MODULAR VARIETIES AND HECKE SYMMETRY

Ching-Li Chai

Sapporo, September 2007

§1 Hecke symmetry on modular varieties Unramified PEL data $(B, *, \mathcal{O}_B, V, V_{\mathbb{Z}_p}, \langle \cdot, \cdot \rangle, h)$:

- B a finite dim. semisimple \mathbb{Q} -algebra unramified at p,
- \mathcal{O}_B a maximal order of B maximal at p,
- * a positive involution on B preserving \mathcal{O}_B ,
- V a B-module of finite dimension over \mathbb{Q} ,
- $\langle \cdot, \cdot \rangle$ a \mathbb{Q} -valued nondegen. alternating form on V compatible with (B, *),
- $V_{\mathbb{Z}_p}$ a self-dual \mathbb{Z}_p -lattice in $V_{\mathbb{Q}_p}$ stable under \mathcal{O}_B

•
$$h: \mathbb{C} \to \operatorname{End}_{B_{\mathbb{R}}}(V_{\mathbb{R}})$$
, a *-homomorphism s.t.
 $(v, w) \mapsto \langle v, h(\sqrt{-1})w \rangle$

is a pos. definite symmetric form on $\,V_{\mathbb{R}}\,$

MODULAR VARIETIES OF PEL TYPE

Given an unramified PEL data ~>>

- G = unitary group attached to $(End_B(V), *)$,
- $\widetilde{\mathcal{M}} = \left(\mathcal{M}_{K^p}\right)$, a tower of modular varieties over \mathbb{F} indexed by the set of all compact open subgroups K^p of $G(\mathbb{A}_f^p)$, where

-
$$\mathbb{A}_f^p = \prod_{\ell \neq p}' \mathbb{Q}_\ell$$

- \mathcal{M}_{K^p} classifies abelian varieties with endomorphisms by \mathcal{O}_B , plus prime-to-ppolarization and level structure, whose H_1 is modeled on the given PEL datum.

HECKE SYMMETRIES

(1) The group $G(\mathbb{A}_{f}^{p})$ operates on the projective system $\widetilde{\mathcal{M}}$.

(2) If a level subgroup K_0^p is fixed, then on $\mathcal{M}_{K_0^p}$ the remnant from the action of $G(\mathbb{A}_f^p)$ takes the form of a family of finite étale algebraic correspondences on $\mathcal{M}_{K_0^p}$; they are known as *Hecke correspondences*. (3) Given a point $x \in \mathcal{M}_{K_0^p}(\mathbb{F})$, let \tilde{x} be a lift of x in $\widetilde{\mathcal{M}}(\mathbb{F})$. Define the *prime-to-p Hecke orbit* $\mathcal{H}^p \cdot x$ of x to be the image in $\mathcal{M}_{K_0^p}(\mathbb{F})$ of the $G(\mathbb{A}_f^p)$ -orbit of \tilde{x} ; it is a countable set. EXAMPLE. Siegel modular varieties $\mathcal{A}_{g,n}$, (n,p)=1 , $n\geq 3$

- $\mathcal{A}_{g,n}$ classifies *g*-dimensional principally polarized abelian varieties (A, λ) with a symplectic level-*n* structure η .
- Two \mathbb{F} -points $[(A_1, \lambda_1, \eta_1)]$, $[(A_2, \lambda_2, \eta_2)]$ in $\mathcal{A}_{g,n}$ are in the same prime-to-p Hecke orbit iff \exists a prime-to-p quasi-isogeny β (=" $\beta_2 \circ \beta_1^{-1}$ ")

$$\beta: A_1 \xleftarrow{\beta_1} A_3 \xrightarrow{\beta_2} A_2$$

defined by prime-to-p isogenies β_1 and β_2 s.t. β respects the principal polarizations λ_1 and λ_2 , i.e. $\beta_1^*(\lambda_1) = \beta_2^*(\lambda_2)$.

PEL datum:

$$B = \mathbb{Q}$$
, $V = 2g$ -dim. v.s. over \mathbb{Q} , $G = \mathrm{Sp}_{2g}$.

EXAMPLE. Hilbert modular varieties $\mathcal{M}_{E,d,n}$

 F_1, \ldots, F_r : totally real number fields, $E = F_1 \times \cdots \times F_r, \ \mathcal{O}_E = \mathcal{O}_{F_1} \times \cdots \times \mathcal{O}_{F_r},$ $d, n \ge 1$, integers, gcd(dn, p) = 1.

Hilbert modular variety $\mathcal{M}_{E,d,n}$ over \mathbb{F} : classifies quadruples $(A \to S, \iota, \lambda, \eta)$, where

- $A \to S$ is an abelian scheme, $\dim(A \to S) = [E : \mathbb{Q}],$
- $\iota : \mathcal{O}_E \to \operatorname{End}(A)$ is a ring homomorphism,
- λ is an \mathcal{O}_E -linear polarization on A of degree d,
- η is a level-n structure.

