
COMPACTIFICATION OF THE MODULI SPACE OF
ABELIAN VARIETIES

KYOTO, 2013 JUNE 11-13

IKU NAKAMURA

Abstract. The moduli space of nonsingular projective curves of genus
g is compactified by adding Deligne-Mumford stable curves of genus g,
a class of mildly degenerate curves. The moduli space of stable curves is
a projective variety, known as Deligne-Mumford compactification. We
compactify in a similar way the moduli space of abelian varieties as the
moduli space of some mildly degenerating limits of abelian varieties.

A typical case is the moduli space of Hesse cubics. Any Hesse cubic
is GIT-stable, and any GIT stable planar cubic is one of Hesse cubics.
Similarly in arbitrary dimension, the moduli space of abelian varieties is
compactified by adding only GIT-stable limits of abelian varieties. Our
moduli space is a projective ”fine” moduli space of (possibly degenerate)
abelian schemes

with non-classical (non-commutative) level structure

over Z[ζN , 1/N ] for some N ≥ 3. The objects at the boundary are mild
limits of abelian varieties, which we call PSQASes, projectively stable
quasi-abelian schemes.
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1. Introduction

Roughly our problem is the following diagram completion :

The Deligne-Mumford compactification completes the following diagram
the moduli of smooth curves

= the set of all isomorphism classes of smooth curves
⊂ the set of all isomorphism classes of stable curves
= the Deligne-Mumford compactification Mg

Therefore our problem is to complete the following diagram :

the moduli of smooth AVs (= abelian varieties)

= {smooth polarized AVs + extra structure}/ isom.

⊂ {smooth polarized AVs or

singular polarized degenerate AVs + extra structure}/ isom.
= the new compactification SQg,K of the moduli of AVs

The compactification problem of the moduli space of abelian varities have
been discussed by many people

1. Satake compactification, Igusa monoidal transform of it
2. Mumford toroidal compactification (Ash-Mumford-Rapoport-Tai [AMRT75])
3. Faltings-Chai arithmetic compactification (arithmetic version of Mum-

ford compactification) [FC90]
There are many compactifications, but no canonical choice except Satake.

These are compactification as spaces, not as the moduli of compact objects.
We wish to construct a unique canonical compactification, separated and

proper, of course, more desirably projective, as the fine/coarse moduli of
compact geometric objects : thereby

1. proper = to collect suff. many limits
2. separated = to choose the minimum possible among the above
3. both are necessary for compactification

2. Hesse cubics

2.1. Hesse cubics. Let k be a closed field of chara. �= 3. A Hesse cubic
curve is defined by

C(μ) : x3
0 + x3

1 + x3
2 − 3μx0x1x2 = 0(1)

for some μ ∈ k, or μ = ∞ (in which case we understand that C(∞) is the
curve defined by x0x1x2 = 0).

1. C(μ) is nonsingular elliptic for μ �= ∞, 1, ζ3, ζ2
3 , where ζ3 is a primitive

cube root of unity.
2. C(μ) is a 3-gon for μ = ∞, 1, ζ3, ζ2

3

3. any elliptic C(μ) has 9 inflection points(=flexes), independent of μ,

K := 9 flexes

say, (0, 1,−ζk
3 ), (−ζk

3 , 0, 1), (1,−ζk
3 , 0), Note K ⊂ C(μ) (∀ μ),
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4. over C, any Hesse cubic is the image of E(ω) := C/Z+Zω, a complex
torus by thetas

xk = θk(q, w) =
∑
m∈Z

e2πi(3m+k)2ω/6e2πi(3m+k)z

=
∑
m∈Z

q(3m+k)2w3m+k

where q = e2πiω/6, w = e2πiz .
Then K is the image of ker(3 : E(ω) → E(ω)) = 〈1

3 ,
ω
3 〉.

2.2. The moduli space of Hesse cubics — the Stone-age (Neolithic)
level structure. Consider the moduli space of Hesse cubics.

1. the moduli space SQ1,3:=the set of isom. classes of (C(μ),K),
where the definition of an isom.
(C(μ),K) 
 (C(μ′),K) : isom. iff
∃ f : C(μ) → C(μ′) : an isom. with f|K = idK ,
This extra condition f|K = idK for isom. is the classical level str.,

2. if (C(μ),K) 
 (C(μ′),K), then μ = μ′, because the isom is given by a
matrix A, whose eigenvectors are K with |K| = 9, hence easy to prove
A is scalar.

3. SQ1,3 
 P1, in fact, SQ1,3 
 X(3) modular curve over Z[ζ3, 1/3], This
compatifies A1,3 := {(C(μ),K);C(μ)smooth} = P1 \ {4 points}.

