x)w^x \vartheta, x \in X])/Y$

3. because U = Spec A is affine, G a finite group acting on U, then

$$U/G = \text{Spec } A^{G\text{-inv}}$$

4. Over \mathbf{C} , $a(x) \in \mathbf{C}^{\times}$, and

$$\mathbf{G}_m = \operatorname{Proj} \, \mathbf{C}[a(x)w^x \vartheta, x \in X] = \bigcup_{k \in \mathbf{Z}} U_k,$$

because

$$U_k = \operatorname{Spec} \mathbf{C}[a(x)w^x \vartheta/a(k)w^k \vartheta; x \in X] = \operatorname{Spec} \mathbf{C}[w, w^{-1}] = \mathbf{G}_m,$$

5. Hence over **C** we may think so: if 0 < |q| < 1, then

$$E(\omega) \simeq \mathbf{G}_m / w \mapsto q^6 w$$

$$\simeq \mathbf{G}_m / \{ w \mapsto q^{2y} w; y \in 3\mathbf{Z} \}$$

$$\simeq (\operatorname{Proj} \mathbf{C}[a(x) w^x \vartheta, x \in X]) / Y,$$

$$E(\omega) \simeq \operatorname{Proj} \mathbf{C}[\theta_k \vartheta, k = 0, 1, 2]$$

where θ_k is something like the average by Y, because $\theta_k = \sum_{y \in Y} a(y + k) w^{y+k}$ converges.

10

6.3. The scheme-theoretic limit. What happens over a CDVR R? We can do the same because we have R-adic convergence.

Let $a(x) = q^{x^2}$ for $x \in X$, $X = \mathbb{Z}$, $Y = 3\mathbb{Z}$.

1. let

$$R := R[a(x)w^x \vartheta, x \in X],$$
$$\mathcal{X} = \operatorname{Proj} \widetilde{R}, \quad Z = \operatorname{Proj} \widetilde{R}/Y.$$

2. define S_y action of Y on \widetilde{R}

$$S_y(a(x)w^x\vartheta) = a(x+y)w^{x+y}\vartheta$$

by imitating the summation in θ_k .

3.

 \mathcal{X}_0

$$\begin{aligned} \mathcal{X} &= \operatorname{Proj} R[a(x)w^x \vartheta, x \in X] \bigcup_{n \in \mathbf{Z}} U_n, \\ U_n &= \operatorname{Spec} R[a(x)w^x/a(n)w^n, x \in X] \\ &= \operatorname{Spec} R[(a(n+1)/a(n))w, (a(n-1)/a(n))w^{-1}] \\ &= \operatorname{Spec} R[q^{2n+1}w, q^{-2n+1}w^{-1}] \\ &\simeq \operatorname{Spec} R[x_n, y_n]/(x_n y_n - q^2), \\ \cap U_n &= \operatorname{Spec} k[x_n, y_n]/(x_n y_n). \end{aligned}$$

4. $\mathcal{X}_0 := \mathcal{X} \otimes_R (R/qR) = \bigcup_{n \in \mathbb{Z}} \mathcal{X}_0 \cap U_n$ is an infinite chain of \mathbb{P}^1 ,

5. \mathcal{X}_0/Y : 3-gon, which recovers a singular Hesse cubic.

Theorem 5.2 generalizes this construction.

7. Stability of PSQASes

Theorem 7.1. ([Gieseker82], [Mumford77]) For a connected curve C of genus greater than one, the following are equivalent:

- (1) C is a stable curve, (moduli-stable)
- (2) Any Hilbert point of C embedded by $|mK_C|$ is GIT-stable,
- (3) Any Chow point of C embedded by $|mK_C|$ is GIT-stable.

Theorem 7.2. Let $K = H \oplus H^{\vee}$, N = |H|, k a closed field, char $k \neq N$. Suppose $e_{\min}(K) \geq 3$, and $(Z, L) \subset (\mathbf{P}(V_H), O_{\mathbf{P}(V_H)}(1))$.

