Compactification of the moduli of abelian varieties over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right]$

Iku Nakamura

(Hokkaido University)

at Hamanako

February 7, 2007

1 Hesse cubic curves

$$
\begin{gathered}
C(\mu): x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0 \\
\left(\mu \in \mathrm{P}_{\mathrm{C}}^{1}\right)
\end{gathered}
$$

$$
\begin{gathered}
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0(\mu \in \mathrm{C}) \\
\text { When } \mu=1, \zeta_{3}, \zeta_{3}^{2}, \infty \\
\text { it divides into } 3 \text { copies of } \mathrm{P}^{1} \\
\text { (two-dimensional spheres). }
\end{gathered}
$$

2 Moduli of cubic curves

Th 1 (Hesse 1849)

(1) Any nonsing. cubic curve is converted into $C(\mu)$ under $\mathrm{SL}(3)$.
(2) $C(\mu)$ has nine inflection points $[1:-\beta: 0]$, $[0: 1:-\beta],[-\beta: 0: 1] \quad\left(\beta \in\left\{1, \zeta_{3}, \zeta_{3}^{2}\right\}\right)$.
(3) $C(\mu)$ and $C\left(\mu^{\prime}\right)$ are isomorphic to each other with nine points fixed if and only if $\mu=\mu^{\prime}$

Th 2 (moduli and compactification)

$A_{1,3}:=$ moduli of nonsing. cubic curves with 9 inflection points
$=\{$ nonsing. cubics $\} /$ ordered 9 points
$=\mathrm{C} \backslash\left\{1, \zeta_{3}, \zeta_{3}^{2}\right\}=\Gamma(3) \backslash \mathrm{H}$
$\overline{A_{1,3}}:=\{$ slightly general cubic curves $\}$ /ordered nine inflection points
$=\{$ Hesse cubic curves $\} /$ isom. $=$ identical
$=\{$ Hesse cubic curves $\}$
$=A_{1,3} \cup\{C(\infty)\} \cup\left\{C(1), C\left(\zeta_{3}\right), C\left(\zeta_{3}^{2}\right)\right\}$
$=\mathrm{P}^{1}=\overline{\Gamma(3) \backslash \mathrm{H}}$

Our goal is

Th 3 (N.'99) (High dim. compactification)

Let K finite symplectic, \forall elm. div. of $K \geq 3$. There exists a fine moduli $S Q_{g, K}$ projective over $\mathbb{Z}\left[\zeta_{N}, 1 / N\right]$ where $N=|K|$. For k : alg.closed, char.k and N :coprime

$$
\begin{aligned}
S Q_{g, K}(k) & =\left\{\begin{array}{l}
\text { degenerate abelian varieties } \\
\text { with level } G(K) \text {-structure } \\
\text { and a closed } \mathrm{SL} \text {-orbit }
\end{array}\right\} / \text { isom. } \\
& =\left\{\begin{array}{l}
G(K) \text {-invariant degenerate } \\
\text { abelian varieties } \\
\text { with level } G(K) \text {-structure }
\end{array}\right\}
\end{aligned}
$$

$G(K)$: non-abelian Heisenberg group of K

Usually moduli of cubic curves is moduli of cubics with 9 inflection points

We convert it into G-equivariant theory
with G : Heisenberg group
all cubics in $\mathrm{P}^{2}=$ all cubic polynom. in $x_{0}, x_{1}, x_{2} / \mathrm{C}^{*}$ Take $G(3)$-invariants!
all Hesse cubics $=G(3)$-inv. cubics
$G=G(3)$:the Heisenberg group of level $3,(|G|=27)$ $V=\mathrm{C} x_{0}+\mathrm{C} x_{1}+\mathrm{C} x_{2}:$ a representation of G

$$
\begin{aligned}
\sigma & :\left(x_{0}, x_{1}, x_{2}\right) \mapsto\left(x_{0}, \zeta_{3} x_{1}, \zeta_{3}^{2} x_{2}\right) \\
& \tau:\left(x_{0}, x_{1}, x_{2}\right) \mapsto\left(x_{1}, x_{2}, x_{0}\right)
\end{aligned}
$$

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}, x_{0} x_{1} x_{2} \in S^{3} V \text { are } G \text {-invariant }
$$

\Downarrow ("Hesse cubic curves" in P^{2})

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu x_{0} x_{1} x_{2}=0(\mu \in \mathrm{C})
$$

\Downarrow
Compactification of moduli of abelian var.

3 Theta functions

Why does $G(3)$ get involved in moduli of cubics?
$E(\tau)$: an elliptic curve over C

$$
E(\tau)=\mathrm{C} / \mathrm{Z}+\mathrm{Z} \tau=\mathrm{C}^{*} / w \mapsto w q^{6}\left(q=e^{2 \pi i \tau / 6}\right)
$$

Def 4 Theta functions $(k=0,1,2)$
$\theta_{k}(\tau, z)=\sum_{m \in \mathrm{Z}} q^{(3 m+k)^{2}} w^{3 m+k}$
$=\sum_{m \in \mathrm{Z}} a(3 m+k) w^{3 m+k}$
where $\boldsymbol{q}=e^{2 \pi i \tau / 6}, w=e^{2 \pi i z}$,
$a(x)=q^{x^{2}}(x \in X), X=\mathrm{Z}$ and $Y=3 Z$.