2.3. The moduli space of smooth cubics — classical level structure.
Consider the moduli space of Hesse cubics.

1. the moduli space A1,3:=the set of isom. classes of (C,C[3], ι),
where C a smooth cubic, C[3] the 3-division points,

ι : (C[3], eC ) → (K, eK) a symplectic isom,

where eC Weil pairing of C, that is,

eC : C[3] ×C[3] → μ3 alternating nondeg.

and K = (Z/3Z)⊕, eK(e1, e2) = ζ3, ei stand. basis of K, eK alt.,
2. the definition of an isom.

(C,C[3], ι) 
 (C ′, C ′[3], ι′) : isom. iff
∃ f : C → C ′ : isom. , f|C[3] : C[3] → C ′[3] isom. ι′ · f = ι,

This extra condition f|C[3] : C[3] → C ′[3] isom such that ι′ · f = ι
for isom. is the classical level str.,

3. Note that (C(μ), C(μ)[3], idK) ∈ A1,3 because C(μ)[3] = K,
4. any (C,C[3], ι) 
 (C(μ), C(μ)[3], id) for some μ,
5. if (C(μ), C(μ)[3], id) 
 (C(μ′), C(μ′)[3], id), then μ = μ′, because f an

isom satisfies idK ·f = idK , hence f = idK ,Neolithic isom, μ = μ′,
6. This proves A1,3 := {(C(μ),K);C(μ)smooth} = P1 \{4 points}, hence

what to add to A1,3 are 3-gons.
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3. Non-commutative level structure

Remark 3.1. If we stick to the definition of classical level structure

K = C[3] ⊂ C,

we will have nonseparated moduli in higher dimension.
Instead we consider the actions of (K and) G(K) on C and L.

3.2. Non-commutative interpretation of Hesse cubics. Interpret the
theory of Hesse cubics as follows: Fix O = [0, 1,−1] ∈ C(μ).

1. C: any smooth cubic, L := OC(1) hyperplane bundle,
Let λ(L) : C → C∨ := Pic 0(C) 
 C be the map x→ T ∗xL⊗ L−1,
Then K := 9 flexes = ker(λ(L)) if C = C(μ), where λ(L) = 3 idC ,

2. K := kerλ(L) 
 (Z/3Z)⊕2 with Weil pairing eK (alt. nondeg.)
3. any Tx (x ∈ K), translation by x ∈ K, is lifted to γx ∈ G(K) ⊂ GL(3)

: a lin. transf. of P2,
4. translation by 1/3 is lifted to σ

(Recall that xk is theta)
θk(z + 1/3) = ζk

3 θk(z)
5. translation by 1/3 is lifted to τ

[θ0, θ1, θ2](z + ω/3) = [θ1, θ2, θ0](z)
6. σ(xk) = ζkxk, τ(xk) = xk+1.
7. [σ, τ ] = ζ3, not commute,
8. G(3) := 〈σ, τ〉 a finite group of order 27,
9. H0(C,L) = {x0, x1, x2}

is an irreducible G(3)-module of weight one,
”weight one” means that a ∈ μ3 (center) acts as a idV ,

10. the action ofG(3) onH0(C,L) is a special case of more general Schrödinger
representations,

11. Matrix forms

σ =

⎛
⎝1 0 0

0 ζ3 0
0 0 ζ2

3

⎞
⎠ , τ =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠ ,

στ =

⎛
⎝ 0 0 1
ζ3 0 0
0 ζ2

3 0

⎞
⎠ , τσ =

⎛
⎝0 0 ζ2

3

1 0 0
0 ζ3 0

⎞
⎠

Definition 3.3. G(K) = GH : Heisenberg group;
UH : Schrödinger representation

K = H ⊕H∨,H finite abelian, N = |H|
H = H(e),H(e) = ⊕g

i=1(Z/eiZ), ei|ei+1, emin(K) := e1,

GH = {(a, z, α);a ∈ μN , z ∈ H,α ∈ H∨},
(a, z, α) · (b,w, β) = (abβ(z), z + w,α + β),

V : = VH = O[H∨] =
⊕

μ∈H∨
Ov(μ),

(a, z, α)v(γ) = aγ(z)v(α + γ)
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where O = ON = Z[ζN , 1/N ].
The action of G(K) on V is denoted UH .
In the Hesse cubics case, O := Z[ζ3, 1/3], H = H∨ = Z/3Z, we identify

G(3) with G(K):

σ = (1, 1, 0), τ = (1, 0, 1) ∈ G(K),N = 3.

