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Abstract.

The moduli space Mg of nonsingular projective curves of genus g
is compactified into the moduli Mg of Deligne-Mumford stable curves
of genus g. We compactify in a similar way the moduli space of abelian
varieties by adding some mildly degenerating limits of abelian varieties.

A typical case is the moduli space of Hesse cubics. Any Hesse
cubic is GIT-stable in the sense that its SL(3)-orbit is closed in the
semistable locus, and conversely any GIT-stable planar cubic is one of
Hesse cubics. Similarly in arbitrary dimension, the moduli space of
abelian varieties is compactified by adding only GIT-stable limits of
abelian varieties (§ 14).

Our moduli space is a projective “fine” moduli space of possibly
degenerate abelian schemes with non-classical non-commutative level
structure over Z[ζN , 1/N ] for someN ≥ 3. The objects at the boundary
are singular schemes, called PSQASes, projectively stable quasi-abelian
schemes.
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§1. Introduction

The moduli of stable curves, the so-called Deligne-Mumford com-
pactification, compactifies the moduli of nonsingular curves :

the moduli of smooth curves
= the set of all isomorphism classes of smooth curves
⊂ the set of all isomorphism classes of stable curves

= the Deligne-Mumford compactification Mg

The moduli of stable curves is known to be a projective scheme,
while the moduli of nonsingular curves is a Zariski open subset of it.

Our problem is to do the same for moduli of smooth abelian varieties.
We find certain natural limits of smooth abelian varieties similar to
stable curves to compactify the moduli. In other words, we will construct
a new compactification SQg,K , the moduli of some possibly degenerate
abelian varieties with some extra structure, which contains the moduli
of smooth abelian varieties with similar extra structure as a Zariski open
subset. This will complete the following diagram :

the moduli of smooth AVs (= abelian varieties)

= {smooth polarized AVs + extra structure}/ isom.

⊂ {smooth polarized AVs or

singular polarized degenerate AVs + extra structure}/ isom.
= the new compactification SQg,K

The compactification problem of the moduli space of abelian vari-
eties has been studied by many people :

◦ Satake compactification, Igusa monoidal transform of it
◦ Mumford toroidal compactification ([4, (1975)])
◦ Faltings-Chai arithmetic compactification (arithmetic version of

Mumford compactification) [7, (1990)]
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These are the compactifications which had been known before 1995
when the author restarted the research of compactifications. These are
compactifications as spaces, not as the moduli of compact objects. In
this article, we are going to construct a natural compactification, in
fact, projective, as the “fine/coarse” moduli space of compact geometric
objects, where

◦ the moduli space contains the moduli space of abelian varieties
as a dense Zariski open subset,

◦ it is compact, which amounts to collecting enough limits,
◦ it is separated, which amounts to choosing the minimum possible

among the above.
The following are the works closely related to the subject; first of all,

the works of Mumford [20], [21] and [23] during 1966–1972, though they
do not focus on compactifications directly. After 1975 there appeared
Nakamura [27] and Namikawa [35], closely related to this article.

After 1999 there appeared several works on the subject: [2], [30],
[1], [37] and [32]. By modifying [27], Nakamura [30] and [32] study
two kinds of compactifications of the moduli space of abelian varieties
(with no zero section specified and with no semi-abelian scheme action
assumed). Meanwhile, Alexeev [1] and Olsson [37] study the complete
moduli spaces of certain schemes with semi-abelian scheme action.

Now we shall explain how we choose our compactification SQg,K ,
which will explain why the title of this article refers to GIT-stability.

Let H be a finite Abelian group, and V := VH the unique irre-
ducible representation of the Heisenberg group GH of weight one. Let
P(V ) be the projective space of V , and X := HilbχP(V ) the Hilbert
scheme parameterizing closed subschemes of P(V ) with Hilbert polyno-
mials χ(n) = ng|H |. According to GIT, our problem of compactifying
the moduli space is, very roughly speaking, reduced to studying the quo-
tient Xss// SL(V ) where Xss denotes the semistable locus of X with
respect to SL(V ). GIT tells us, set-theoretically,

Xss// SL(V ) = the set of all closed orbits in Xss.(1)

See Section 14. This scenario has to be modified a little. In an appro-
priately modified scenario, the LHS of (1) is the moduli space SQg,K ,
the compactification in the title of this article, while the RHS of (1) is
just the set of isomorphism classes of our degenerate abelian schemes
PSQASes (Q0,L0) with GH -action. See Section 4, Theorem 9.8 and
Theorem 14.1.3. It should be mentioned that SQg,K is the fine moduli
scheme for families of PSQASes over reduced base schemes, hence SQg,K
itself is also reduced.
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This note is based on our lectures with the same title delivered at
Kyoto university during June 11–13, 2013. It overlaps the report [31]
on the same topic in many respects, though the note includes also the
recent progress of the topic. In this note, we give simple proofs for the
major results of [30] and [32], assuming known rather general results.
We also tried to include (elementary or less elementary) proofs of the
well-known related facts whose proofs are hard to find in the literature.
As a whole we tried to make our presentation more accessible than [30],
keeping the atmosphere of the lecture as much as possible.

In what follows throughout this article, we always consider a finite
abelian group H =

⊕g
i=1(Z/eiZ), where ei|ei+1, and we write N =

|H | =
∏g
i=1 ei and K = KH = H ⊕H∨ (H∨ : the dual of H). We call

such H simply a finite Abelian group. We also call K a finite symplectic
Abelian group. We also let O = ON = Z[1/N, ζN ] where ζN is a primitive
N -th root of unity.

The article is organized as follows.
Section 2 reviews the classical moduli theories of Hesse cubics with

Neolithic level-3 structure or with classical level-3 structure.
Section 3 gives a new interpretation of the moduli theories in Sec-

tion 2 in a non-commutative way, and then explains a new moduli
theory of Hesse cubics with level-G(3) structure, where G(3) is a non-
commutative group, the Heisenberg group. This is the model theory for
all the rest. The major purpose of this article is to explain its higher
dimensional analogue. See Subsec. 3.1.

In Section 4 we introduce two kinds (P0,L0) and (Q0,L0) of nice
degenerate abelian schemes in arbitrary dimension to compactify the
moduli space of abelian varieties. Theorem 4.6 gives an intrinsic de-
scription of those degenerate schemes (P0,L0) and (Q0,L0), where P0

is always reduced, while Q0 can be nonreduced.
A more direct definition of those degenerate schemes will be given

in Sections 5 and 6. Especially we give a complete proof of the part
Qη � Pη � Gη of Theorem 4.6. We will give two-dimensional and three-
dimensional examples of PSQASes. We will also explain how a naive
classical level-n structure results in a nonseparated moduli.

Section 7 reviews a rather general theory about G-action and G-
linearization. We give various definitions and constructions and show
their equivalence or compatibility.

In Section 8, we give a definition of level-GH structure and define
a quasi-projective (resp. projective) scheme Ag,K (resp. SQg,K) when
e1 ≥ 3. We show that any geometric point of Ag,K (resp. SQg,K) is a
nonsingular level-GH PSQAS (resp. a level-GH PSQAS) and vice versa.
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In Section 9 we formulate the moduli functor of smooth (resp. flat)
PSQASes over ON -schemes (resp. reduced ON -schemes). We will prove
the representability of these functors by Ag,K (resp. SQg,K) in the
respective category.

In Sections 11 and 12 we see that there exists the coarse moduli
algebraic space SQtoric

g,K of level-GH TSQASes. This has been proved in
[32] when e1 ≥ 3. We generalize it here to the case e1 ≤ 2. There is a
bijective morphism from SQtoric

g,K onto SQg,K if e1 ≥ 3. In Sections 11
and 12 many of the definitions, constructions and proofs are given in
parallel to Sections 8 and 9, which we often omitted to avoid overlapping.

In Section 13 we briefly report our recent results without proofs. We
define a morphism sqap from SQtoric

g,K ×U to Alexeev’s complete moduli
AP g,d for a nonempty Zariski open subset U of PN−1 = P(VH). We see
that sqap restricted to SQtoric

g,K ×{u} for any u ∈ U is injective: in fact, it
is almost a closed immersion. We also see that SQtoric

g,1 is isomorphic to

the main (reduced) component AP
main

g,1 of AP g,1, the closure in AP g,1
of the moduli of abelian torsors. We emphasize that it is nontrivial to
define a well-defined morphism sqap because singular TSQASes have a
lot of continuous automorphisms.

In Section 14 we explain the set of all closed orbits and GIT stability
of PSQASes. We also mention a few related topics.

We tried to give complete proofs to Sections 7-9 and to Theorem 12.1
(especially for the case e1 ≤ 2) in Section 12, relying in part on [30] and
[32]. In the other sections we only survey mainly [30], [32] and [33].

Acknowledgements. We are very grateful to Professors V. Alex-
eev, J.-B. Bost, A. Fujiki, K. Hulek, L. Illusie, M. Ishida, A. King,
J. McKay, Y. Mieda, Y. Odaka, T. Shioda, and L. Weng for their inter-
est and advice on our works. Inspired by their advice, we have changed
some of the presentations and especially the formulation of the functors
Ag,K and SQg,K , though we are not sure that it is the final form. We
also thank K. Sugawara for constant collaboration and support.