Formula:

$$
\begin{gathered}
\theta_{k}(\tau, z+1)=\theta_{k}(\tau, z), \quad \theta_{k}(\tau, z+\tau)=q^{-9} w^{-3} \theta_{k}(\tau, z) \\
\Theta: z \in E(\tau) \mapsto\left[\theta_{0}, \theta_{1}, \theta_{2}\right] \in \mathrm{P}_{\mathrm{C}}^{2}: \text { well-def. }
\end{gathered}
$$

$$
\begin{gathered}
\theta_{k}\left(\tau, z+\frac{1}{3}\right)=\zeta_{3}^{k} \theta_{k}(\tau, z) \\
\theta_{k}\left(\tau, z+\frac{\tau}{3}\right)=q^{-1} w^{-1} \theta_{k}(\tau, z)
\end{gathered}
$$

Then $z \mapsto z+\frac{1}{3}$ induces (the contragredient repres.)

$$
\begin{gathered}
\sigma:\left[\theta_{0}, \theta_{1}, \theta_{2}\right] \mapsto\left[\theta_{0}, \zeta_{3} \theta_{1}, \zeta_{3}^{2} \theta_{2}\right] \\
z \mapsto z+\frac{\tau}{3} \text { induces }
\end{gathered}
$$

$$
\tau:\left[\theta_{0}, \theta_{1}, \theta_{2}\right] \mapsto\left[\theta_{1}, \theta_{2}, \theta_{0}\right]
$$

$$
\begin{gathered}
\text { Let } V=\mathrm{C} x_{0}+\mathrm{C} x_{1}+\mathrm{C} x_{2} \\
\sigma\left(x_{k}\right)=\zeta_{k} x_{k}, \quad \tau\left(x_{k}\right)=x_{k+1} \\
\sigma \tau \sigma^{-1} \tau^{-1}=\left(\zeta_{3} \cdot \mathrm{id}_{\mathrm{V}}\right)
\end{gathered}
$$

Def 5 Weil pairing $e_{E(\tau)}(1 / 3, \tau / 3)=\zeta_{3}$

Def $6 \quad G(3):=$ the group generated by σ, τ the Heisenberg group of level $3,|G(3)|=27$.

$$
\begin{gathered}
\text { Formula: } \theta_{k}\left(\tau, z+\frac{1}{3}\right)=\zeta_{3}^{k} \theta_{k}(\tau, z) \\
\qquad \begin{array}{c}
\theta_{k}\left(\tau, z+\frac{\tau}{3}\right)=q^{-1} w^{-1} \theta_{k}(\tau, z) \\
\Downarrow
\end{array}
\end{gathered}
$$

The cubic curve $\Theta(E(\tau))$ is $G(3)$-invariant.

Since V is $G(3)$-irreducible, by Schur's lemma $G(3)$ determines x_{j} uniquely up to const. multiple. x_{j} is an algebraic theta function
as $G(3)$-modules

$$
\begin{aligned}
& S^{3} V=2 \cdot 1_{0} \oplus\left(1_{j}\right)(j=1, \ldots, 8) \quad 10-\mathrm{dim} \\
& 2 \cdot 1_{0}=\left\{x_{0}^{3}+x_{1}^{3}+x_{2}^{3}, x_{0} x_{1} x_{2}\right\} \\
& 1_{j}=\left\{x_{0}^{3}+\zeta_{3} x_{1}^{3}+\zeta_{3}^{2} x_{2}^{3}\right\} \\
& 1_{k}=\left\{x_{0}^{2} x_{1}+\zeta_{3} x_{1}^{2} x_{2}+\zeta_{3}^{2} x_{2}^{2} x_{0}\right\} \text { etc. }
\end{aligned}
$$

$2 \cdot\left(1_{0}\right)=\left\{x_{0}^{3}+x_{1}^{3}+x_{2}^{3}, x_{0} x_{1} x_{2}\right\} \subset S^{3} V$ gives the equation of $\Theta(E(\tau))$

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu(\tau) x_{0} x_{1} x_{2}=0
$$

4 Principle for compactifying the moduli
moduli $=$ the set of isomorphism classes
Roughly "moduli" $=X / G, G$: algebraic group

\boldsymbol{X}	the set of geometric objects
G	the group of isomorphisms
x and x^{\prime} are isom.	their G-orbits are the same
	$O(x)=O\left(x^{\prime}\right)$
$X_{p s}$	stable objects
$X_{s s}$	semistable objects
Quotient $X_{p s} / G$	"moduli"
$X_{s s} / / G$	"compactification"

A lot of compactifications of the moduli space of abelian varieties are already known.
Satake, Baily-Borel, Mumford etc, Namikawa What is nice? What is natural?