Suppose that (Z, L) is smoothable into an abelian variety whose Heisenberg group is isomorphic to \mathcal{G}_H . Then the following are equivalent:

- (1) (Z, L) is a PSQAS, (moduli-stable)
- (2) the Hilbert points of (Z, L) have closed orbits, that is, $SL(V_H)$ -orbit of Hilbert points of (Z, L) is closed, (GIT-stable)
- (3) (Z, L) is stable under a conjugate of \mathcal{G}_H , that is, (Z, L) is a subscheme of $\mathbf{P}(V_H)$ invariant under the action of \mathcal{G}_H on $\mathbf{P}(V_H)$, $(\mathcal{G}_H$ -stable).

Proof. $G = SL(V_H)$ for all. (1) \rightarrow (3) Easy (Th. 5.2 (3)).

 $(3) \rightarrow (2)$ by ([Kempf78]+L very ample).

We prove $(2) \rightarrow (1)$: PSQAS has a closed orbit. Assume (2) for (Z, L).

IKU NAKAMURA

- By assumption ∃ (Q, L) over a CDVR R such that (Q_η, L_η) a level-G_H AV and (Q₀, L₀) = (Z, L) =: a. Caution:since (Z, L) may have no G_H-action, cannot apply Th. 5.2 (4), so (Q, L) is a flat family which may not be the family in Th. 5.2,
- O(a) : closed by assuming (2).
- by base change may assume \exists a level- \mathcal{G}_H PSQAS (Q', \mathcal{L}') s.t. $(Q'_{\eta}, \mathcal{L}'_{\eta}) = (Q_{\eta}, \mathcal{L}_{\eta}).$
- Let $(Q'_0, \mathcal{L}'_0) =: b$. Then $\pi(a) = \pi(b)$. $\pi: X_{ss} \to X_{ss} // \operatorname{SL}$.
- Hence by Seshadri-Mumford, $O(a) \cap O(b) \neq \emptyset$.
- both are closed orbits. $O(a) \cap O(b) \neq \emptyset$.
- Hence O(a) = O(b). This shows $(Z, L) \simeq (Q'_0, \mathcal{L}'_0)$ PSQAS.

Now we are in position to compactify the moduli using Thm 7.2 (3):

 $SQ_{g,K}$ = Compactification = the set of closed orbits

= the set of all level- \mathcal{G}_H PSQASes.

This will be made more precise in Sec. 8.

7.3. Stability of planar cubics. For planar cubics, any GIT-stable curve is either a smooth elliptic curve or a 3-gon by the following table, hence it is isomorphic to one of Hesse cubics. It follows from it that

- C is GIT-stable $\Leftrightarrow C$ is elliptic or a 3-gon
 - $\Leftrightarrow C$ is isom. to a Hesse cubic

 $\Leftrightarrow C$ is isom. to a G(3)-stable cubic.

where GIT-stable := closed SL(3)-orbit

This is a special case of Theorem 7.2.

TABLE 1. Stability of cubic curves

curves (sing.)	stability	$\operatorname{stab.gr.}$
smooth elliptic	GIT-stable	finite
3 lines, no triple point	GIT-stable	$2 \dim$
a line+a conic, not tangent	semistable, not GIT-stable	$1 \dim$
irreducible, a node	semistable, not GIT-stable	$\mathbf{Z}/2\mathbf{Z}$
3 lines, a triple point	not semistable	$1 \dim$
a line $+a$ conic, tangent	not semistable	$1 \dim$
irreducible, a cusp	not semistable	$1 \dim$

8. The moduli space $SQ_{g,K}$

By Theorem 5.2, any level \mathcal{G}_H PSQAS (Q_0, \mathcal{L}_0) is embedded into $\mathbf{P}(V)$ if $e_{\min}(K) \geq 3$ where $V = V_H := \mathcal{O}_N[v(\mu); \mu \in H^{\vee}].$

Lemma 8.1. Assume $e_{\min}(K) \geq 3$. For a level- \mathcal{G}_H PSQAS (Q_0, ϕ_0, τ_0) , there exists a unique level- \mathcal{G}_H PSQAS (Q'_0, i, U_H) isom. to (Q_0, ϕ_0, τ_0) such that $i : Q'_0 \subset \mathbf{P}(V_H)$, where U_H is the Schrödinger repres. of \mathcal{G}_H .