§2. Hesse cubics

Here we will start with a simple example.

2.1. Hesse cubics
Let k be any ring which contains 1/3 and ζ3, the primitive cube root

of unity. A Hesse cubic curve is a curve in P2
k defined by

C(μ) : x3
0 + x3

1 + x3
2 − 3μx0x1x2 = 0(2)
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for some μ ∈ k, or μ = ∞ (in which case we understand that C(∞) is
the curve defined by x0x1x2 = 0). We see

(i) C(μ) is nonsingular elliptic for μ 
= ∞, 1, ζ3, ζ2
3 ,

(ii) C(μ) is a 3-gon for μ = ∞, 1, ζ3, ζ2
3 ,

(iii) any C(μ) contains K, which is independent of μ,

K =
{
[0, 1,−ζk3 ], [−ζk3 , 0, 1], [1,−ζk3 , 0]; k = 0, 1, 2

}
,

(iv) K is identified with the group of 3-division points by choosing
[0, 1,−1] as the zero, so K � (Z/3Z)2 as groups,

(v) if k = C, any Hesse cubic is the image of a complex torus E(ω) :=
C/Z+Zω by (slightly modified) theta functions ϑk of level 3 (see
Subsec. 2.2), and then K is the image of the 3-division points
〈1
3 ,

ω
3 〉 of E(ω).

2.2. Theta functions
We will explain Subsec. 2.1 (v) in more detail. First let us recall

standard (resp. modified) theta functions of level 3 on E(ω) :

θk(ω, z) =
∑
m∈Z

q(3m+k)2w3m+k, resp.

ϑk(ω, z) = θk(ω, z +
1 − ω

2
)

where q = e2πiω/6, w = e2πiz. They satisfy the transformation relation :

θk(ω, z +
a+ bω

3
) = ζak3 (qbw)−bθk+b(ω, z),

ϑk(ω, z +
a+ bω

3
) = ζak3 (qb−3(−w))−bϑk+b(ω, z).

We define a mapping ϑ : E(ω) → P2 by

ϑ(ω, z) := [ϑ0, ϑ1, ϑ2].

Let us check the second half of Subsec. 2.1 (v). For it, we rewrite

ϑ0(ω, z) =
∑
m∈Z

q9m
2−9m(−w)3m,

ϑ1(ω, z) =
∑
m∈Z

q9m
2−3m−2(−w)3m+1,

ϑ2(ω, z) =
∑
m∈Z

q9m
2+3m−2(−w)3m+2.
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Then we check ϑ(ω, �3 ) = [0, 1,−ζ�3] and ϑ(ω, ω3 ) = [1,−1, 0]. First
we prove ϑ0(ω, �3 ) = 0. In fact, we see

ϑ0(ω,
�

3
) =

∑
m∈Z

q9m
2−9m(−1)3m

=
∑
m∈Z

q9(−m+1)2−9(−m+1)(−1)3(−m+1)

=
∑
m∈Z

q9m
2−9m(−1)−3m+3 = −ϑ0(ω,

�

3
),

whence ϑ0(ω, �3 ) = 0. Moreover

ϑ1(ω,
�

3
) = ζ�3

∑
m∈Z

q9m
2−3m−2(−1)3m+1,

ϑ2(ω,
�

3
) = ζ2�

3

∑
m∈Z

q9m
2+3m−2(−1)3m

= ζ2�
3

∑
m∈Z

q9m
2−3m−2(−1)3m = −ζ�3ϑ1(ω,

�

3
).

ϑ(ω, ω3 ) = [1,−1, 0] is proved similarly.

2.3. The moduli space of Hesse cubics — the Stone-age
(Neolithic) level structure

With the same notation as in Subsec. 2.1, consider the moduli space
SQNL

1,3 of the pairs (C(μ),K) over any ring k � 1/3 and ζ3.

Definition 2.3.1. Any pair (C(μ),K) is called a Hesse cubic with
Neolithic level-3 structure. Let (C(μ),K) and (C(μ′),K) be two pairs
of Hesse cubics with Neolithic level-3 structure. We define (C(μ),K) �
(C(μ′),K) to be isomorphic if there exists an isomorphism f : C(μ) →
C(μ′) with f|K = idK .

Claim 2.3.2. Let SQNL
1,3 be the set of isomorphism classes of

(C(μ),K), and ANL
1,3 the subset of SQNL

1,3 consisting of smooth C(μ).
Then

(i) if (C(μ),K) � (C(μ′),K), then μ = μ′,
(ii) SQNL

1,3 has a natural scheme structure:

SQNL
1,3 � P1

k = Proj k[μ0, μ1],
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(iii) this compactifies the moduli ANL
1,3 of smooth Hesse cubics:

ANL
1,3 � Spec k[μ,

1
μ3 − 1

], μ = μ1/μ0,

where ANL
1,3(k) = {C(μ); smooth, μ ∈ k} if k is a closed field,

(iv) the universal Hesse cubic over SQNL
1,3 is given by

μ0(x3
0 + x3

1 + x3
2) − 3μ1x0x1x2 = 0.(3)

Proof of (i). We prove (i). Suppose we are given an isomorphism

f : (C(μ),K) � (C(μ′),K).

Since any 3 points x, y and z ∈ K with x+ y+ z = 0 are on a line �x,y,z
of P2, we have �x,y,z ∩ C(μ) = {x, y, z} and f∗�x,y,z = �x,y,z as divisors
of C(μ). Hence f is given by a 3 × 3 matrix A.

We shall prove that A is a scalar and f = id. In fact, any line �x,y
connecting two points x, y ∈ K is fixed by f . Since the line x0 = 0
connects [0, 1,−1] and [0, 1,−ζ3], it is fixed by f . Similarly the lines
x1 = 0 and x2 = 0 are fixed by f , whence f∗(xi) = aixi (i = 0, 1, 2) for
some ai 
= 0. Thus A is diagonal. Since [0, 1,−1] and [−1, 0, 1] are fixed,
we have a0 = a1 = a2, hence A is scalar and f = id, μ = μ′.

We do not give proofs of (ii)-(iv) here because there are complicated
arguments to prove rigorously. Q.E.D.

2.4. The moduli space of smooth cubics — classical level
structure

Consider the (fine) moduli space of smooth cubics over an alge-
braically closed field k � 1/3.

Definition 2.4.1. Let K = (Z/3Z)⊕2, ei a standard basis of K.
Let eK : K × K → μ3 be a standard symplectic form of K: in other
words, eK is (multiplicatively) alternating and bilinear such that

eK(e1, e2) = eK(e2, e1)−1 = ζ3, eK(ei, ei) = 1.

Let C be a smooth cubic with zero O, C[3] = ker(3 idC) the group
of 3-division points and eC the Weil pairing of C (see [43, pp. 95–102]),
that is,

eC : C[3] × C[3] → μ3 alternating nondegenerate bilinear,

(see 3.3 (v)). By [20, pp. 294–295], there exists a symplectic (group)
isomorphism

ι : (C[3], eC) → (K, eK).
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In what follows, we identify C(μ)[3] with K by

O = [0, 1,−1], e1 = [0, 1,−ζ3], e2 = [1,−1, 0].(4)

Definition 2.4.2. The triple (C,C[3], ι) is called a (planar) cubic
with classical level-3 structure. We define (C,C[3], ι) � (C′, C′[3], ι′) to
be isomorphic iff there exists an isomorphism f : C → C′ such that
f|C[3] : C[3] → C′[3] is a symplectic (group) isomorphism subject to
ι′ · f = ι.

Claim 2.4.3. Let ACL
1,3 be the set of isomorphism classes of

(C,C[3], ι). Then
(i) any (C,C[3], ι) is isomorphic to (C(μ), C(μ)[3], ι) for a unique μ,
(ii) (C(μ),K, idK) ∈ ACL

1,3 via (4), and

ACL
1,3 = {(C(μ),K, idK); a smooth Hesse cubic}

� Spec k[μ,
1

μ3 − 1
],

(iii) we define SQCL
1,3 to be the union of ACL

1,3 and 3-gons in Sub-
sec. 2.1 (ii) :

SQCL
1,3 : = {(C,C[3], ι);C smooth elliptic or a 3-gon}/isom.

= {(C(μ),K, idK); a Hesse cubic}
� Proj k[μ0, μ1],

(v) ACL
1,3 � ANL

1,3 and SQCL
1,3 � SQNL

1,3 over k.

Proof of (i). We prove the uniqueness of μ. Suppose that

f : (C(μ),K, idK) → (C(μ′),K, idK)

is an isomorphism. Then f ∈ GL(3). Since idK ·f|K = idK by ι′ · f = ι,
we have f|K = idK . Hence f = id ∈ PGL(3), μ = μ′ by Subsec. 2.3 (iv).
See also Lemma 3.12 and Lemma 8.2.8. Q.E.D.