Wish "to identify isom. classes by invariants"
"moduli": =algebraic moduli
$=$ the space defined by the invariants of isom. classes

Difficult to investigate this What should be done about it?
$"$ moduli" $:=$ the space defined by the invariants of isom. classes

It is easier to investigate geometrically. We limit the geometric objects
to those whose invariants are well defined
Stability and semistability (Mumford:GIT)
To classify the isom. classes by invariants completely
we are led to the space of closed orbits

5 The space of closed orbits

To review again

\boldsymbol{X}	the set of geometric objects
\boldsymbol{G}	the group of isomorphisms
x, x^{\prime} are isom.	their G-orbits are the same
	$O(x)=O\left(x^{\prime}\right)$
$X_{s s}$	the set of semistable objects
$X_{s s} / / G$	"moduli"

Rem stability \Rightarrow closed orbits \Rightarrow semistability

Ex 7 Action on C^{2} of $G=\mathrm{C}^{*},(x, y) \in \mathrm{C}^{2}$

$$
(x, y) \mapsto\left(\alpha x, \alpha^{-1} y\right) \quad\left(\alpha \in \mathrm{C}^{*}\right)
$$

How can we define the quotient space $\mathrm{C}^{2} / / G$?
Simple answer: the set of G-orbits (\times)
Answer: the space defined by the invariant of $G(\bigcirc)$
$t=x y$ is the unique invariant. Hence

$$
\mathrm{C}^{2} / / G=\{t \in \mathrm{C}\}
$$

These two spaces disagree with each other.

$$
\mathrm{C}^{2} / / G=\{t \in \mathrm{C}\} \neq \text { the set of } G \text {-orbits }
$$

$\mathrm{C}^{2} / / G=\{t \in \mathrm{C}\} \neq$ the set of G-orbits

Reason $\{x y=t\}(t \neq 0$: constant $)$ is a G-orbit
But, $\{x y=0\}$ is the union of $3 G$-orbits

$$
\mathrm{C}^{*} \times\{0\},\{0\} \times \mathrm{C}^{*},\{(0,0)\}
$$

We cannot distingush them by t.

$$
\{(0,0)\} \text { is the only closed orbit of }\{x y=0\}
$$

Th 8 The space $\mathrm{C}^{2} / / G$ defined by G-invariants
$=$ the set of closed G-orbits in $\mathrm{C}^{2},\left(G=\mathrm{C}^{*}\right)$.
More generally
Th 9 (Mumford,Seshadri)
Let G : a reductive group, (e.g. $G=\mathrm{C}^{*}$)
Let $X_{s s}$: the set of all semistable points. Then
$X_{s s} / / G:=$ the space defined by G-invariants $=$ the set of closed orbits.

Here closed means closed in $\boldsymbol{X}_{s s}$.

We limit the objects to those

 with closed orbits \DownarrowAbelian varieties and PSQASes
PSQASes: the degenerate abelian varieties which have closed orbits

$$
\Downarrow
$$

Can compactify the moduli of abelian varieties with these.

6 GIT-stability and stable critical points
Definition of GIT-stability has nothing to do with stable critical points, But it has to do with them V : vector space, G : reductive group
$K:$ maximal compact of $G,\|\cdot\|: K$-invariant metric

$$
p_{v}(g):=\|g \cdot v\| \text { for } \quad v \in V
$$

Th 10 (Kempf-Ness 1979) The following are equiv.
(1) v has a closed G-orbit
(2) p_{v} attains a minimum on the orbit $O(v)$
(3) p_{v} attains a critical point on $O(v)$

$7 \quad$ Stable curves of Deligne-Mumford

Def $11 \quad C$ is called a stable curve of genus g if
(1) A conn. proj. curve with finite autom. group,
(2) Sing. of C are like $x y=0$,
(3) $\operatorname{dim} H^{1}\left(O_{C}\right)=g$.

Th 12 (Deligne-Mumford)
Let M_{g} : moduli of nonsing. curves of genus g,
$\overline{M_{g}}$: moduli of stable curves. Then
$\overline{M_{g}}$ is compact,
M_{g} is Zariski open in $\overline{M_{g}}$.

Th 13 The following are equivalent
(1) C is a stable curve.
(2) Hilbert point of $\Phi_{|m K|}(C)$ is GIT-stable.
(3) Chow point of $\Phi_{|m K|}(C)$ is GIT-stable.
$(1) \Leftrightarrow(2)$ Gieseker 1982
$(1) \Leftrightarrow(3)$ Mumford 1977

$8 \quad$ Stability of cubic curves	
cubic curves	stability
smooth elliptic	closed orbits, stable
3 lines, no triple point	closed orbits
a line+a conic, not tangent	semistable
irreducible, a node	semistable
the others	not semistable