VH = O[H∨] = O · v(0) ⊕O · v(1) ⊕O · v(2)

3.4. New formulation of the moduli problem.
1. classical level 3 str. = Fix the 3-division points K
2. new level 3 str.=Fix the matrix form of G(K) on V 
 H0(C,L)
3. Let C: any smooth cubic, L = OC(1), Then the pair (C,L) always has

a G(K)-action τ

Definition 3.5. For C any cubic with L = OC(1), (C,ψ, τ) is a level-G(K)
structure if

1. τ is a G(K)-action on the pair (C,L),
2. ψ : C → P(VH) = P2 is the inclusion (it is a G(K)-equivariant closed

immersion by τ)
Define : (C,ψ, τ) 
 (C ′, ψ′, τ ′) isom. iff
∃ (f, F ) : (C,L) → (C ′, L′) G(K)-isom. with ψ′ · f = ψ
(This is equivalent to f|K = idK in the classical case.)

Lemma 3.6. Any (C,ψ, τ) is isom. to a unique Hesse cubic (C(μ), i, UH ).

Proof. Suppose (C(μ), i, UH ) 
 (C(μ′), i, UH ). Let h : C(μ) → C(μ′) the
G(K)-isom, hence h ∈ GL(3) such that

hUH(g) = UH(g)h for ∀g ∈ G(K).

Since UH is irred, hence h is scalar by Schur’s lemma. Hence h = id ∈
PGL(3), C(μ) = C(μ′), μ = μ′.

Proposition 3.7. Over a closed field of char. �= 3,

SQ1,3 : = {(C,ψ, τ)}/isom
= {(C(μ), i, UH )}/isom = {μ ∈ P1} = {(C(μ),K)}

In other words,

{cubic with new level 3-structure} = {cubic with classical level 3-structure}
We call this new level 3-structure level-G(K) structure.
This is the noncommutative level structure that we can generalize into

higer dimension.

4. PSQAS and TSQAS

Our goal of constructing a compactification is achieved by
1. finding limit objects PSQAS and TSQAS (Theorem 4.2)
2. constructing the moduli SQg,K as a projective scheme (Section 7)
3. proving that any point of SQg,K is the isom. class of a PSQAS (Q,φ, τ)

with level-G(K) str. (Theorem 4.3)
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4.1. Limit objects. First we note

• Any PSQAS is a scheme-theoretic limit of the images of AV by theta
functions. It is also a compactification of a generalized Tate curve.

Let R be a CDVR, and k(η) the fraction field of R. We start with an
abelian scheme (Gη,Lη) and a polarization morphism λ(Lη) : Gη → Gt

η.
Let Kη = ker(Lη) the finite group scheme, and G(Kη) := Aut(Lη/Gη): the
autom. gp of the pair (Gη ,Lη) linear in the fibers of Lη over Gη .

For simplicity, we assume the characteristic of k(0) = R/mR is prime to
rank Kη. Then there exists a finite symplectic abelian group K such that
Kη 
 K and G(Kη) 
 G(K) by some base change

1 → Gm → G(K) → K → 0 (exact)

Theorem 4.2. (A refined version of Alexeev-Nakamura’s stable reduction
theorem) ([AN99], [N99]) For an abelian scheme (Gη ,Lη) and a polarization
morphism λ(Lη) : Gη → Gt

η over k(η), there exist proper flat projective
schemes (Q,LQ) (PSQAS) and (P,LP ) (TSQAS) over R, by a finite base
change if necessary, such that

(o) (Qη,Lη) 
 (Pη ,Lη) 
 (Gη,Lη),
(i) (P,LP ) is the normalization of (Q,LQ),
(ii) P0 is reduced,
(iii) if emin(K) ≥ 3, then LQ is very ample, and in general, (Q,LQ) is an

étale quotient of some PSQAS (Q∗,LQ∗) with LQ∗ very ample,
(iv) G(K) acts on (Q,LQ) and (P,LP ) extending the action of it on (Gη ,Lη).

• The above theorem proves that the moduli is proper,
• (Q0,L0): PSQAS — projectively stable quasi-abelian scheme,
• (P0,L0): TSQAS — torically stable quasi-abelian scheme (= variety),
• In dim. one, any PSQAS=TSQAS is a smooth elliptic or an N -gon,
• The next theorem proves that the moduli is separated.

Theorem 4.3. ([N99],[N10],[N13]) Suppose emin(K) ≥ 3. Then (Q,L) and
(P,L) are uniquely determined by (Gη ,Lη).

5. PSQAS and TSQAS in low dimension

5.1. Hesse cubics and thetas. Now we calculate the limit of [θ0, θ1, θ2]
as q → 0.

Let R be a CDVR and I = qR. Then the power series θk converge
I-adically: First we shall show a rather strange computation, which may
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embarass you.