§3. Non-commutative level structure

3.1. For constructing a separated moduli
If we keep naively using the same definition of level structures as

in Subsec. 2.4 in higher dimension, then the complete moduli will be
roughly the moduli of the triples (Z, ker(λ(L)), ιZ) similar to (C,C[3], ι)

ιZ : ker(λ(L)) � K for some K.
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However then we will have nonseparated moduli spaces in general. The
details will be explained in Subsec. 6.8.

To construct a separated moduli, we need to find outside C an al-
ternative for C[3] embedded in C. The group C[3], hence x ∈ K =
(Z/3Z)⊕2 acts on C by translation Tx : C → C. Though the action of
K on C cannot be lifted to L as an action of the group K, the action
of any individual element x of K can be lifted to a line bundle auto-
morphism τx of L. In general τx and τy (x, y ∈ K) do not commute so
Tx �→ τx fails to be a group homomorphism. However it turns out that
the non-commutative group generated by all individual liftings τx plays
the role of an alternative for C[3] embedded in C. This leads us to the
notion of a level-G(3) structure, say, a non-commutative level structure,
where G(3) is the Heisenberg group associated to K.

Remark 3.1.1. Since any elliptic curve with level-G(3) structure
has a section over Z[ζ3, 1/3] by [34], the level-G(3) structure is a ϑ-
structure of [21, II, p.78] and vice versa. A level GH (or GH -)structure
is not always a ϑ-structure by [34] when H = Z/nZ for n even in Defi-
nition 3.5.

Definition 3.2. Let k be an algebraically closed field k � 1/3.
Then

(i) let C be any smooth cubic with zero O, and L := OC(1) the
hyperplane bundle. Let λ(L) : C → C∨ := Pic0(C) � C be the
map x → T ∗

xL ⊗ L−1, called the polarization morphism, where
we see λ(L) = 3 idC ,

(ii) let K := C[3] = kerλ(L) � (Z/3Z)⊕2, and eK : K ×K → μ3 the
Weil pairing of C. If C = C(μ) and O = [0, 1,−1] ∈ C(μ). Then
K = ker(λ(L)) is the same as in Subsec. 2.1 (iii).

3.3. Non-commutative interpretation of Hesse cubics
First we shall re-interpret the group C[3] of 3-division points of Hesse

cubics in the non-commutative way as follows.
Any translation Tx by x ∈ K is lifted to γx ∈ GL(V ), so that

eK(x, y) = [γx, γy] ∈ μ3,

where V = H0(C,OC(1)) = H0(P2, OP2(1)). To be more precise,
(i) we define σ and τ by σ(xk) = ζk3xk, τ(xk) = xk+1 (k = 0, 1, 2),

where their matrix forms are given by

σ =

⎛⎝1 0 0
0 ζ3 0
0 0 ζ2

3

⎞⎠ , τ =

⎛⎝0 0 1
1 0 0
0 1 0

⎞⎠ ,
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(ii) σ is induced from the translation by 1/3 because xk = θk by
Subsec. 2.1 (v) and

θk(z + 1/3) = ζk3 θk(z),

(iii) τ is induced from the translation by ω/3 because

[θ0, θ1, θ2](z + ω/3) = [θ1, θ2, θ0](z),

(iv) [σ, τ ] = ζ3, that is, σ and τ do not commute,

στ =

⎛⎝ 0 0 1
ζ3 0 0
0 ζ2

3 0

⎞⎠ , τσ =

⎛⎝0 0 ζ2
3

1 0 0
0 ζ3 0

⎞⎠ .

Lemma 3.4. Let G(3) := 〈σ, τ〉 be the group generated by σ and
τ . Then it is a finite group of order 27. Let V = H0(P2, OP2(1)) =
{x0, x1, x2}. Then V is an irreducible G(3)-module of weight one, where
”weight one” means that a ∈ μ3 (center) acts by a idV .

Proof. The first assertion is clear. See [20, Proposition 3, p. 309]
or [32, Lemma 4.4] for the second assertion. Q.E.D.

The action of G(3) on H0(C,L) is a special case of more general
Schrödinger representations defined below.

Definition 3.5. We define G(K) = GH (resp. G(K) = GH) to
be the Heisenberg group (finite resp. infinite) and UH the Schrödinger
representation of GH as follows:

H = H(e) :=
g⊕
i=1

(Z/eiZ), ei|ei+1, N = |H | =
g∏
i=1

ei,

K = H ⊕H∨, emin(K) = emin(H) := e1,

GH = {(a, z, α); a ∈ μN , z ∈ H,α ∈ H∨},
GH = {(a, z, α); a ∈ Gm, z ∈ H,α ∈ H∨},

(a, z, α) · (b, w, β) = (abβ(z), z + w,α + β),

V : = VH = ON [H∨] =
⊕
μ∈H∨

ON v(μ),

UH(a, z, α)v(γ) = aγ(z)v(α+ γ).

Here O = ON = Z[ζN , 1/N ], and v(μ) (μ ∈ H∨) is a free ON -basis
of VH . The group homomorphism UH , from GH or GH to End (V ), is
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called Schrödinger representation. We note

1 →μN → GH → K → 0 (exact)

1 →Gm → GH → K → 0 (exact).

Example 3.6. For Hesse cubics, O := Z[ζ3, 1/3], H = H∨ =
Z/3Z, we identify G(3) with GH ; to be precise, G(3) = UH(GH) and

σ = UH(1, 1, 0), τ = UH(1, 0, 1), N = 3.

VH = O[H∨] =
2⊕

k=0

O · v(k).

Let P2 = P(VH). Then VH is identified with H0(C,OC(1)) =
H0(P2, OP2(1)) by the map v(k) �→ xk in Lemma 3.4.

Lemma 3.7. VH is an irreducible GH-ON -module (an irreducible
GH -ON -module) of weight one, unique up to equivalence. Any GH-ON -
module W (resp. any GH-ON -module) of finite rank is a direct sum of
VH if W is of weight one: that is, any element a in the center Gm (resp.
μN ) acts on W by scalar multiplication a idW .

Proof. See Lemma 11.1.2 and [32, Lemma 4.4]. Q.E.D.

Lemma 3.8. (Schur’s lemma) Let R be a commutative algebra
with 1/N and ζN . Let V1 and V2 be R-free GH-modules of finite rank of
weight one. If V1 and V2 are irreducible GH-modules, and if f : V1 → V2

and g : V1 → V2 are GH-isomorphisms, then there exists a unit c ∈ R×

such that f = cg.

Proof. See [32, Lemma 4.5]. Q.E.D.

3.9. New formulation of the moduli problem
Let k be any ring such that k � ζ3, 1/3 and K = (Z/3Z)⊕2. Let

C be any smooth cubic, L = OC(1) the line bundle viewed as a scheme
over C. By [20, p. 295] (see also [30, Lemma 7.6]) the pair (C,L) of
schemes has a G(3)-action lifting the translation action by C[3]

τ : G(3) × (C,L) → (C,L).

Using this G(3)-action, we define new level-3 structure. In a word,
◦ classical level-3 structure = to fix the 3-division points K
◦ new level-3 structure = to fix the matrix form of the action of
G(3) on V � H0(C,L).
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Definition 3.10. We define (C,ψ, τ) to be a (planar) cubic with
level-G(3) structure (or a level-G(3) cubic) if

(i) (C,L) is a planar cubic with L = OC(1),
(ii) τ is a G(3)-action of weight one on the pair (C,L): that is, τ(a)

acts by (idC , a idL) for a ∈ μ3, the center of G(3),
(iii) ψ : C → P(VH) is the inclusion, and

(ψ,Ψ) : (C,L) → (P(VH),H)

is a G(3)-equivariant morphism by τ where H is the hyperplane
bundle of P(VH) and Ψ : L = ψ∗H → H the natural bundle
morphism. That is,

(ψ,Ψ) ◦ τ(g) = S(g) ◦ (ψ,Ψ) for any g ∈ G(3)(5)

with the notation in Subsec. 7.2.

In what follows, we denote (ψ,Ψ) simply by ψ if no confusion is
possible because Ψ is uniquely determined by ψ. We denote (5) by

ψτ(g) = S(g)ψ, or ψτ = Sψ.(6)

Definition 3.11. Two cubics (C,ψ, τ) and (C′, ψ′, τ ′) with level-
G(3) structure are defined to be isomorphic iff there exists an isomor-
phism

(f, F ) : (C,L) → (C′, L′)

such that
(i) ψ′ · (f, F ) = ψ,
(ii) (f, F ) is a G(3)-isomorphism, that is, (f, F )τ(g) = τ ′(g)(f, F )

for any g ∈ G(3).

Lemma 3.12. Any Hesse cubic (C(μ), i, UH) with i the inclusion
of C into P(VH) is a level-G(3) cubic. Moreover any level-G(3) cubic
(C,ψ, τ) is isomorphic to a unique Hesse cubic (C(μ), i, UH).

Proof. Let P2 be P(VH) and H the hyperplane bundle of P2. UH
induces an action on H0(P2, OP2(1)) = VH by Claim 7.1.5, which we
denote by H0(UH , OP2(1)). This is the same as the action UH on VH
in Definition 3.5. In fact, by Subsec. 7.2 and Remark 7.3, UH induces
an action of G(3) on the pair (P2,H), which also induces an action of
G(3) on H0(P2, OP2(1)) = VH . This is the same as UH as is shown in
Remark 7.3.