Th 14 The following are equivalent:
(1) it has a $\mathrm{SL}(3)$-closed orbit.
(2) smooth elliptic or a circle of 3 lines (3-gon).
(3) Hesse cubic curves, that is, $G(3)$-invariant.
$G(3)$-invariance leads to the moduli
Let $V=\left\{x_{0}, x_{1}, x_{2}\right\}$, as $G(3)$-modules
$S^{3} V=2 \cdot 1_{0} \oplus\left(1_{j}\right)(j=1, \ldots, 8) \quad 10-\operatorname{dim}$
$2 \cdot 1_{0}=\left\{x_{0}^{3}+x_{1}^{3}+x_{2}^{3}, x_{0} x_{1} x_{2}\right\}$
$1_{j}=\left\{x_{0}^{3}+\zeta_{3} x_{1}^{3}+\zeta_{3}^{2} x_{2}^{3}\right\}$,
$1_{k}=\left\{x_{0}^{2} x_{1}+\zeta_{3} x_{1}^{2} x_{2}+\zeta_{3}^{2} x_{2}^{2} x_{0}\right\}$ etc.

$$
2 \cdot\left(1_{0}\right)=\left\{x_{0}^{3}+x_{1}^{3}+x_{2}^{3}, x_{0} x_{1} x_{2}\right\} \subset S^{3} V
$$

gives the equations

$$
x_{0}^{3}+x_{1}^{3}+x_{2}^{3}-3 \mu(\tau) x_{0} x_{1} x_{2}=0
$$

semistable cubic curves

$9 \quad$ Stability-higher-dim.

Th $15\left(\mathrm{~N}\right.$, 1999) k is alg. closed, $K=\boldsymbol{H} \oplus \boldsymbol{H}^{\vee}$
$\left(\boldsymbol{H}^{\vee}\right.$:dual of $\left.\boldsymbol{H}\right), \boldsymbol{H}$: a finite abelian group, any elm. $\operatorname{div} \geq 3 ;|H|$ and char. k coprime;
$\boldsymbol{V}=\boldsymbol{k}[\boldsymbol{H}]$: the gp ring of \boldsymbol{H};
Assume $X(\subset \mathrm{P}(V))$ is a limit of abelian var. with
K-torsions. The following are equiv:
(1) \boldsymbol{X} has a closed $\mathrm{SL}(V)$-orbit.
(2) X is invariant under $G(K)$: Heisenbg gp of K, .
(3) X is one of PSQASes.

What is a PSQAS ?

It is a generalization of Tate curves

Tate curve : $\quad \mathrm{C}^{*} / \boldsymbol{w} \mapsto q \boldsymbol{w}$

Hesse cubics: $\mathrm{G}_{m}(K) / \boldsymbol{w} \mapsto q^{3} w \quad$ or Hesse cubics: $\quad \mathrm{G}_{m}(K) / w^{n} \mapsto q^{3 m n} w^{n}(m \in Z)$

The general case : B positive definite
$\left(\mathrm{G}_{m}^{g}(K)\right) / w^{x} \mapsto q^{B(x, y)} w^{x}\left(y \in \mathrm{Z}^{g}\right)$
(Hesse) 3-gon and PSQASes are natural limits as $q \rightarrow 0$

Th 16 For cubic curves the following are equiv.:
(1) it has a closed $\mathrm{SL}(3)$-orbit.
(2) it is equiv. to a Hesse cubic, i.e., $G(3)$-invariant.
(3) it is smooth elliptic or a circle of 3 lines (3-gon).

Th 17 (N.'99) Let X be a degenerate abelian variety (including the case when \boldsymbol{X} is an abelian variety)

The following are equiv. under natural assump.:
(1) it has a closed $\mathrm{SL}(V)$-orbit.
(2) X is invariant under $G(K)$.
(3) it is one of the above PSQASes.

10 Moduli over $\mathrm{Z}\left[\zeta_{N}, 1 / N\right]$

Th 18 (The theorem of Hesse) (a new version)
The projective moduli $S Q_{1,3} \simeq \mathrm{P}^{1}$ over $\mathrm{Z}\left[\zeta_{3}, 1 / 3\right]$
(1) The univ. cubic $\mu_{0}\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}\right)-3 \mu_{1} x_{0} x_{1} x_{2}=0$

$$
\left(\mu_{0}, \mu_{1}\right) \in S Q_{1,3}=\mathrm{P}^{1}
$$

(2) when k is alg. closed and char. $k \neq 3$

$$
\begin{aligned}
S Q_{1,3}(k) & =\left\{\begin{array}{l}
\text { closed orbit cubic curves } \\
\text { with level } 3 \text {-structure }
\end{array}\right\} / \text { isom. } \\
& =\left\{\begin{array}{l}
\text { Hesse cubics } \\
\text { with level } 3 \text {-structure }
\end{array}\right\}
\end{aligned}
$$

Th 19 (N.'99) (High dim. version)