θ0(q, w) =
∑
m∈Z

q9m2
w3m

= 1 + q9w3 + q9w−3 + q36w6 + · · · ,
θ1(q, w) =

∑
m∈Z

q(3m+1)2w3m+1

= qw + q4w−2 + q16w4 + · · · ,
θ2(q, w) =

∑
m∈Z

q(3m+2)2w3m+2

= qw−1 + q4w2 + q16w−4 + q25w5 + · · · .
Hence in P2

lim
q→0

[θ0, θ1, θ2](q,w)] = [1, 0, 0]

The elliptic curves converge to one point ? This looks strange.
To understand this, we need to understand something much deeper, Néron

model. We cannot explain it in detail. Instead we show a necessary modifi-
cation of the above computation. The reason why we got the above is that
we treated w as constant.

Let w = q−1u for u ∈ R \ I and u = u mod I. Then the power series θk

converge I-adically:

θ0(q, q−1u) =
∑
m∈Z

q9m2−3mu3m

= 1 + q6u3 + q12u−3 + q30u6 + · · · ,
θ1(q, q−1u) =

∑
m∈Z

q(3m+1)2−3m−1u3m+1

= u+ q6u−2 + q12u4 + · · · ,
θ2(q, q−1u) =

∑
m∈Z

q(3m+2)2−3m−2u3m+2

= q2u2 + q2u−1 + q20u5 + q20u−4 + · · · .
Hence in P2

lim
q→0

[θ0, θ1, θ2](q, q−1u) = [1, u, 0]

Similarly

θ0(q, q−2u) = 1 + q3u3 + q15u−3 + q24u6 + · · · ,
θ1(q, q−2u) = q−1u+ q12u−2 + q8u4 + · · · ,
θ2(q, q−2u) = u2 + q3u−1 + q15u5 + q24u−4 + · · · ,

lim
q→0

[θ0, θ1, θ2](q, q−2u) = lim
q→0

[1, q−1u, u2] = [0, 1, 0] in P2.
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Similarly

θ0(q, q−3u) = 1 + u3 + q18u−3 + q18u6 + · · · ,
θ1(q, q−3u) = q−2u+ q10u−2 + q4u4 + · · · ,
θ2(q, q−3u) = q−2u2 + q4u−1 + q10u5 + q28u−4 + · · · ,

lim
q→0

[θ0, θ1, θ2](q, q−3u) = lim
q→0

[1, q−2u, u2] = [0, 1, u] in P2.

Let w = q−2λu (a section over a finite extension of k(η)) and u ∈ R \ I.

lim
q→0

[θ0, θ1, θ2](q, q−2λu) =

{ [1, 0, 0] (if −1/2 < λ < 1/2),
[1, u, 0] (if λ = 1/2),
[0, 1, 0] (if 1/2 < λ < 3/2),
[0, 1, u] (if λ = 3/2),
[0, 0, 1] (if 3/2 < λ < 5/2).
[u, 0, 1] (if λ = 5/2),

(2)

When λ ranges in R, the same calculation shows that the same limits
repeat mod Y = 3Z because

lim
q→0

[θ0, θ1, θ2](q, q6n−au) = lim
q→0

[θ0, θ1, θ2](q, q−au).

Thus we see that limτ→∞C(μ(τ)) is the 3-gon x0x1x2 = 0.

��
�
�
�
�
��

�

��
�

�
�

�
��

O(τ0)

O(τ2)

O(τ1)O(σ0)

O(σ1)O(σ2)

Figure 1

Definition 5.2. For λ ∈ X ⊗Z R fixed, let

Fλ := a2 − 2λa (a ∈ X = Z).

We define a Delaunay cell

D(λ) := the convex closure of all a ∈ X
that attain the minimum of Fλ
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By computations we see

D(j +
1
2
) = [j, j + 1] := {x ∈ R; j ≤ x ≤ j + 1},

D(λ) = {j} (if j − 1
2
< λ < j +

1
2
),

[θ̄k]k=0,1,2 : = lim
q→0

[θk(q, q−2λu))]k=0,1,2

θ̄k =

{
ūj (if j ∈ D(λ) ∩ (k + 3Z))
0 (if D(λ) ∩ (k + 3Z) = ∅).

For instance D(1
2 ) ∩ (0 + 3Z) = {0}, D(1

2) ∩ (1 + 3Z) = {1} and

lim
q→0

[θk(q, q−1u))] = [θ̄0, θ̄1, θ̄2] = [ū0, ū, 0] = [1, ū, 0].

Similarly for any λ = j + (1/2), we have an algebraic torus as a limit

{[ūj , ūj+1] ∈ P1; ū ∈ Gm} 
 Gm (= C∗).

Let λ ∈ X ⊗R, and σ = D(λ) be a Delaunay cell, and O(σ) the stratum
of C(∞) consisting of limits of (q, q−2λu). If σ is one-dimensional, then
O(σ) = C∗, while O(σ) is one point if σ is zero-dimensional. Thus we see
that C(μ(∞)) is a disjoint union of O(σ), σ being Delaunay cells mod Y , in
other words, it is stratified in terms of the Dalaunay decomposition mod Y .