Let OC(μ)(1) = OP2(1) ⊗ OC(μ) and HC(μ) = H ×P2 C(μ). Since
C(μ) is G(3)-stable, G(3) acts on the pair (C(μ),HC(μ)) by Claim 7.4.1.
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Denoting the action of G(3) on HC(μ) by the same letter UH , we see
that (C(μ), i, UH) is a level-G(3) structure.

Hence H0(C(μ), OC(μ)(1)) admits a G(3)-action, which we denote
by H0(UH , OC(μ)(1)). Since H0(C(μ), OC(μ)(1)) = H0(P2, OP2(1)) =
VH by restriction, we can identifyH0(UH , OC(μ)(1)) withH0(UH , OP2(1))
on VH in a canonical manner. Thus we have a canonical identification

H0(UH , OC(μ)(1)) = H0(UH , OP2(1)) = UH .

By Lemma 8.2.8, any (C,ψ, τ) is isomorphic to some Hesse cubic
(C(μ), i, UH). Here we prove the uniqueness of it only. This is a new
proof of Claim 2.4.3 (ii). Suppose (C(μ), i, UH) � (C(μ′), i, UH). Let
h : C(μ) → C(μ′) be a G(3)-isomorphism. Since h is linear (as is shown
easily), h induces an automorphism of (P2, OP2(1)) (also denoted h) so
that we have a commutative diagram

H0(P2, OP2(1)) = VH
H0(h∗)−−−−→ H0(P2, OP2(1)) = VH⏐⏐�||

⏐⏐�||

H0(C(μ′), OC(μ′)(1))
H0(h∗)−−−−→ H0(C(μ), OC(μ)(1)),⏐⏐�H0(UH (g),OC(μ′)(1))

⏐⏐�H0(UH(g),OC(μ)(1))

H0(C(μ′), OC(μ′)(1))
H0(h∗)−−−−→ H0(C(μ), OC(μ)(1)),

whence

H0(UH(g), OC(μ)(1))H0(h∗) = H0(h∗)H0(UH(g), OC(μ′)(1))

for any g ∈ G(3). By canonically identifying H0(UH , OC(μ)(1)) with UH
on VH , we have

UH(g)H0(h∗) = H0(h∗)UH(g) ∈ End (VH)

for any g ∈ G(3), where we also regard H0(h∗) ∈ End (VH). Since UH
is irreducible, H0(h∗) is a scalar by Schur’s lemma. Hence H0(h∗) =
idVH ∈ PGL(VH), h = idP(VH), C(μ) = C(μ′), μ = μ′. Q.E.D.

Remark 3.13. In the proof of Lemma 3.12, we canonically iden-
tified all the vector spaces involved to simplify the argument. This ar-
gument will be made much clearer by using ρ(φ, τ) in Definitions 8.2.2
and 8.2.6. See Lemma 8.2.8.
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Proposition 3.14. Over Z[ζ3, 1/3],

SQ1,3 : = {(C,ψ, τ); a level-G(3) cubic}/isom.

= {(C(μ), i, UH)}/isom. = {μ ∈ P1}.

Proof. Clear from Lemma 3.12 and Lemma 8.2.8. Q.E.D.

It is this level-G(3) structure that we can generalize into higher di-
mension so that we may obtain a separated moduli.

Remark 3.15. Suppose k is algebraically closed with 1/3. Let
K = (Z/3Z)⊕2. Let C be any cubic, and C[3] = ker(3 idC) by choosing
the zero O ∈ C(k). Any level-G(3) structure (C,φ, τ) gives rise to a
classical level-3 structure (C,C[3], ι) as follows. First we note

C[3] = G(3) ·O.

Let π : G(3) → K = G(3)/[G(3), G(3)] be the natural homomor-
phism. We define ι : K → C by

ι(g ·O) := π(g).

Then (C,C[3], ι) is a classical level-3 structure. In fact, since eK(x, y) =
[γx, γy] for a lifting γx of x, we have eK(1/3, ω/3) = [σ, τ ] = ζ3. Hence
π defines a symplectic isomorphism ι : C[3] → K. Thus we see

SQ1,3(k) = SQCL
1,3(k).

By [34] SQ1,3 � SQCL
1,3 over Z[1/3, ζ3]. See [34] for the detail.

§4. PSQAS and TSQAS

4.1. Goal

Our goal of constructing a compactification of the moduli space of
abelian varieties is achieved by

(i) finding limit objects (two kinds of nice degenerate abelian schemes
called PSQAS and TSQAS) (Theorems 4.5 and 4.6),

(ii) constructing the moduli SQg,K as a projective scheme (Section 8),
(iii) proving that any point of SQg,K is the isomorphism class of a

nice degenerate abelian scheme (PSQAS) (Q0, φ0, τ0) with level-
GH structure (Section 8, Theorems 8.5 and 9.8).

We recall a basic lemma from [25].



16 I. Nakamura

Lemma 4.2. Let k be an algebraically closed field with k � 1/N
and H a finite Abelian group with |H | = N . Let (A,L) be an abelian
variety over k with L an ample line bundle, λ(L) : A → A∨ the polar-
ization morphism (sending x �→ T ∗

xL ⊗ L−1) and G(A,L) the group of
bundle automorphisms g of L over A inducing translations of A.

Suppose ker(λ(L)) � K := H ⊕ H∨. Then G(A,L) � L×
ker(λ(L)) �

GH , and any g ∈ G(A,L) induces a translation of A by some element
of ker(λ(L)) where L× is the complement of the zero section in the line
bundle L, and L×

ker(λ(L)) is the pullback (restriction) of it to ker(λ(L)).

Proof. See [20, pp. 294–295] and [25, pp. 115-117, pp.204-211].
Q.E.D.

4.3. Limit objects
We wish to consider limits of abelian varieties.
Let R be a complete discrete valuation ring (CDVR), and k(η) the

fraction field of R and k(0) := R/I the residue field. Suppose we are
given an abelian scheme (Gη,Lη) over k(η) and the polarization mor-
phism

λ(Lη) : Gη → Gtη := Pic0(Gη).

Let
Kη = ker(λ(Lη)), G(Kη) := G(Gη,Lη) � (L×

η )|Kη
,

where G(Gη,Lη) is by definition the group of bundle automorphisms of
Lη over Gη which induce translations of Gη. See Lemma 4.2.

For simplicity, in what follows, we assume

the field k(0) contains 1/|Kη|.(7)

We apply Lemma 4.2 to (Gη,Lη).
Lemma 4.4. Assume (7). Then by some base change of R if nec-

essary, there exists a finite symplectic Abelian group K such that the
diagram is commutative with exact rows:

1 −−−−→ Gm −−−−→ G(Kη) −−−−→ Kη −−−−→ 0⏐⏐�id .

⏐⏐��
⏐⏐��

1 −−−−→ Gm −−−−→ GH −−−−→ H ⊕H∨ −−−−→ 0.

Theorem 4.5. (Stable reduction theorem) ([2]) For an abelian
scheme (Gη,Lη) and a polarization morphism λ(Lη) : Gη → Gtη over
k(η), there exist a flat projective scheme (P,LP ) (TSQAS) over R, by
a finite base change if necessary, such that
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1. (Pη,Lη) � (Gη,Lη),
2. (P,LP ) is normal with LP ample, in fact, P is explicitly given,
3. P0 is reduced and Gorenstein with trivial dualizing sheaf.

The following is a refined version of the above.

Theorem 4.6. (Refined stable reduction theorem) ([30, p. 703],
[32, p. 98]) For an abelian scheme (Gη,Lη) and a polarization morphism
λ(Lη) : Gη → Gtη over k(η) such that Kη � K, there exist flat projective
schemes (Q,LQ) (PSQAS) and (P,LP ) (TSQAS) over R, by a finite
base change if necessary, such that

1. (Qη,Lη) � (Pη,Lη) � (Gη,Lη),
2. (P,LP ) is the normalization of (Q,LQ),
3. P0 is reduced and Gorenstein with trivial dualizing sheaf,
4. if emin(K) ≥ 3, then LQ is very ample,
5. (Q,LQ) is an étale quotient of some PSQAS (Q∗,LQ∗) with
emin(kerλ(LQ∗)) ≥ 3, hence with LQ∗ very ample,

6. G(K) acts on (Q,LQ) and (P,LP ) extending the action of G(Kη)
on (Gη,Lη).

See Definition 3.5 for emin. Theorem 4.6 (1) is proved in Subsec. 6.4.
We call (Q0,L0) and (P0,L0) as follows:
◦ (Q0,L0): PSQAS — a projectively stable quasi-abelian scheme,

which can be nonreduced,
◦ (P0,L0): TSQAS — a torically stable quasi-abelian scheme (=

variety), which is always reduced.

Remark 4.7. Theorem 4.6 (2) is rather misleading. In the proof
of it, we never define P to be the normalization of Q. We only construct
P with P0 reduced and Pη � Gη. The normality of P is a consequence
of the reducedness of P0 by the following well-known Claim.