Let K finite symplectic, \forall elm. div. of $K \geq 3$. There exists a fine moduli $S Q_{g, K}$ projective over $\mathbb{Z}\left[\zeta_{N}, 1 / N\right]$ where $N=|K|$. For k : alg.closed, char.k and N :coprime

$$
\begin{aligned}
S Q_{g, K}(k) & =\left\{\begin{array}{l}
\text { degenerate abelian varieties } \\
\text { with level } G(K) \text {-structure } \\
\text { and a closed SL-orbit }
\end{array}\right\} / \text { isom. } \\
& =\left\{\begin{array}{l}
G(K) \text {-invariant degenerate } \\
\text { abelian varieties } \\
\text { with level } G(K) \text {-structure }
\end{array}\right\} \\
& =\left\{\begin{array}{l}
G(K) \text {-invariant PSQASes } \\
\text { with level } G(K) \text {-structure }
\end{array}\right\}
\end{aligned}
$$

A very similar complete moduli was constructed by Alexeev
$\overline{A_{g, 1}}$ over Z

11 Faltings-Chai degeneration data

R : a discrete valuation ring R, m the max. ideal of $R, \quad k(0)=R / m$ $\boldsymbol{k}(\boldsymbol{\eta})$: the fraction field of \boldsymbol{R}
Let (G, L) an abelian scheme over R,
$\left(G_{\eta}, L_{\eta}\right)$: abelian variety over $k(\eta)$
$\left({ }^{t} G,{ }^{t} L\right)$: the (connected) Neron model of $\left({ }^{t} G_{\eta},{ }^{t} L_{\eta}\right)$
Suppose G_{0} is a split torus over $k(0)$,
May then suppose that
$\left({ }^{t} G_{0},{ }^{t} L_{0}\right)$ is a split torus over $k(0)$
Then we have a Faltings Chai degeneration data

$$
\text { Let } X=\operatorname{Hom}\left(G_{0}, \mathrm{G}_{m}\right), \quad Y=\operatorname{Hom}\left({ }^{t} G_{0}, \mathrm{G}_{m}\right)
$$

$$
\mathrm{G}_{m}: \text { a 1-dim. torus }
$$

$$
\Downarrow
$$

$$
\boldsymbol{X} \simeq \mathrm{Z}^{g}, \boldsymbol{Y} \simeq \mathrm{Z}^{g}
$$

Y : a sublattice of X of finite index.

BECAUSE \exists a natural surjective morphism $G \rightarrow^{t} G$,
\exists a surjective morphism $G_{0} \rightarrow^{t} G_{0}$,
$\exists \operatorname{Hom}\left({ }^{t} G_{0}, \mathrm{G}_{m}\right) \rightarrow \operatorname{Hom}\left(G_{0}, \mathrm{G}_{m}\right)$,
Hence \exists an injective homom. $\boldsymbol{Y} \rightarrow \boldsymbol{X} \square$

$$
\boldsymbol{K}=\boldsymbol{X} / \boldsymbol{Y} \oplus(\boldsymbol{X} / \boldsymbol{Y})^{\vee}
$$

$G(K):$ Heisenberg group (suitably defined)
$H^{0}(G, L):$ a finite R-module
an "irreducible" $G(\boldsymbol{K})$-module
$\Rightarrow \quad$ an ess. unique basis

$$
\theta_{k} \text { of } H^{0}(G, L)
$$

Let $G_{\text {for }}$: form. compl. of G

$$
G_{\mathrm{for}} \simeq\left(\mathrm{G}_{m, R}\right)_{\mathrm{for}}
$$

Theta functions $\theta_{k}(k \in X / Y)$ (nat. basis of

$$
\left.H^{0}(G, L)\right) \text { are expanded as }
$$

$$
\theta_{k}=\sum_{y \in Y} a(x+y) w^{x+y}
$$

Rem Theta $\theta_{k}(k \in X / Y)$ are expanded as

$$
\theta_{k}=\sum_{y \in Y} a(x+y) w^{x+y}
$$

These $a(x)$ satisfy the conditions:
$(1) a(0)=1, a(x) \in k(\eta) \quad(\forall x \in X)$,
(2) $b(x, y):=a(x+y) a(x)^{-1} a(y)^{-1}$ is bilinear $(x, y \in X)$
(3) $B(x, y):=\operatorname{val}_{q}\left(a(x+y) a(x)^{-1} a(y)^{-1}\right)$ is positive definite $(x, y \in X), \quad$ e.g. $B=E_{8}$

Def $20 \quad a(x)$ are called
a Faltings-Chai degeneration data of (G, L)

Rem In the complex case

$$
\begin{gathered}
a(x)=e^{2 \pi \sqrt{-1}(x, T x)} \\
b(x, y)=e^{2 \pi \sqrt{-1} \cdot 2(x, T y)}
\end{gathered}
$$

where T : symm. and

$$
b(x, y)=a(x+y) a(x)^{-1} a(y)^{-1}
$$

Theta functions ($k \in \boldsymbol{X} / \boldsymbol{Y}$)

$$
\begin{aligned}
\theta_{k}(\tau, z) & =\sum_{y \in Y} a(y+k) w^{y+k} \\
& =\sum_{m \in \mathrm{Z}} q^{(3 m+k)^{2}} w^{3 m+k} \quad \text { (Hesse cubics) }
\end{aligned}
$$