12

Let $\operatorname{Hilb}^{\chi(n)}$ be the Hilbert scheme parameterizing all the closed subscheme (Z, L) of $\mathbf{P}(V_H)$ with $\chi(Z, L^n) = n^g \sqrt{|K|} =: \chi(n)$, and $(\operatorname{Hilb}^{\chi(n)})^{\mathcal{G}_H \operatorname{-inv}}$ the \mathcal{G}_H -inv. part of it. The following is a closed immersion of $SQ_{g,K}$ (resp. an immersion of $A_{q,K}$) into $(\operatorname{Hilb}^{\chi(n)})^{\mathcal{G}_H \operatorname{-inv}}$:

$$A_{g,K} \ni (A_0, \phi_0, \tau_0) \mapsto (A'_0, i, U_H) \in (\mathrm{Hilb}^{\chi(n)})^{\mathcal{G}_H \operatorname{-inv}} \quad (\mathrm{AV})$$
$$SQ_{g,K} \ni (Q_0, \phi_0, \tau_0) \mapsto (Q'_0, i, U_H) \in (\mathrm{Hilb}^{\chi(n)})^{\mathcal{G}_H \operatorname{-inv}} \quad (\mathrm{PSQAS})$$

Hence

$$SQ_{g,K} = \overline{A_{g,K}} \subset (\mathrm{Hilb}^{\chi(n)})^{\mathcal{G}_H-\mathrm{in}}$$

Example 8.2. Let g = 1 and $H = \mathbb{Z}/3\mathbb{Z}$, $\chi(n) = 3n$. Hence Hilb^{$\chi(n)$} is the space of all cubics in $\mathbb{P}(V_H) = \mathbb{P}^2$. hence the space of ternary cubics. Then $(\text{Hilb}^{\chi(n)})^{\mathcal{G}_H\text{-inv}}$ is G(3)-invariant cubics, hence they are Hesse cubics or one of eight cubics defined by G(3)-semi-inv cubic poly.

 $x_0^3 + \zeta_3 x_1^3 + \zeta_3^2 x_2^3$, $x_0^2 x_1 + \zeta x_1^2 x_2 + \zeta^2 x_2^2 x_0$

where $\zeta_3^2 + \zeta_3 + 1 = 0, \ \zeta^3 = 1$, so

$$(\operatorname{Hilb}_{\mathbf{P}^{2}}^{3n})^{\mathcal{G}_{H}\text{-}\operatorname{inv}} = \mathbf{P}^{1} \bigcup (8 \text{ points}),$$

$$(\operatorname{Hilb}_{\mathbf{P}^{3}}^{4n})^{\mathcal{G}_{H}\text{-}\operatorname{inv}} = \mathbf{P}^{1} \bigcup (3 \text{ points}),$$

$$(\operatorname{Hilb}_{\mathbf{P}^{4}}^{5n})^{\mathcal{G}_{H}\text{-}\operatorname{inv}} = \mathbf{P}^{1},$$

$$SQ_{1,K_{H}} = \mathbf{P}^{1}, (H = \mathbf{Z}/n\mathbf{Z}, n = 3, 4, 5).$$

Definition 8.3. The triple (X, ϕ, τ) or (X, L, ϕ, τ) is

a PSQAS with level- \mathcal{G}_H str. if

- 1. $\phi: (X, L) \to (\mathbf{P}(V), O(1))$ a closed immersion such that $\phi^*: V \simeq H^0(X, L), \ L = \phi^* O_{\mathbf{P}(V)}(1),$
- 2. τ is a \mathcal{G}_H -action on the pair (X, L) so that ϕ is a \mathcal{G}_H -morphism.