Claim 4.7.1. Let R be a complete discrete valuation ring, S :=
Spec R, and η the generic point of S. Assume that π : Z → S is flat
with Z0 reduced and Zη nonsingular. Then Z is normal.

Proof. See [32, Lemma 10.3]. Q.E.D.

Remark 4.8. In dimension one, any PSQAS is a TSQAS and vice
versa, which is either a smooth elliptic or an N -gon (of rational curves).
Once the moduli of PSQASes (resp. TSQASes) is constructed, Theo-
rem 4.9 will prove that the moduli is separated, and then Theorem 4.6
will prove that the moduli is proper.

Theorem 4.9. (Uniqueness [30],[32]) In Theorem 4.6, (Q,L) resp.
(P,L) is uniquely determined by (Gη,Lη) if emin(K) ≥ 3 (resp. in any
case).
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See [30, Theorem 10.4] and [32, Theorem 10.4; Claim 2, p. 124] for
the detail when emin(H) ≥ 3. See Subsec 11.10 for emin(H) ≤ 2.

§5. PSQASes in low dimension

The purpose of this section is to show motivating examples in di-
mension one and two.

5.1. Hesse cubics and theta functions

Let R be a complete discrete valuation ring (CDVR), I the maximal
ideal of R and q a generator (uniformizer) of I, so I = qR. For instance,
if R = Z3, then we can choose q = 3, and if R = k[[t]], k a field, then
q = t. Let θk be the same as in Subsec. 2.1 (iv)

θk(ω, z) =
∑
m∈Z

q(3m+k)2w3m+k

Then the power series θk converge I-adically.
Now we calculate the limit of [θ0, θ1, θ2] as q tends to 0.
First we shall show a computation, which once puzzled us so much.

θ0(q, w) =
∑
m∈Z

q9m
2
w3m

= 1 + q9w3 + q9w−3 + q36w6 + · · · ,
θ1(q, w) =

∑
m∈Z

q(3m+1)2w3m+1

= qw + q4w−2 + q16w4 + · · · ,
θ2(q, w) =

∑
m∈Z

q(3m+2)2w3m+2

= qw−1 + q4w2 + q16w−4 + q25w5 + · · · .

Hence in P2

lim
q→0

[θ0, θ1, θ2](q, w)] = [1, 0, 0]

The elliptic curves converge to one point? This looks strange. The
reason why we got the above is that we treated w as a constant. There
is Néron model behind this strange phenomenon. We cannot explain it
in detail here. Instead we show how to modify the above computation.
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Let w = q−1u for u ∈ R \ I and u = u mod I. Then we have

θ0(q, q−1u) =
∑
m∈Z

q9m
2−3mu3m

= 1 + q6u3 + q12u−3 + q30u6 + · · · ,
θ1(q, q−1u) =

∑
m∈Z

q(3m+1)2−3m−1u3m+1

= u+ q6u−2 + q12u4 + · · · ,
θ2(q, q−1u) =

∑
m∈Z

q(3m+2)2−3m−2u3m+2

= q2u2 + q2u−1 + q20u5 + q20u−4 + · · · .
Hence in P2

lim
q→0

[θ0, θ1, θ2](q, q−1u) = [1, u, 0]

Similarly

θ0(q, q−2u) = 1 + q3u3 + q15u−3 + q24u6 + · · · ,
θ1(q, q−2u) = q−1u+ q12u−2 + q8u4 + · · · ,
θ2(q, q−2u) = u2 + q3u−1 + q15u5 + q24u−4 + · · · ,

lim
q→0

[θ0, θ1, θ2](q, q−2u) = lim
q→0

[1, q−1u, u2] = [0, 1, 0] in P2.

Similarly

θ0(q, q−3u) = 1 + u3 + q18u−3 + q18u6 + · · · ,
θ1(q, q−3u) = q−2u+ q10u−2 + q4u4 + · · · ,
θ2(q, q−3u) = q−2u2 + q4u−1 + q10u5 + q28u−4 + · · · ,

lim
q→0

[θ0, θ1, θ2](q, q−3u) = lim
q→0

[1, q−2u, u2] = [0, 1, u] in P2.

Let w = q−2λu (a section over a finite extension of k(η) for λ ∈ Q)
and u ∈ R \ I.

lim
q→0

[θ0, θ1, θ2](q, q−2λu) =

{ [1, 0, 0] (if −1/2 < λ < 1/2),
[1, u, 0] (if λ = 1/2),
[0, 1, 0] (if 1/2 < λ < 3/2),
[0, 1, u] (if λ = 3/2),
[0, 0, 1] (if 3/2 < λ < 5/2).
[u, 0, 1] (if λ = 5/2),

(8)
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When λ ranges in R, the same calculation shows that the same
limits repeat mod Y = 3Z because

lim
q→0

[θ0, θ1, θ2](q, q6n−au) = lim
q→0

[θ0, θ1, θ2](q, q−au).

Thus we see that limτ→∞C(μ(τ)) is the 3-gon x0x1x2 = 0.

Definition 5.2. For λ ∈ X ⊗Z R fixed, let

Fλ := a2 − 2λa (a ∈ X = Z).

We define a Delaunay cell

D(λ) :=
the convex closure of all a ∈ X
that attain the minimum of Fλ

By computations we see

D(j +
1
2
) = [j, j + 1] := {x ∈ R; j ≤ x ≤ j + 1},

D(λ) = {j} (if j − 1
2
< λ < j +

1
2
),

[θ̄k]k=0,1,2 : = lim
q→0

[θk(q, q−2λu))]k=0,1,2

θ̄k =

{
ūj (if j ∈ D(λ) ∩ (k + 3Z))
0 (if D(λ) ∩ (k + 3Z) = ∅).

For instance D(1
2 ) ∩ (0 + 3Z) = {0}, D(1

2 ) ∩ (1 + 3Z) = {1} and

lim
q→0

[θk(q, q−1u))] = [θ̄0, θ̄1, θ̄2] = [ū0, ū, 0] = [1, ū, 0].

Similarly for any λ = j+(1/2), we have an algebraic torus as a limit

{[ūj, ūj+1] ∈ P1; ū ∈ Gm} � Gm (= C∗).

� � � � � � �

σ−3︷ ︸︸ ︷ σ−2︷ ︸︸ ︷ σ−1︷ ︸︸ ︷ σ0︷ ︸︸ ︷ σ1︷ ︸︸ ︷ σ2︷ ︸︸ ︷
τ−3 τ−2 τ−1 τ0 τ1 τ2 τ3

Fig. 1. Delaunay decomposition
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Let λ ∈ X⊗R, and σ = D(λ) be a Delaunay cell, and O(σ) the stra-
tum of C(∞) consisting of limits of (q, q−2λu). If σ is one-dimensional,
then O(σ) = C∗, while O(σ) is one point if σ is zero-dimensional. Thus
we see that C(μ(∞)) is a disjoint union of O(σ), σ being Delaunay
cells mod Y , in other words, it is stratified in terms of the Delaunay
decomposition mod Y .

Let σj = [j, j + 1] and τj = {j}. Then the Delaunay decomposition
(resp. the stratification of C(∞)) is given in Fig. 1 (resp. Fig. 2).

��
�
�
�
�
��

�

��
�

�
�

�
��

O(τ0)

O(τ2)

O(τ1)O(σ0)

O(σ1)O(σ2)

Fig. 2. A 3-gon

5.3. The complex case
To apply the computation in the last section to the moduli problem,

we need to know the scheme-theoretic limit of the image of E(ω).
Now let us write

θk(q, w) =
∑
m∈Z

q(3m+k)2w3m+k =
∑
m∈Z

a(3m+ k)w3m+k

where a(x) = qx
2

for x ∈ X := Z. Let Y = 3Z. Then θk is Y -invariant :

θk =
∑
y∈Y

a(y + k)wy+k.

Since the curve E(τ) is embedded into P2
C by θk, we see

E(ω) = Proj C[xk, k = 0, 1, 2]/(x3
0 + x3

1 + x3
2 − 3μ(ω)x0x1x2)

� Proj C[θkϑ, k = 0, 1, 2]

= Proj (C[[a(x)wxϑ, x ∈ X ]])Y−inv

(9)
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where ϑ is a transcendental element of degree one, deg(xk) = 1, and
deg(θk) = 0 and deg(a(x)wx) = 0. Recall that if U = Spec A is affine,
G a finite group acting on U , then

U/G = Spec AG-inv.

So we wish to regard E(ω) as

E(ω) = (Proj (C[[a(x)wxϑ, x ∈ X ]]))/Y.

Is this really true? Over C, a(x) ∈ C×, and

Gm = Proj C[a(x)wxϑ, x ∈ X ],

In fact, the rhs is covered with infinitely many affine Uk

Uk = Spec C[a(x)wxϑ/a(k)wkϑ;x ∈ X ] = Spec C[w,w−1] = Gm,

which is independent of k. Hence over C

E(ω) � Gm/w �→ q6w

� Gm/{w �→ q2yw; y ∈ 3Z}
� (Proj C[a(x)wxϑ, x ∈ X ])/Y.