Def 21

$$
\begin{gathered}
\widetilde{R}:=R\left[a(x) w^{x} \vartheta, x \in X\right] \\
\text { an action of } Y \text { on } \widetilde{R} \text { by } \\
S_{y}\left(a(x) w^{x} \vartheta\right)=a(x+y) w^{x+y} \vartheta
\end{gathered}
$$

$\operatorname{Proj}(\widetilde{R})$: locally of finite type over R \mathcal{X} : the formal completion of $\operatorname{Proj}(\widetilde{\boldsymbol{R}})$ $\mathcal{X} / \boldsymbol{Y}$: the top. quot. of \mathcal{X} by \boldsymbol{Y}
$O_{\mathcal{X}}(1)$ descends to \mathcal{X} / Y : ample

Grothendieck (EGA) guarantees
\exists a projective R-scheme ($Z, O_{Z}(1)$)
s.t. the formal completion $Z_{\text {for }}$

$$
\begin{gathered}
Z_{\mathrm{for}} \simeq \mathcal{X} / Y \\
\left(Z_{\eta}, O_{Z_{\eta}}(1)\right) \simeq\left(G_{\eta}, L_{\eta}\right)
\end{gathered}
$$

(the stable reduction theorem)
This algebraizes the quotient $\mathrm{G}_{m}(\boldsymbol{K}) / \boldsymbol{Y}$, which generalizes the Tate curve.

Ex $22 \quad g=1, X=Z, Y=3 Z$.

$$
\begin{gathered}
a(x)=q^{x^{2}},(x \in X) \\
\mathcal{X}=\operatorname{Proj}(\widetilde{R})
\end{gathered}
$$

The scheme \mathcal{X} is covered with affine
$V_{n}=\operatorname{Spec} R\left[a(x) w^{x} / a(n) w^{n}, x \in X\right]$
$V_{n} \simeq \operatorname{Spec} R\left[x_{n}, y_{n}\right] /\left(x_{n} y_{n}-q^{2}\right)$
$(n \in \mathrm{Z})$
$x_{n}=q^{2 n+1} w, y_{n}=q^{-2 n+1} w^{-1}$.
$\left(V_{n}\right)_{0}=\left\{\left(x_{n}, y_{n}\right) \in k(0)^{2} ; x_{n} y_{n}=0\right\}$
\mathcal{X}_{0} : a chain of infinitely many $\mathrm{P}_{k(0)}^{1}$
\boldsymbol{Y} acts on \mathcal{X}_{0} as $V_{n} \xrightarrow{S_{-3}} V_{n+3}$,

$$
\begin{gathered}
\left(x_{n}, y_{n}\right) \stackrel{S_{-3}}{\mapsto}\left(x_{n+3}, y_{n+3}\right)=\left(x_{n}, y_{n}\right) \\
\mathcal{X}_{0} / Y: \text { a cycle of } 3 \mathrm{P}_{k(0)}^{1} \\
(\mathcal{X} / Y)_{\eta}^{\text {alg }}: \text { a Hesse cubic over } k(\eta)
\end{gathered}
$$

12 Limits of theta functions

$\boldsymbol{E}(\tau)$ is embedded in P^{2} by theta θ_{k} :

$$
\begin{gathered}
\theta_{k}(q, w)=\sum_{m \in \mathrm{Z}} q^{(3 m+k)^{2}} w^{3 m+k} \\
q=e^{2 \pi i \tau / 6}, w=e^{2 \pi i z} \\
\theta_{0}^{3}+\theta_{1}^{3}+\theta_{2}^{3}=3 \mu(q) \theta_{0} \theta_{1} \theta_{2}
\end{gathered}
$$

$$
\begin{gathered}
X=\mathrm{Z} \text { and } Y=3 \mathrm{Z} \\
\theta_{k}=\sum_{y \in Y} a(y+k) w^{y+k} \\
\text { Let } R=\mathrm{C}[[q]], I=q R, w=q^{-1} u \\
u \in R \backslash I, \bar{u}=u \bmod I \\
\theta_{k}=\sum_{y \in Y} a(y+k) w^{y+k}
\end{gathered}
$$

Wish to compute the limits

$$
\lim _{q \rightarrow 0}\left[\theta_{0}, \theta_{1}, \theta_{2}\right]
$$

$$
\begin{gathered}
\theta_{0}(q, w)=\sum_{m \in Z} q^{9 m^{2}} w^{3 m}=1+q^{9} w^{3}+q^{9} w^{-3}+\cdots \\
\theta_{1}(q, w)=\sum_{m \in \mathrm{Z}} q^{(3 m+1)^{2}} w^{3 m+1}=q w+q^{4} w^{-2}+\cdots \\
\left.\theta_{2}(q, w)=\sum_{m \in \mathrm{Z}} q^{(3 m+2)^{2}} w^{3 m+2}=q w^{-1}+q^{4} w^{2}+\cdots\right) \\
\quad \lim _{q \rightarrow 0}\left[\theta_{0}, \theta_{1}, \theta_{2}\right]=[1,0,0]
\end{gathered}
$$