Let σj = [j, j + 1] and τj = {j}. Then the Dalaunay decomposition in
this case and the stratification of C(∞) are given in Figure 2.

� � � � � � �

σ−3︷ ︸︸ ︷ σ−2︷ ︸︸ ︷ σ−1︷ ︸︸ ︷ σ0︷ ︸︸ ︷ σ1︷ ︸︸ ︷ σ2︷ ︸︸ ︷
τ−3 τ−2 τ−1 τ0 τ1 τ2 τ3

��
�
�
�
�
��

�

��
�

�
�

�
��

O(τ0)

O(τ2)

O(τ1)O(σ0)

O(σ1)O(σ2)

Figure 2
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5.3. The complex case. The previous computation determines the set-
theoretic limit of the image of elliptic curves E(ω) embedded by thetas. To
apply this comutation to the moduli problem, we need to know the set-
theoretic limit of the image of E(ω). Now we explain it.

Now let us write

θk(q, w) =
∑
m∈Z

q(3m+k)2w3m+k

=
∑
m∈Z

a(3m+ k)w3m+k

=
∑
y∈Y

a(y + k)wy+k

where Y = 3Z and a(x) = qx2
for x ∈ X := Z. Thus θk is the sum of

a(y + k)wy+k over Y , which is Y -invariant.
Since the curve E(τ) is embedded into P2

C by θk, we see

E(ω) = Proj C[xk, k = 0, 1, 2]/(x3
0 + x3

1 + x3
2 − 3μ(ω)x0x1x2)


 Proj C[θkϑ, k = 0, 1, 2]

= Proj (C[[a(x)wxϑ, x ∈ X]])Y −inv

(3)

where deg(xk) = 1, deg(ϑ) = 1 and deg(θk) = 0 and deg(a(x)wx) = 0.
Recall that if U = Spec A is affine, G a finite group acting on U , then

U/G = Spec AG-inv.

So we wish to think

E(ω) = (Proj (C[[a(x)wxϑ, x ∈ X]]))/Y.

Is this realy true ? Over C, a(x) ∈ C×, and

Gm = Proj C[a(x)wxϑ, x ∈ X],

In fact, the rhs is covered with infinitely many affine Uk

Uk = Spec C[a(x)wxϑ/a(k)wkϑ;x ∈ X] = Spec C[w,w−1] = Gm,

which is independent of k.
Hence over C

E(ω) 
 Gm/w �→ q6w


 Gm/{w �→ q2yw; y ∈ 3Z}

 (Proj C[a(x)wxϑ, x ∈ X])/Y.

(4)

Thus we see combining (3) and (5)

E(ω) 
 Proj (C[[a(x)wxϑ, x ∈ X]])Y −inv


 (Proj C[a(x)wxϑ, x ∈ X])/Y,
(5)

though we should make the covergence of infinite sum precise. In fact, this
is easy in any charactristic when R is a CDVR.

Though it contains a vague point about convergence, the expression (3)
of E(τ) is quite suggestive for the compactification problem.
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5.4. The scheme-theoretic limit. What happes over a CDVR R ? Let
a(x) = qx2

for x ∈ X, X = Z, Y = 3Z and ϑ is an indeterminate of degree
one, where q is the uniformizer of R. We define the action of Y by via the
ring homomorphism

S∗y(a(x)wxϑ) = a(x+ y)wx+yϑ.(6)

Then what does Z look like ?

Z = Proj R[a(x)wxϑ, x ∈ X]/Y.

Let X and Un be

X = Proj R[a(x)wxϑ, x ∈ X],

Un = Spec R[a(x)wx/a(n)wn, x ∈ X]

= Spec R[(a(n+ 1)/a(n))w, (a(n − 1)/a(n))w−1]

= Spec R[q2n+1w, q−2n+1w−1]


 Spec R[xn, yn]/(xnyn − q2).

Thus

Un = R[xn, yn]/(xnyn − q2) = lim∞←n
(R/qn)[xn, yn]/(xnyn − q2)

where Un and Un+1 is glued together by

xn+1 = x2
nyn, yn+1 = x−1

n .

Let X0 := X ⊗R (R/qR) and Vn = X0 ∩ Un. Then X0 is an infinite chain
of P1:

� � � � � � �

The action of the sublattice Y = 3Z on X0 is transfer by 3 components.
In fact, S−3 sends

Vn
S−3→ Vn+3

S−3→ Vn+6 → · · ·,
(xn, yn)

S−3�→ (xn+3, yn+3) = (xn, yn)
so that we have a cycle of 3 rational curves as the quotient X0/Y . Thus we
have the same consequence as the above theta computation.