(10)

Thus we see by combining (9) and (10)

E(ω) � Proj (C[[a(x)wxϑ, x ∈ X ]])Y−inv

� (Proj C[a(x)wxϑ, x ∈ X ])/Y,
(11)

though we should make the convergence of infinite sum precise. In fact,
this is easily justified when R is a CDVR.

5.4. The scheme-theoretic limit
We define the subring R̃ of k(η)[w,w−1 ][ϑ] by

R̃ = R[a(x)wxϑ;x ∈ X ]

where a(x) = qx
2

for x ∈ X , X = Z, and ϑ is an indeterminate of degree
one, where q is the uniformizer of R. We define the action of Y on R̃ by
the ring homomorphism

S∗
y(a(x)w

xϑ) = a(x+ y)wx+yϑ.(12)
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where Y = 3Z ⊂ X . Then what does Z look like?

Z = Proj R[a(x)wxϑ, x ∈ X ]/Y.

Let X and Un be

X = Proj R[a(x)wxϑ, x ∈ X ],

Un = Spec R[a(x)wx/a(n)wn, x ∈ X ]

= Spec R[(a(n+ 1)/a(n))w, (a(n− 1)/a(n))w−1]

= Spec R[q2n+1w, q−2n+1w−1]

� Spec R[xn, yn]/(xnyn − q2),

where Un and Un+1 are glued together by

xn+1 = x2
nyn, yn+1 = x−1

n , xn = q2n+1w, yn = q−2n+1w−1.

� � � � � � �

Fig. 3. An infinite chain

Let X0 := X ⊗R (R/qR) and Vn = X0 ∩ Un. Then X0 is an infinite
chain of P1, as in Fig. 3.

The action of the sublattice Y = 3Z on X0 is transfer by 3 compo-
nents. In fact, S−3 sends

Vn
S−3→ Vn+3

S−3→ Vn+6 → · · ·,

(xn, yn)
S−3�→ (xn+3, yn+3) = (xn, yn)

so that we have a cycle of 3 rational curves as the quotient X0/Y . Thus
we have the same consequence as in Subsec. 5.1 by using theta functions.

5.5. The partially degenerate case in dimension two
We wish to describe any PSQAS in the partially degenerate case in

dimension two. For simplicity, we shall give it directly by using theta
functions. See Subsec. 6.7 for the totally degenerate case.

Case 5.5.1. First we consider the complex case. Let

δ = diag(�,m) :=
(
� 0
0 m

)
, τ =

(
τ11 τ12
τ12 τ22

)
, τ12 = τ21.
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Let Λ be the lattice spanned by column vectors of I2 and τδ, and
Gη the abelian variety C2/Λ. We consider the degeneration of Gη as
q := eπiτ22 tends to 0. Assume � and m ≥ 3. Following [42, Chap. VII,
pp. 77–79] we define for k = (k1, k2) (0 ≤ k1 ≤ �− 1, 0 ≤ k2 ≤ m− 1),

θk =
∑
n∈Z2

eπi
t(δn+k)τ(δn+k)+2πit(δn+k)z

=
∑
n2∈Z

q(mn2+k2)2wmn2+k2ϑk1(z1 + (mn2 + k2)τ12),

where T = τδ, W = δT with the notation of [42], q = eπiτ22 and ϑk1 is
a theta function of level � of one variable. Hence

θk =
∑
n2∈Z

T ∗
(mn2+k2)τ12

(ϑk1)q
(mn2+k2)

2
wmn2+k2 .(13)

where (13) is a general form of algebraic theta functions in [30, Theo-
rem 4.10 (3)].

Case 5.5.2. Now we consider the general case. In any algebraic
case, we can start with the last form (13) of theta functions by [30, The-
orem 4.10], where q is a uniformizing parameter of a CDVR R. In this
case, X = Z, Y = mZ and the Delaunay decomposition associated with
this degeneration of abelian surfaces is the union of the unit intervals
[j, j + 1] (j ∈ Z) modulo Y .

Let H = (Z/�Z) ⊕ (X/Y ) � (Z/�Z) ⊕ (Z/mZ). By the theta func-
tions θk we have a closed immersion of an abelian variety Gη to P(VH).
We compute the limit of the image of Gη as q tends to 0.

By the assumption � ≥ 3, ϑk1 (0 ≤ k1 ≤ � − 1) embeds an elliptic
curve into the projective space P�−1.

Let w = q−2a−1v (a ∈ Z), v ∈ R \ I and I = qR. Let v = v mod I.
Then we have

θk1,a(q, u, q
−2a−1v) = q−a

2−aT ∗
aτ12ϑk1 + · · · ,

θk1,a+1(q, u, q−2a−1v) = q−a
2−aT ∗

(a+1)τ12
ϑk1 + · · · ,

θk1,k2(q, u, q
−2a−1v) ≡ 0 mod q−a

2−a+1, (k2 
= a, a+ 1),

whence

lim
q→0

[θk1,k2(q, u, q
−2a−1v)](k1,k2)∈H = [θk1,au

a, θk1,a+1u
a+1]k1

= [T ∗
aτ12ϑk1︸ ︷︷ ︸
k2=a

, (T ∗
(a+1)τ12

ϑk1)v︸ ︷︷ ︸
k2=a+1

]k1
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with zero terms ignored. In particular, for w = q−1v, we have

lim
q→0

[θk1,k2(q, u, q
−1v)](k1,k2)∈H = [θk1,0, θk1,1] = [ ϑk1︸︷︷︸

k2=0

, (T ∗
τ12ϑk1)v︸ ︷︷ ︸
k2=1

].(14)

For a = m, we have

lim
q→0

[θk1,k2(q, u, q
−2m−1v)](k1,k2)∈H = [T ∗

mτ12ϑk1︸ ︷︷ ︸
k2=0

, (T ∗
(m+1)τ12

ϑk1)v︸ ︷︷ ︸
k2=1

](15)

Thus the limit of the abelian surface (Gη,Lη) as q → 0 is the union
of m copies of one and the same P1-bundle over an elliptic curve. By
(14), any of the P1-bundle is the same compactification of the same Gm-
bundle whose extension class is given by τ12 through the isomorphism

Ext(E,Gm) � E∨ � E � τ12.

By (14) and (15), the zero section of the first P1-bundle is identified
with the ∞-section of the m-th P1-bundle by shifting by τ12.

§6. PSQASes in the general case

6.1. The degeneration data of Faltings-Chai
Now we consider the general case. Let R be a complete discrete

valuation ring (CDVR), k(η) the fraction field of R, I the maximal ideal
of R, q a generator (uniformizer) of I and S = Spec R. Then we can
construct similar degenerations of abelian varieties if we are given a
lattice X , a sublattice Y of X of finite index and

a(x) ∈ k(η)×, (x ∈ X)

such that the following conditions are satisfied
(i) a(0) = 1,
(ii) b(x, y) := a(x+ y)a(x)−1a(y)−1 is a symmetric bilinear form on

X ×X ,
(iii) B(x, y) := valq b(x, y) is positive definite,

(iv)∗ B is even and valq a(x) = B(x, x)/2.
We assume here a stronger condition (iv)∗ for simplicity.
These data do exist for any abelian scheme Gη if G0 is a split torus.

This is proved by Faltings-Chai [7].
Suppose that we are given an abelian scheme (Gη,Lη) and a polar-

ization morphism

λ(Lη) : Gη → Gtη := Pic0(Gη).(16)
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Then there exists the connected Néron model of Gη (resp. Gtη), which
we denote by G (resp. Gt). Then by finite base change if necessary
we may assume G is semi-abelian, that is, an extension of an abelian
scheme by an algebraic torus.

For simplicity, we assume

G0 are Gt0 are split tori over k(0) := R/qR.(17)

Let

X = Homgp.sch.(G0,Gm), Y = Homgp.sch.(Gt0,Gm).(18)

Then both X and Y are lattices of rank g, and Y is a sublattice of X of
finite index because G0 → Gt0 is surjective. This case is called a totally
degenerate case, that is, the case when rankZX = dimGη, which is
what we mainly discuss here.

IfG0 is neither a torus nor an abelian variety, then the case is called a
partially degenerate case. Also in the partially degenerate case we have
degeneration data similar to the above a(x) and b(x, y), though a bit
more complicated. This enables us to similarly construct a degenerating
family of abelian varieties.

In what follows we consider the case where G0 is a (split) torus
Gg
m,k(0) over k(0).

Lemma 6.1.1. Let R be a CDVR, G a flat S-group scheme, and
G0 the closed fiber of G. Suppose that G0 is a (split) torus Gg

m,k(0) over
k(0) for some g. Then the formal completion Gfor of G along G0 is
isomorphic to a formal R-torus:

Gfor � Gg
m,R,for = Spf R[[wx;x ∈ X ]]I-adic(19)

where X is a lattice of rank g.