This also leads to

$$
\lim _{\tau \rightarrow \infty} E(\tau)=[1,0,0] \quad \text { 0-dim. ????? Wrong! }
$$

Correct computation

$$
\begin{aligned}
\theta_{0}\left(q, q^{-1} u\right) & =\sum_{m \in \mathrm{Z}} q^{9 m^{2}-3 m} u^{3 m} \\
& =1+q^{6} u^{3}+q^{12} u^{-3}+\cdots \\
\theta_{1}\left(q, q^{-1} u\right) & =\sum_{m \in \mathrm{Z}} q^{(3 m+1)^{2}-3 m-1} u^{3 m+1} \\
& =u+q^{6} u^{-2}+q^{12} u^{4}+\cdots \\
\theta_{2}\left(q, q^{-1} u\right) & =\sum_{m \in \mathrm{Z}} q^{(3 m+2)^{2}-3 m-2} u^{3 m+2} \\
& =q^{2} \cdot\left(u^{2}+u^{-1}+q^{18} u^{5}+q^{18} u^{-4}+\cdots\right)
\end{aligned}
$$

$$
\lim _{q \rightarrow 0}\left[\theta_{k}\left(q, q^{-1} u\right)\right]_{k=0,1,2}=[1, \bar{u}, 0] \in \mathrm{P}^{2}
$$

In P^{2}

$$
\begin{gathered}
\lim _{q \rightarrow 0}\left[\theta_{k}\left(q, q^{-1} u\right)\right]_{k=0,1,2}=[1, \bar{u}, 0] \\
\lim _{q \rightarrow 0}\left[\theta_{k}\left(q, q^{-3} u\right)\right]_{k=0,1,2}=[0,1, \bar{u}] \\
\lim _{q \rightarrow 0}\left[\theta_{k}\left(q, q^{-5} u\right)\right]_{k=0,1,2}=[\bar{u}, 0,1] \\
O\left(\sigma_{2}\right)
\end{gathered}
$$

$w=q^{-2 \lambda} u$ and $u \in R \backslash I$.
$\lim _{q \rightarrow 0}\left[\theta_{k}\left(q, q^{-2 \lambda} u\right)\right]=$

$$
\begin{cases}{[1,0,0]} & (\text { if }-1 / 2<\lambda<1 / 2) \\ {[0,1,0]} & (\text { if } 1 / 2<\lambda<3 / 2) \\ {[0,0,1]} & (\text { if } 3 / 2<\lambda<5 / 2)\end{cases}
$$

We get a 3-gon

Limits of thetas are described by combinatorics.

Def 23 For $\lambda \in X \otimes_{\mathrm{Z}} \mathrm{R}$ fixed

$$
F_{\lambda}(x)=x^{2}-2 \lambda x \quad(x \in X=Z)
$$

Define $D(\lambda)$ (a Delaunay cell) by the conv. closure of all $a \in X$ s.t. $F_{\lambda}(a)=\min \left\{F_{\lambda}(x) ; x \in X\right\}$
e.g. σ_{i}, τ_{j} are Delaunay cells.

Delaunay decomposition

13 PSQAS and its shape

PSQAS is a geometric limit of theta functions, a generalization of 3-gons.
"Limits of theta functions, and PSQASes are described by the Delaunay decomposition."
Almost the same as PSQAS was already introduced by Namikawa and Nakamura (1975)

Delaunay decomposition was considered in the study of quadratic forms at the beginning of the last century (Voronoi 1908).

Assume that $X=Z^{g}$, and let B a positive symmetric integral bilinear form on $X \times X$.

$$
\|x\|=\sqrt{B(x, x)}: \text { a distance of } X \otimes \mathrm{R}(\text { fixed })
$$

Def $24 D$ is a Delaunay cell if for some $\alpha \in X \otimes R$ D is a convex closure of a lattice (X point) which is closest to α

It depends on $\alpha \in X \otimes R$, we discribe it as $D=D(\alpha)$ If $\alpha \in X, D=\{\alpha\}$. All the Delaunay cells constitute a polyhedral decomp. of $X \otimes_{\mathrm{Z}} \mathrm{R}$ the Delaunay decomposition ass. to B

Each PSQAS,

and its decomposition into torus orbits
(its stratification), is described
by a Delaunay decomposition
Each positive B defines a Delaunay decomposition, Different B can correspond to the same Delaunay decomp. and the same PSQAS.

14 Delaunay decompositions

Ex 25 This decomp. $(\bmod Y)$ is a PSQAS, a union of $\mathrm{P}^{1} \times \mathrm{P}^{1}$ for $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

For $B=\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$, the decomp. below $(\bmod Y)$ is a
PSQAS. It is a union of P^{2}, each triangle denotes a P^{2}, $6 \mathrm{P}^{2}$ intersects at a point, while each line segment is a P^{1}.