Define : $(X, \phi, \tau) \simeq (X', \phi', \tau')$ isom. iff $\exists (f, F) : (X, L) \to (X', L') \quad \mathcal{G}_H$ -isom. such that $\phi = \phi' \cdot f$.

Theorem 8.4. Suppose $e_{\min}(K) \geq 3$. Let $N := \sqrt{|K|}$. The functor $SQ_{g,K}$ of level- \mathcal{G}_H PSQASes (Q, ϕ, τ) over reduced base schemes is represented by the projective $\mathbf{Z}[\zeta_N, 1/N]$ -scheme $SQ_{g,K}$:

$$SQ_{g,K}(T) = \{(Q, \phi, \tau); PSQAS \text{ with level-}\mathcal{G}_H \text{ str. over } T\}.$$

for T reduced.

It follows

 $SQ_{g,K}(k) = \{(Q, \phi, \tau); PSQAS \text{ with level-}\mathcal{G}_H \text{ str. over } k\}$ = the set of the orbits of level- $\mathcal{G}_H PSQAS$ es = the set of closed orbits

where k is a closed field of chara. prime to N.

IKU NAKAMURA

References

- [Alexeev02] V. Alexeev, Complete moduli in the presence of semiabelian group action, Ann. of Math. **155** (2002), 611–708.
- [AN99] V. Alexeev and I. Nakamura, On Mumford's construction of degenerating abelian varieties, Tôhoku Math. J. 51 (1999) 399–420.
- [AMRT75] A. Ash, D. Mumford, M. Rapoport and Y. Tai, Smooth compactification of locally symmetric varieties, Math Sci Press, Massachusetts, USA, 1975.
- [DM69] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Publ. Math. IHES 36 (1969) 75–110.
- [FC90] G. Faltings and C.-L. Chai, Degenerations of abelian varieties, vol. 22, Ergebnisse der Mathematik und ihrer Grenzgebiete, no. 3, Springer-Verlag, 1990.
- [Gieseker82] D. Gieseker, Lectures on moduli of curves, Tata Institute of Fundamental Research, Bombay 1982.
- [Kempf78] G. Kempf, Instability in invariant theory, Ann. Math. **339** (1978), 299–316.
- [Mumford72] D. Mumford, An analytic construction of degenerating abelian varieties over complete rings, Compositio Math. 24 (1972) 239–272.
- [Mumford77] D. Mumford, Stability of projective varieties, L'Enseignment Mathematique 23 (1977) 39–110.
- [Mumford12] D. Mumford, Abelian varieties, Tata Institute of Fundamental Research, Hindustan Book Agency, 2012.
- [N75] I. Nakamura, On moduli of stable quasi abelian varieties, Nagoya Math. J. 58 (1975), 149–214.
- [N98] I. Nakamura, Compactification of the moduli of abelian varieties over $\mathbf{Z}[\zeta_N, 1/N]$, C. R. Acad. Sci. Paris, **327** (1998) 875-880.
- [N99] I. Nakamura, Stability of degenerate abelian varieties, Invent. Math. 136 (1999), 659–715.
- [N04] I. Nakamura, Planar cubic curves, from Hesse to Mumford, Sugaku Expositions 17 (2004), 73-101.
- [N10] I. Nakamura, Another canonical compactification of the moduli space of abelian varieties, Algebraic and arithmetic structures of moduli spaces (Sapporo, 2007), Advanced Studies in Pure Math., 58 (2010), 69-135. (arXivmath 0107158)
- [N13] I. Nakamura, Compactification by GIT stability of the moduli space of abelian varieties, to appear in the Proceedings of ASPM for Mukai 60 conference, 2013, http://www.math.sci.hokudai.ac.jp/~nakamura

DEPARTMENT OF MATHEMATICS, HOKKAIDO UNIVERSITY, SAPPORO, 060-0810 *E-mail address*: nakamura@math.sci.hokudai.ac.jp