Proof. Let k = k(0). Let n be any nonnegative integer, Rn =
R/In+1, Sn = Spec Rn and Gn := G×S Sn. By the assumption, G0 =
Gg
m,k for some g. Let H := Gg

m,R,for (the formal torus over R) and
Hn = H ×S Sn. Hence G0 = H0 = Gg

m,k. Let f0 : H0 → G0 be the
identity idGg

m,k
of Gg

m,k. Since H0 = Gg
m,R0

is affine, the cohomology
group H2(H0, f

∗
0Lie(G0/k)) vanishes, where Lie(G0/k) is the tangent

sheaf of G0, hence isomorphic to OgG0
, hence f∗

0Lie(G0/k)) � OgH0
. By

applying [6, I, Exposé III, Corollaire 2.8, p. 118] toH1, G1 and f0, we see
that f0 can be uniquely lifted to an S1-(homo)morphism f1 : H1 → G1

as S1-group schemes. This lifting f1 is an isomorphism because f0 is an
isomorphism. Similarly any isomorphism fn : Hn → Gn as Sn-group
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schemes can be lifted again by [6, I, Exposé III, Corollaire 2.8, p. 118]
to an Sn+1-isomorphism fn+1 : Hn+1 → Gn+1 as Sn+1-group schemes
because Hn is affine, and the cohomology group H2(Hn, f

∗
nLie(Gn/k))

vanishes by the same argument as the n = 0 case. Hence Hfor � Gfor as
S-group schemes. Q.E.D.

Lemma 6.1.2. We have
1. any line bundle on Gg

m,R,for is trivial.
2. any global section θ ∈ Γ(G,Ln) is a formal power series of wx,

and we can write θ as

θ =
∑
x∈X

σx(θ)wx(20)

for some σx(θ) ∈ R.

Proof. Let Rn = R/In+1, An := Rn[w±1
i ; i = 1, · · · , g] and

Gn := Gg
m ⊗Rn = Spec An.

To prove the first assertion, it suffices to prove
(i) any line bundle L0 on G0 is trivial,
(ii) if a line bundle L on Gn is trivial on Gn−1, it is trivial on Gn.
Any line bundle L0 on G0 is linearly equivalent to D−D′ for some

effective divisors D and D′ on G0. For proving (i) it suffices to prove
that the line bundle L′ = [D] associated to any irreducible divisor D on
G0 is trivial. Since G0 is affine, D is defined by a prime ideal p of A0

of height one. Since A0 is a UFD, p is generated by a single generator
[19, Theorem 47, p. 141], hence it defines a trivial line bundle globally
on G0. This proves (i).

Next we prove (ii). Since Gn is an Rn-scheme, we can find an affine
covering Uj = Spec Bj of Gn for some Rn-algebras Bj , and one cocycle
fjk ∈ Γ(OUjk

)× (the units of Γ(OUjk
)) associated to the line bundle L

on Gn such that

fijfjk = fik.(21)

By the assumption that L is trivial on Gn−1 there exist gj ∈ B×
j such

that fij = g−1
i gj mod In. Let gij = gig

−1
j fij . Then gij is the one

cocycle defining L on Gn such that gij = 1 + aijq
n for some aij ∈ Bij .

By (21), we have gijgjk = gik, hence

aij + ajk = aik in Bijk ⊗R/I ,
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where Bijk = Γ(OUi∩Uj∩Uk
). Since H1(OG0) = 0, we have bj ∈ Bi ⊗R0

such that aij = −bi + bj . Hence

gij = (1 + biq
n)−1(1 + bjq

n),

which defines the trivial line bundle on Gn. This proves (ii). Hence this
completes the proof of the first assertion of Lemma 6.1.2. The second
assertion of Lemma 6.1.2 follows easily from it. Q.E.D.

Theorem 6.1.3. If G is totally degenerate, then by a suitable fi-
nite base change, there exist data {a(x);x ∈ X} satisfying (i)-(iv)∗. In
terms of these data, we have using the expression (20)

(v) for any n ≥ 1, Γ(Gη,Lnη ) is the k(η) vector space of θ such that

σx+y(θ) = a(y)nb(y, x)σx(θ)

and σx(θ) ∈ k(η) for any x ∈ X, y ∈ Y .

The condition (v) enables us to prove the part (1) of Theorem 4.6.

6.2. Construction
So we may assume we are given the data a(x) as above. Then we

define X , Un (n ∈ X), by

X = Proj R̃, R̃ := R[a(x)wxϑ;x ∈ X ],

Un = Spec R[a(x)wx/a(n)wn;x ∈ X ]

= Spec R[(a(x)/a(n))wx−n],

where R̃ is a subring of k(η)[wx;x ∈ X ][ϑ] as in Subsec. 5.4, and X
is a scheme locally of finite type, covered with open affine schemes Un
(n ∈ X). Let Xfor be the formal completion of X along the special fiber.

We define LX to be the line bundle of X given by the homogeneous
ideal of R̃ generated by the degree one generator ϑ. We identify X ×Z

Gm,R (� Gg
m,R) with HomZ(X,Gm,R). Then we have the actions Sz

and Tβ on X as follows:

S∗
z (a(x)w

xϑ) = a(x+ z)wx+zϑ,

T ∗
β (a(x)wxϑ) = β(x)a(x)wxϑ, hence

T ∗
βS

∗
z (a(x)w

xϑ) = β(x+ z)a(x+ z)wx+zϑ,

S∗
zT

∗
β (a(x)wxϑ) = β(x)a(x+ z)wx+zϑ,

where z ∈ X and β ∈ Hom(X,Gm,R) (� Gg
m,R). It follows that on LX

SzTβ = β(z)TβSz, or [Sz, Tβ] = β(z) idLX .(22)
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Let Qfor := Xfor/Y := Xfor/{Sy; y ∈ Y } :

Xfor/Y = (Proj R[a(x)wxϑ, x ∈ X ])for/Y.

Then LX descends to the formal quotient Qfor as an ample sheaf. Hence
by Grothendieck’s algebraization theorem [10, III, 11, 5.4.5] there exists
a scheme (Q,L) such that the formal completion of (Q,L)for is isomor-
phic to (Qfor,Lfor). This is (Q,LQ) in Theorem 4.6.

Remark 6.2.1. For any connected R-scheme T , and for any T -
valued points x ∈ X(T ) = X and β ∈ Hom(X,Gm,R)(T ), we have
β(x) ∈ Gm,R(T ) = Γ(OT )×. Any β ∈ Hom(X,Gm,R) acts on X by Tβ.
It follows that the R-split torus Hom(X,Gm,R) acts on X by Tβ.

Definition 6.2.2. Let H = X/Y , H∨ := Hom(H,Gm). We
define G(Q,L) = G(P,L) to be the group generated by Sz and Tβ
(z ∈ H = X/Y, β ∈ H∨). Since H∨ is a subgroup of Hom(X,Gm),
we infer from (22) that

SzTβ = β(z)TβSz.(23)

This is isomorphic to GH in Definition 3.5 by mapping Sz (resp. Tβ)
to (1, z, 0) (resp. (1, 0, β)).

In what follows, we wish to prove Theorem 4.6 (1)

(Pη,Lη) � (Qη,Lη) � (Gη,Lη).(24)

For doing so, we essentially need only the following.

Lemma 6.3. With the notation in Subsec. 4.3 and Theorem 4.6,
suppose (Kη, eWeil) � (K, eK) as symplectic groups. Let Z = P or Q.
Then there exists n0 such that for any n ≥ n0 we have

1. Hq(Z0,Ln0 ) = Hq(Z,Ln) = 0 for q ≥ 1,
2. Γ(Z0,Ln0 ) = Γ(Z,Ln)⊗k(0) is a k(0)-vector space rank ng

√|K|,
3. Γ(Pη,Lnη ) = Γ(P,Ln) ⊗ k(η),
4. Γ(P,L) = Γ(Q,L), which is a free R-module of rank

√|K|,
5. if emin(K) ≥ 3, then Γ(Q,L) is very ample on Q.

Proof. This is a corollary to Serre’s vanishing theorem except (4).
See [30, Lemma 5.12] for (4). See [30, Lemma 6.3] for (5). Q.E.D.

6.4. Proof of (Pη,Lη) � (Qη,Lη) � (Gη,Lη)
By [30, Remark 3.10, p. 673] (see also [30, Remark 4.11, p. 679]),

Γ(Pη,Lnη ) is a k(η)-submodule of Γ(Gfor,Lnfor) ⊗ k(η) given by{
θ =

∑
x∈X

c(x)wx;
c(x+ ny) = b(y, x)a(y)nc(x)
c(x) ∈ k(η), any x ∈ X, y ∈ Y

}
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where the I-adic convergence of θ is automatic by the condition

c(x+ ny) = b(y, x)a(y)nc(x).

This is the same as Γ(Gη,Lnη ) by Theorem 6.1.3. A k(η)-basis of Γ(Gη,Lnη )

is given for instance as θ[n]
x̄ (x ∈ X/nY )

θ
[n]
x̄ :=

∑
y∈Y

b(y, x)a(y)na(x)wx+ny =
∑
y∈Y

a(y)n−1a(x+ y)wx+ny .