Th 26 (Sugawara and N. 2006) Let $\left(Q_{0}, L_{0}\right)$ be a PSQAS. Then $H^{q}\left(Q_{0}, L_{0}^{n}\right)=0$ for any $q, n>0$.

Cor $27 H^{0}\left(Q_{0}, L_{0}\right)$ is irred. $G(K)$-module of wt. one.

Th $28\left(Q_{0}, L_{0}\right)$ is GIT-stable in the sense that the $\mathrm{SL}(V \otimes k)$-orbit of any of the Hilbert points of $\left(Q_{0}, L_{0}\right)$ is closed in the semistable locus.

To construct the moduli $S Q_{g, K}$ a weaker form of this theorem was sufficient.

Cor 29 (a valuative criterion for separatedness of the moduli) Let R be a complete DVR. For two proper flat families of PSQASes with $G(K)$-actions $(Q, L, G(K))$ and ($Q^{\prime}, L^{\prime}, G(K)$) over R, assume $\exists G(K)$-isomorphism

$$
\phi_{\eta}:(Q, L, G(K)) \rightarrow\left(Q^{\prime}, L^{\prime}, G(K)\right)
$$

over $k(\eta)$:the fraction field of R.
Then ϕ_{η} extends to a $G(K)$-isomorphism over \boldsymbol{R}.

Rem We note that the isomorphism class V of irreducible $G(\boldsymbol{K})$-modules of weight one is unique.

The proof of Corollary 29 goes roughly as follows.
Note that L and L^{\prime} are very ample.
Hence the isom. ϕ_{η} is an element of $\mathrm{GL}(V \otimes k(\eta))$ which commutes with $G(K)$-action.

Since V is irreducible over $k(\eta)$,
by the lemma of Schur, ϕ_{η} is a scalar matrix,
which reduces to the identity of $\mathrm{P}(V \otimes k(\eta))$,
hence extends to the identity of $\mathrm{P}(V \otimes R)$.

16 Degeneration associated with E_{8}

Assume B is unimodular and even positive definite. Then $\left(Q_{0}, L_{0}\right)$ is nonreduced anywhere, but GIT-stable.

Th 30 Let $B=\boldsymbol{E}_{8}$. Assume $\boldsymbol{X}=\boldsymbol{Y}$ for simplicity. Then $Q_{0}=\left(V_{1}^{\prime}+\cdots+V_{135}^{\prime}\right)+\left(V_{1}^{\prime \prime}+\cdots+V_{1920}^{\prime \prime}\right)$, each V_{j}^{\prime} (each $\left.V_{k}^{\prime \prime}\right)$ isom. resp. along which generically

$$
Q_{0}: x^{2}=0 \text { along } V_{j}^{\prime}, \quad Q_{0}: y^{3}=0 \text { along } V_{k}^{\prime \prime}
$$

$$
\left(L_{0}\right)_{V_{j}^{\prime}}^{8}=2^{7}=128, \quad\left(L_{0}\right)_{V_{k}^{\prime \prime}}^{8}=1
$$

Hence $\left(Q_{\eta}, L_{\eta}\right)$ is principally polar. with

$$
L_{0}^{8}=135 \cdot 2 \cdot 128+1920 \cdot 3=40320=8!=L_{\eta}^{8}
$$

17 The Wythoff-Coxeter construction

The Delaunay decomposition of \boldsymbol{E}_{8} is described by decorated diagrams:

18 Voronoi cells $V(0)$

Def 31 for a Delaunay cell D :

$$
V(D):=\left\{\lambda \in X \otimes_{\mathrm{Z}} \mathrm{R} ; D=D(\lambda)\right\}
$$

We call it a Voronoi cell.

$$
\{V(D) ; D: \text { a Delaunay cell }\}
$$

is a (Voronoi) decomposition of $X \otimes_{\mathrm{Z}} R$

$$
\begin{aligned}
\overline{V(0)} & =\left\{\lambda \in X \otimes_{\mathrm{Z}} \mathrm{R} ;\|\lambda\| \leqq\|\lambda-q\|,(\forall q \in X)\right\} \\
& =\{\lambda ; \text { the nearest lattice pt. to } \lambda \text { is the origin }\}
\end{aligned}
$$

Once we know $V(0)$, then we see Delaunay decomp.

$$
\begin{aligned}
& \text { For } B=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) \\
& \text { the red decomp. is Voronoi, } \\
& \text { the black decomp. is Delaunay. }
\end{aligned}
$$

The following is a 2 -dim Voronoi cell $V(0)$

$$
\text { (a Red Hexagon) for } B=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

$$
\text { For } B=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

$V(0)$ is a Dodecahedron (Garnet)

$$
B=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

Apophyllite $\mathrm{KCa}_{4}\left(\mathrm{Si}_{4} \mathrm{O}_{10}\right)_{2} \mathrm{~F} \cdot 8 \mathrm{H}_{2} \mathrm{O}$

$$
B=\left(\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right)
$$

A Truncated Octahedron (Zinc Blende $Z n S$)

Thank you for your attention