PEL datum:

$$B=E$$
 , V = free E -module of rank two, $G=\prod_{E/\mathbb{Q}}\operatorname{SL}_2.$

$$\mathcal{M} = \mathcal{M}_{K_0^p}$$
, a modular variety of PEL type over \mathbb{F}
 $x_0 = [(A_0, \lambda_0, \iota_0, \eta_0)] \in \mathcal{M}(\mathbb{F})$

DEF 1. The *leaf* $\mathcal{C}_{\mathcal{M}}(x_0)$ in \mathcal{M} passing through x_0 is the reduced locally closed subscheme of \mathcal{M} *smooth* over \mathbb{F} such that $\mathcal{C}_{\mathcal{M}}(x_0)(\mathbb{F})$ consists of all points $x = [(A, \lambda, \iota, \eta)] \in \mathcal{C}_{\mathcal{M}}(x_0)(\mathbb{F})$ s.t.

$$(A, \lambda, \iota)[p^{\infty}]) \cong (A_0, \lambda_0, \iota_0)[p^{\infty}],$$

where $(A, \lambda, \iota)[p^{\infty}]$ is the \mathcal{O}_B -linear polarized p-divisible group attached to (A, λ, ι) .

OORT'S HECKE ORBIT CONJECTURE

CONJ 1 (HO). Every prime-to-p Hecke orbit in a modular variety of PEL type \mathcal{M} over \mathbb{F} is dense in the leaf in \mathcal{M} containing it.

CONJ (HO_{ct}). The closure of any prime-to-p Hecke orbit in the leaf C containing it is an open-and-closed subset of C, i.e. it is a union of irreducible components of the smooth variety C.

CONJ (HO_{dc}). Every prime-to-p Hecke orbit in a leaf C meets every irreducible component of C.

Clearly HO \iff HO_{ct} + HO_{dc}.

Evidence of HO: Known for Siegel modular varieties (F. Oort, C.-F. Yu and CLC).

Need new ideas for the general case of HO.

Question 2. (B. Poonen) Let $x_0 \in \mathcal{M}(\mathbb{C}_p)$ be a \mathbb{C}_p -point of \mathcal{M} , where \mathbb{C}_p is the completion of $\overline{\mathbb{Q}_p}$. Is the Hecke orbit of x_0 nowhere dense in $\mathcal{M}(\mathbb{C}_p)$?

We discuss two topics related to Hecke symmetry

- monodromy
- CM-lifting

The first is closely related to the Conj. HO.

§2. Monodromy

2A. ℓ -adic monodromy

Let $Z(x_0)$ be the Zariski closure of the prime-to-pHecke orbit of x_0 for the group G_{der}^{sc} in the leaf $\mathcal{C}(x_0)$.

THM 1. Assume that the prime-to-p Hecke orbit of x_0 with respect to every simple factor of G_{der}^{sc} is infinite. Then $Z(x_0)$ is irreducible, and the Zariski closure of the ℓ -adic monodromy group of $Z(x_0)$ is $G_{der}(\mathbb{Q}_{\ell})$ for every prime number $\ell \neq p$.

Note. Irreducibility of $Z(x_0)$ uses: $G_{der}^{sc}(\mathbb{Q}_{\ell})$ has no proper subgroup of finite index.

We restrict to the Siegel modular case. Let $Z \subseteq C = C(x_0)$ be an irreducible smooth subvariety contained in a leaf $C \subset \mathcal{A}_{g,n}$, stable under all prime-to-p Hecke correspondences. Write $x_0 = [(A_0, \lambda_0, \eta_0)] \in \mathcal{A}_{g,n}(\mathbb{F})$. The p-adic monodromy for Z is a homomorphism

$$\rho_{Z,x_0}: \pi_1(Z',x_0) \to \operatorname{Aut}((A_0,\lambda_0)[p^\infty])$$

Let U_{x_0} be the unitary group attached to $(\operatorname{End}^0(A_0), *_0)$, and denote by H_{x_0} the subgroup consisting of all $U_{x_0}(\mathbb{Q}_p)$ which preserves the lattice $\operatorname{End}(A_0) \otimes \mathbb{Z}_p$ in $\operatorname{End}(A_0) \otimes \mathbb{Q}_p$.

THM 2. The image of ρ_{Z,x_0} contains the image of H_{x_0} in $\operatorname{Aut}((A_0,\lambda_0)[p^{\infty}])$.

B: a simple algebra over $\mathbb{Q}, \ \mathcal{O}_B$: an order of B. $k\supset \mathbb{F}_p$, $k=k^{\mathrm{alg}}$.

DEF 2. (i) An \mathcal{O}_B -linear abelian variety (A, ι) over k is *B*-hypersymmetric, or hypersymmetric for short, if the canonical map

$$\operatorname{End}_{\mathcal{O}_B}(A) \otimes_{\mathbb{Z}} \mathbb{Z}_p \to \operatorname{End}_{\mathcal{O}_B}(A[p^{\infty}])$$

is an isomorphism.