6. PSQASes in the general case

6.1. The degeneraion data of Faltings-Chai. Now we consider the gen-
eral case. In the general case let R be a CDVR,k(η) te fraction feild of R.
Then we can construct similar degenerations of abelian varieties if we are
given a lattice X, a sublattice Y of X of finite index and

a(x) ∈ K×, (x ∈ X)

such that the following conditions are satisfied
(i) a(0) = 1,
(ii) b(x, y) := a(x+y)a(x)−1a(y)−1 is a symmetric blinear form on X×X,
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(iii) B(x, y) := valq b(x, y) is positive definite,
(iv)∗ B is even and valq a(x) = B(x, x)/2.

We assume here a stronger condition (4)∗ for simplicity.
These data do exist in general. This is proved by Faltings-Chai [FC90].
Suppose that we are given an abelian scheme (Gη ,Lη) and a polarization

morphism λ(Lη) : Gη → Gt
η. Then there exists the connected Neron model

of Gη, which we denote by G. Then by finite base change if necessary we
may assume G is semi-abelian.

Now we assume G0 is a torus over R/qR. This case is called a totally de-
generate case, that is, the case when rankZX = dimGη, on which we mainly
discuss here. If it is not a torus, then there exists a bit more complicated
degeneration data, which enables us to construct a degenerating family of
abelian varieties. This is called a partially degenerate case.

When G0 is a torus over R/qR, the formal competion of G along G0 is a
formal torus over R;

Gfor 
 Gg
m,R,for = Spf R[[wx;x ∈ X]]I-adic

where X is a lattice of rank g. We note any line bundle on Gm,R,for hence
Gm,R,for is trivial. Hence any global section θ ∈ Γ(G,L) is a formal power
series of wx: we write

θ =
∑
x∈X

σx(θ)wx.

Theorem 6.2. If G is totally degenerate, then there exists a data {a(x);x ∈
X} satisfying the conditions (i)-(iv)∗ together with
(v) Γ(Gη,Lη) is the k(η) vector subspace of formal Fourier series θ such

that
σx+y(θ) = a(y)b(y, x)σx(θ)

and σx(θ) ∈ k(η) (∀x ∈ X,∀y ∈ Y ).

The condition (v) enables us to prove especially the part (o) of Theo-
rem 4.2.

6.3. Construction. So we may assume we are given the data a(x) as above.
Then we define Let X and Un (n ∈ X) be

X = Proj R[a(x)wxϑ, x ∈ X],

Un = Spec R[a(x)wx/a(n)wn, x ∈ X]

= Spec R[(a(x)/a(n))wx−n].,

Q := X/Y = (Proj R[a(x)wxϑ, x ∈ X])for/Y,

where for denote the formal completion along the special fiber. This is what
we sought for, (Q,LQ) in Theorem 4.2, where L is given by the homogeneous
ideal generatd by the degree one generator ϑ.

The theta function are recovered as

θx̄ :=
∑
y∈Y

a(x+ y)wx+y
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where x̄ ∈ X/Y the class of x mod Y . This is compatible with Theorem 6.2
(v) because

σx+y(θx̄) = a(x+ y) = a(y)b(y, x)a(x) = a(y)b(y, x)σx(θx̄).

6.4. Delaunay decomposition. Our PSQAS is a scheme-theoretic limit
of the image of abelian varieties embedded by (naturally ordered) theta func-
tions. Our computaion in § 5 computes, roughly speaking, a set-theoretic
limit of the same.

Let X be an integral lattice of rank g and B a positive symmetric integral
bilinear form on X associated with the degeneration data for (Z,L).

For λ ∈ X ⊗Z R fixed, we define:

Definition 6.5. A Delaunay cell σ is a convex hull spanned by the inte-
gral vectors (which we call Delaunay vectors) attaining the minimum of the
function

B(x, x) − 2B(λ, x) (x ∈ X).

When λ ranges inX⊗ZR, we will have various Delaunay cells. All of them
constitute a locally finite polyhedral decomposition of X ⊗Z R, invariant
under the translation by X. We call this the Delaunay decomposition of
X ⊗Z R, which we denote by DelB .

There are two types of Delaunay decompositions inequivalent under the
action of SL(2,Z). See Figure 3.

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

�
����

�
��

�
��

�
��

�
�

�

�
������������
������������
� � � � � �

Figure 3

The Delaunay decomposition describes a PSQAS as follows:

Theorem 6.6. Let Z be a PSQAS, X the integral lattice, Y the sublattice
of X of finite index and B the positive integral bilinear form on X all of
which were defined in §6. Let σ,τ be Delaunay cells in DelB.
(1) For each σ there exists a subscheme O(σ) of Z, invariant under the

torus-action, which is a torus of dimension dimσ over k such that Z
is the disjoint union of O(σ). Let Z(σ) be the closure of O(σ).

(2) σ ⊂ τ iff O(σ) ⊂ O(τ).
(3) σ ⊂ τ iff Z(σ) ⊂ Z(τ).
(4) Z =

⋃
σ∈Del mod Y Z(σ).