COR 3. Let x_0 be a hypersymmetric point in a leaf C, and let $Z \subset C(x_0)$ be an irreducible smooth subvariety containing x_0 and stable under all prime-to-p Hecke correspondences. Then the image of the p-adic monodromy for Z is equal to $\operatorname{Aut}(A_0[p^{\infty}], \lambda_0[p^{\infty}]).$

\S 3. CM-lifting

Let \mathbb{F}_q be a finite field of size q, and let B be an abelian variety of dimension g > 0 over \mathbb{F}_q . Assume that B is isotypic over \mathbb{F}_q . Consider the following four assertions concerning the existence of a CM-lifting of B.

(CMLR) *CM-lifting after finite residue field extension*: \exists a local domain R with char. 0 and finite residue field $\kappa \supset \mathbb{F}_q$, an abelian scheme A over R of rel. dim. gplus an action with $[K : \mathbb{Q}] = 2g$, and an isom. $\phi : A \times_{\operatorname{Spec}(R)} \operatorname{Spec}(\kappa) \simeq B_{\kappa}$ over κ .

(CMLI) *CM-lifting up to isogeny*: \exists a local domain Rwith char. 0 and residue field \mathbb{F}_q , an abelian scheme Aover R with rel. dim. g plus an action by a CM field Kwith $[K : \mathbb{Q}] = 2g$, and an isogeny $A \times_{\operatorname{Spec}(R)} \operatorname{Spec}(\mathbb{F}_q) \sim B$ over \mathbb{F}_q . (CMLNI) *CM-lifting to normal domains up to isogeny*: \exists a normal local domain R with char. 0 and residue field \mathbb{F}_q such that (CMLI) is satisfied for B using R.

(CMLNIR) *CM-lifting to normal domains up to isogeny after finite residue field extension*: \exists a normal local domain R with char. 0 and finite residue field $\kappa \supset \mathbb{F}_q$ such that (CMLR) is satisfied for B using R except that ϕ is only required to be an isogeny over κ rather than an isomorphism.

KNOWN: (CMLNIR) is true, (CMLR) is false.

Will explain an obstruction to (CMLNI). This obstruction can be non-trivial, but it is the only obstruction.

RESIDUAL REFLEX CONDITION: If (CMLNI) holds for a g-dimensional abelian variety B over \mathbb{F}_q , then there is a CM subfield $K \subseteq \operatorname{End}^0_{\mathbb{F}_q}(B)$ with $[K : \mathbb{Q}] = 2g$ and a p-adic CM type $\Phi \subseteq \operatorname{Hom}_{\operatorname{ring}}(K, \overline{\mathbb{Q}}_p)$ s.t.

(i) The slopes of B are given in terms of (K,Φ) by the Shimura–Taniyama formula

$$\frac{\operatorname{ord}_{v}(\operatorname{Fr}_{B,q})}{\operatorname{ord}_{v}(q)} = \frac{\#\{\phi \in \Phi : \phi \text{ induces } v \text{ on } K\}}{[K_{v}:\mathbb{Q}_{p}]}$$

for every place v of K above p.

(ii) Let $E \subseteq \overline{\mathbb{Q}}_p$ be the reflex field attached to (K, Φ) , and let w be the induced p-adic place of E. The residue field κ_w of $\mathcal{O}_{E,w}$ can be realized as a subfield of \mathbb{F}_q .

THM 4. (F. Oort, B. Conrad, CLC) Let B be an abelian variety of dimension g > 0 over \mathbb{F}_q and let $K \subseteq \operatorname{End}_{\mathbb{F}_q}^0(B)$ be a CM field with $[K : \mathbb{Q}] = 2g$. Let $\Phi \subseteq \operatorname{Hom}_{\operatorname{ring}}(K, \overline{\mathbb{Q}}_p)$ be a p-adic CM type on K, and let $E \subseteq \overline{\mathbb{Q}}_p$ be the associated reflex field. Assume that (K, Φ) satisfies the residual reflex condition.

There exists a finite extension E'/E inside of \mathbb{Q}_p , a g-dimensional abelian variety A over E' with good reduction at the p-adic place w' on E' induced by $\overline{\mathbb{Q}}_p$, and an inclusion $K \hookrightarrow \operatorname{End}_{E'}^0(A)$ with associated p-adic CM-type Φ such that the reduction of A at w' is K-linearly isogenous to B over an isomorphism of finite fields $\kappa_{w'} \simeq \mathbb{F}_q$. In particular, B satisfies (CMLNI) using a lifting of the K-action over a p-adic integer ring with residue field \mathbb{F}_q .

Remark. An analog of Thm. 4 holds for modular varieties of PEL-type: a suitable residual reflex condition is both necessary and sufficient for the existence of CM lifting over normal domains up to Hecke correspondence.

Question 3. Does (CMLI) hold for every isotypic abelian variety over a finite field?

No counter-example is known for (CMLNI).