(5) The local scheme structure of Z is completely described by B.

7. The moduli space SQg,K

By Theorem 4.2, any level G(K) PSQAS (Q0,L0) is embedded into P(V )
if emin(K) ≥ 3 where V = VH := ON [v(μ);μ ∈ H∨].
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7.1. The G(K)-action and the G(K)-linearization. The G(K)-action
τ on (Z,L) is translated into G(K)-linearization

{φg; g ∈ G(K)}
(i) φg : L → T ∗g (L) is a bundle isomorphism,
(ii) φgh = T ∗hφg ◦ φh for any g, h ∈ G(K)(T ).
Then the action τ on (Z,L) is recovered from it as follows : By the

isomorphisms

L
φh−→ T ∗h (L)

T ∗
h φg−→ T ∗h (T ∗g (L)) = T ∗gh(L),

for x ∈ Z, ξ ∈ Lx,

τ(h) · (z, ξ) = (Th(z), φh(z) · ξ).
We check it is the action:

τ(g) · (τ(h) · (z, ξ)) = τ(g) · (Th(z), φh(z) · ξ)
= (Tg(Th(z)), φg(Th(z))φh(z) · ξ)
= (Tgh(z), (T ∗hφg · φh)(z) · ξ)
= (Tgh(z), φgh(z) · ξ) = τ(gh) · (z, ξ).

Then we define the action of G(K) on H0(Z,L)

ρL(g)(θ) := T ∗g−1(φg(θ))

We check that it is a homom.

ρL(gh)(θ) = T ∗h−1g−1(φghθ)

= T ∗g−1{T ∗h−1(T ∗hφg · φhθ)}
= T ∗g−1{T ∗h−1(T ∗hφg) · (T ∗h−1φhθ)}
= T ∗g−1{φg · (T ∗h−1φhθ)}
= ρL(g)ρL(h)(θ).

Thus H0(Z,L) is a G(K)-module of weight one, that is, any a ∈ G(K)
acts as a · idVH

.
We recall

Lemma 7.2. VH is a unique irreducible representation of weight one of
G(K) over Z[ζN , 1/N ].

Lemma 7.3. Assume emin(K) ≥ 3. Then
for a level-G(K) PSQAS (Q0, φ0, τ0), there exists a unique level-G(K)

PSQAS (Q′0, i, UH) isom. to (Q0, φ0, τ0) such that i : Q′0 ⊂ P(VH), where
UH is the Schrödinger repres. of G(K).

Proof of Lemma 7.3. Let (Q0,L0) be (Z,L), and (Q0, φ0, τ0) = (Z,φ, τ).
For a closed immersion φ : Z → P(VH ), we have an isomorphism

φ∗ : VH 
 H0(Z,L),

whence

ρ(φ, τ)(g)(θ) := (φ∗)−1ρL(g)(θ)φ∗.(7)
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Thus ρ(φ, τ) ∈ End (VH).
By Schur’s lemma, ∃ A ∈ GL(VH) s.t.

UH = A−1ρ(φ, τ)A = (φ∗A)−1ρL(g)(θ)(φ∗A).

Hence it suffices to choose a closed immersion ψ by ψ∗ = φ∗A. Then

UH = ρ(ψ, τ).(8)

This proves Lemma by taking Z ′ = ψ(Z), i the inclusion of Z ′.

Remark 7.4. Suppose L to be very ample. Then the G(K)-linearization
on (Z,L) is equiv. to the G(K)-equivariant closed immersion of the pair
(Z,L) into (P(VH), OP(1)). Namely, Z is a G(K)-invariant subscheme of
P(VH) with L = OZ(1).

Let Hilbχ(n) be the Hilbert scheme parametrizing all the closed subscheme
(Z,L) of P(VH) with χ(Z,Ln) = ng

√|K| =: χ(n), and (Hilbχ(n))G(K)-inv

the G(K)-inv. part of it.
The following is an immersion of Ag,K into (Hilbχ(n))G(K)-inv :

Ag,K � (A0, φ0, τ0) �→ (A′0, i, UH) ∈ (Hilbχ(n))G(K)-inv (AV).

Then we define
SQg,K = Ag,K ⊂ (Hilbχ(n))G(K)-inv

Theorem 7.5. Suppose H = ⊕g
i=1(Z/eiZ). For any closed field k of char-

acteristic prime to |H| =
∏g

i=1 ei,

SQg,K(k) = {(Q0, i, UH );PSQAS, i : Q0 ⊂ P(VH)}
8. Representability

Definition 8.1. The triple (X,φ, τ) or (X,L, φ, τ) is
a PSQAS with level-G(K) str. if
1. φ : (X,L) → (P(V ), O(1)) a closed immersion

such that φ∗ : V 
 H0(X,L), L = φ∗OP(V )(1),
2. τ is a G(K)-action on the pair (X,L) so that φ is a G(K)-morphism.

Define : (X,φ, τ) 
 (X ′, φ′, τ ′) isom. iff
∃ (f, F ) : (X,L) → (X ′, L′) G(K)-isom. such that φ = φ′ · f .

Theorem 8.2. Suppose emin(K) ≥ 3. Let N :=
√|K|. The functor SQg,K

of level-G(K) PSQASes (Q,φ, τ) over reduced base schemes is represented
by the projective Z[ζN , 1/N ]-scheme SQg,K .

SQg,K(T ) = {(Q,φ, τ); PSQAS with level-G(K) str. over T}

For TSQASes we prove

Theorem 8.3. ([N10],[N13]) Let N :=
√|K|. No restriction on emin(K).

The functor SQtoric
g,K of level-G(K) TSQASes (P,φ, τ) over reduced base

schemes is coarsely represented by the projective Z[ζN , 1/N ]-scheme SQtoric
g,K .
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Theorem 8.4. Suppose emin(K) ≥ 3. Let Ag,K := the moduli space of AVs
with level-G(K) str. Then

1. both SQg,K ⊃ Ag,K and SQg,K ⊃ Ag,K (Zariski open),
2. dimSQg,K = dimSQtoric

g,K = g(g + 1)/2,
3. ∃ a bijective ON -morphism

sq : SQtoric
g,K → SQg,K

extending the identity of Ag,K .
4. sqnorm : (SQtoric

g,K )norm 
 (SQg,K)norm [N10].

9. Stability of PSQASes

Theorem 9.1. ([Gieseker82], [Mumford77]) For a connected curve C of
genus greater than one, the following are equivalent:
(1) C is a stable curve, (moduli-stable)
(2) Any Hilbert point of C embedded by |mKC | is GIT-stable,
(3) Any Chow point of C embedded by |mKC | is GIT-stable.

Theorem 9.2. Let K = H ⊕H∨, N = |H|, k a closed field, char .k �= N .
Suppose emin(K) ≥ 3, and (Z,L) ⊂ (P(V ), OP(VH )(1)).
Suppose that (Z,L) is smoothable into an abelian variety whose Heisenberg

group is isomorphic to G(K).
Then the following are equivalent:

(1) (Z,L) is a PSQAS, (moduli-stable)
(2) any Hilbert point of (Z,L) are GIT-stable,
(3) (Z,L) is stable under (a conjugate of) G(K).

9.3. Stability of planar cubics. By the following table, a planar cubic is
GIT-stable, with respect to SL(3)-action on the Hi9lbert schem of cubics,
if and only if it is either a smooth elliptic curve or a 3-gon, hence it is
isomorphic to one of Hesse cubics. It follows from it that

C is GIT-stable ⇔ C is elliptic or a 3-gon
⇔ C is isom. to a Hesse cubic

⇔ C is isom. to a G(3)-stable cubic.

This is a special case of Theorem 9.2 because any cubic is a degenerate
abelian variety
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Table 1. Stability of cubic curves

curves (sing.) stability stab. gr.

smooth elliptic GIT-stable finite
3 lines, no triple point GIT-stable 2 dim
a line+a conic, not tangent semistable, not GIT-stable 1 dim
irreducible, a node semistable, not GIT-stable Z/2Z
3 lines, a triple point not semistable 1 dim
a line+a conic, tangent not semistable 1 dim
irreducible, a cusp not semistable 1 dim

where GIT-stable := closed SL(3)-orbit

10. The other complete moduli space

10.1. Alexeev’s complete moduli space. [Alexeev02] constructs a com-
plete moduli AP g,d of seminormal degenerate abelian varieties, each coupled
with semiabelian group action and an ample divisor. It is the compactifi-
cation of the coarse moduli APg,d of pairs (A,D) with A a g-dimensional
abelian variety, D an ample divisor with h0(A,D) = d. AP g,d is a proper
separated coarse moduli algebraic space over Z [Alexeev02].

AP g,d =

⎧⎨
⎩

(G,P,D); G:semi-abelian, P :seminormal,
D ample div. of P , h0(P,D) = d,
G acts on P + stability cond.

⎫⎬
⎭

⊃ APg,d = {(G,G,D);G: AV}
dimAP g,d = g(g + 1)/2 + d− 1.

Theorem 10.2. ([N13]) Let N =
√|K|.

1. ∃ U (Zariski open of P(VH) = PN−1) such that

sqap : SQtoric
g,K × U → AP g,N

is finite Galois (not surjective) with Galois gp. known,
2. sqap : SQtoric

g,K × {u} → AP g,N is a closed immersion for any u ∈ U ,
3. SQtoric

g,1 
 AP g,1.
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