We choose n ≥ 4 large enough so that Lnη is very ample. Then the
abelian variety Gη embedded by the linear system Γ(Gη,Lnη ) is given as

the intersection of certain quadrics of θ[n]
x̄ by [22, Theorem 10, p.80] (see

also [40, Theorem 2.1, p. 717]). The coefficients of the defining equations
are given by the Fourier coefficients of θ[n]

x̄ . This proves

(Qη,Lη) � (Pη,Lη) � (Gη,Lη).
where (Qη,Lη) � (Pη,Lη) is clear.

6.5. The Delaunay decompositions
Let X be a lattice of rank g and B a positive symmetric integral

bilinear form on X associated with the degeneration data for (Z,L).

Definition 6.5.1. For a fixed λ ∈ X ⊗Z R fixed, we define a
Delaunay cell σ to be the convex closure of all the integral vectors (which
we call Delaunay vectors) attaining the minimum of the function

B(x, x) − 2B(λ, x) (x ∈ X).

When λ ranges in X ⊗Z R, we will have various Delaunay cells.
Together, they constitute a locally finite polyhedral decomposition of
X⊗ZR, invariant under the translation byX . We call this the Delaunay
decomposition of X ⊗Z R, which we denote by DelB.

There are two types of Delaunay decomposition of Z2 ⊗ R = R2

inequivalent under the action of SL(2,Z). See Figure 4.
The Delaunay decomposition describes a PSQAS as follows.

Theorem 6.6. Let (Z,L) := (Q0,L0) be a totally degenerate PSQAS,
X the integral lattice, Y the sublattice of X of finite index and B the pos-
itive integral bilinear form on X all of which were defined in Subsec. 6.1.
Let σ,τ be Delaunay cells in DelB. Then

1. for each σ there exists a subscheme O(σ) of Zred, which is a torus
of dimension dim σ invariant under the action of the torus G0,
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2. σ ⊂ τ iff O(σ) ⊂ O(τ), where O(τ) is the closure of O(τ) in Z,
3. O(τ) is the disjoint union of O(σ) for all σ ⊂ τ ,
4. Zred =

⋃
σ∈DelB mod Y O(σ),

5. the local scheme structure of Z is completely described by B,
6. L is ample, and it is very ample if emin(X/Y ) ≥ 3.
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Fig. 4. Delaunay decompositions

We have similar descriptions of the partially degenerate PSQASes
and of TSQASes (P0,L0) (see [2, p. 410] and [30, p. 678]).

6.7. The totally degenerate case in dimension two

We note that we learned more or less the same computation as this
subsection in a letter of K. Ueno to Namikwa in 1972. We shall explain
here what Figure 4 means geometrically.

We follow the construction in Subsec. 6.2. Let R be a CDVR with
uniformizer q, k(0) = R/qR and X = Zf1 ⊕ Zf2 a lattice of rank two.
Let � and m be any positive integers, and set Y = Z�f1 ⊕ Zmf2.

Case 6.7.1. Let B(x) = x2
1 + x2

2,

a(x) = qx
2
1+x

2
2a2x1x2 , b(x, y) = q2x1y1+2x2y2a2x1y2+2y1x2

where a ∈ R×, x = x1f1 + x2f2, y = y1f1 + y2f2. Then we define

X = Proj R[a(x)wxϑ, x ∈ X ],

Un = Spec R[a(x)wx/a(n)wn, x ∈ X ] (n ∈ X)

= Spec R[(a(x)/a(n))wx−n],

Xfor/Y = (Proj R[a(x)wxϑ, x ∈ X ])for/Y.
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Let Q′
for := Xfor/Y . Let n = 0 for simplicity. Then we have

U0 = Spec R[a(f1)w1, a(f2)w2, a(−f1)w−1
1 , a(−f2)w−1

2 ],

(U0)0 = Spec R[qw1, qw2, qw
−1
1 , qw−1

2 ] ⊗ k(0)

� Spec k(0)[u1, u2, v1, v2]/(u1v1, u2v2),

where (U0)0 = U0 ⊗ k(0). Hence Un � U0 and

(Un)0 : = Spec k(0)[u(n)
1 , u

(n)
2 , v

(n)
1 , v

(n)
2 ]/(u(n)

1 v
(n)
1 , u

(n)
2 v

(n)
2 )

where n = n1f1 + n2f2, and

u
(n)
1 = q2n1+1w1, u

(n)
2 = q(2n2+1)w2,

v
(n)
1 = q(−2n1+1)w−1

1 , v
(n)
2 = q(−2n2+1)w−1

2 .

These charts will be patched together to yield (Q′
for)0.

This PSQAS (Q′
for)0 is a union of �m copies of P1 × P1, whose

configuration is just the same as the Delaunay decomposition on the left
hand side in Fig. 4. The first horizontal chain of � rational curves is
identified with the m-th horizontal chain of � rational curves by shifting
by multiplication by a2m on each rational curve, while the first vertical
chain of m rational curves is identified with the �-th vertical chain of
m rational curves by shifting by multiplication by a2� on each rational
curve because

S∗
mf2(w1) = b(f1,mf2)w1 = a2mw1,

S∗
�f1(w2) = b(�f1, f2)w2 = a2�w2.

The PSQAS (Q′
for)0 is a level-GH PSQAS. where H = (Z/�Z) ⊕

(Z/mZ) � (Z/e1Z) ⊕ (Z/e2Z), with e1 = GCD(�,m) and e2 = �m/e1.

Case 6.7.2. Let B(x) = x2
1 − x1x2 + x2

2,

a(x) = qx
2
1−x1x2+x

2
2 , b(x, y) = q2x1y1−x1y2−x2y1+2x2y2

where x = x1f1 + x2e2, y = y1f1 + y2e2. Then we define

X = Proj R[a(x)wxϑ, x ∈ X ],

Un = Spec R[a(x)wx/a(n)wn, x ∈ X ] (n ∈ X)

= Spec R[(a(x)/a(n))wx−n],

Xfor/Y = (Proj R[a(x)wxϑ, x ∈ X ])for/Y.
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Let Q′′
for := Xfor/Y . Let n = 0 for simplicity. Then we have

U0 = Spec R[qw1, qw1w2, qw2, qw
−1
1 , qw−1

1 w−1
2 , qw−1

2 ]

� Spec k(0)[ui; 0 ≤ i ≤ 5]/(ui−1ui+1 − qui, uiui+3 − q2)

(U0)0 � Spec k(0)[ui; 0 ≤ i ≤ 5]/(uiuj ; |i− j (mod 6)| ≥ 2),

where (U0)0 = U0 ⊗ k(0).
We have a PSQAS (Q′′

for)0. This PSQAS (Q′′
for)0 is a union of �m

copies of P2, whose configuration is just the same as the Delaunay de-
composition on the right hand side in Fig. 4. The first horizontal chain
of � rational curves is identified with the m-th horizontal chain of � ratio-
nal curves without shifting on each rational curve, while the first vertical
chain of m rational curves is identified with the �-th vertical chain of m
rational curves without shifting on each rational curve. The PSQAS
(Q′′

for)0 is a level-GH PSQAS for H = (Z/�Z) ⊕ (Z/mZ).

Remark 6.7.3. Gunji [12] studied the defining equations of the
universal abelian surface with level three structure. His universal abelian
surface is the same as our universal PSQAS over the moduli space SQ2,K

when K = H ⊕H∨, H = (Z/3Z)⊕2 and the base field is C. He proved
that the level three universal abelian surface is the intersection of 9
quadrics and 4 cubics of P8 ×O3 SQ2,K ×O3 C [12, Theorem 8.3]. In his
article Gunji determines the fibers only partially [12, pp. 95-96].

By our study [30, Theorem 11.4] (Theorem 8.5), any fiber of the
universal PSQAS over SQ2,K is a smooth abelian surface, or a cycle of
3 rational elliptic surfaces in Subsec. 5.5, with � = m = 3, or else one of
the singular surfaces in Cases 6.7.1 or 6.7.2 with � = m = 3.

Remark 6.7.4. Here we explain only a little about the local struc-
ture of SQg,K for g = 2. It turns out that the local structure of SQg,K
is the same as that of a toroidal compactification, the second Voronoi
compactification.

Let X be a lattice of rank two, B(x) the bilinear form on X given
in Case 6.7.2

B(x) = x2
1 − x1x2 + x2

2.

The Voronoi cone VB with center B is defined to be

VB := {β : positive definite bilinear form on X with Delβ = DelB}
=
{
β(x) := (β12 + β13)x2

1 − 2β12x1x2 + (β12 + β23)x2
2;βij > 0

}
.
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We define a chart T and a semi-universal covering X over T to be

T := T (VB) := Spf W (k)[[qij ; i < j]],

X = Proj W (k)[[qij ; i < j]][a(x)wxϑ;x ∈ X ]

where W (k) is the Witt ring of k , qij = qβij (1 ≤ i < j ≤ 3) and

a(x) := qβ
∗(x) := q

(x2
1+x1)/2

13 q
(x2

2+x2)/2
23 q

(x2
1−2x1x2+x

2
2+x1+x2)/2

12 ,

where β∗(x) = 1
2β(x) + 1

2r(x) and r(x) = (β13 + β12)x1 + (β12 + β23)x2.
Let LX be the invertible sheaf OX (1) on X . We define the action of

the lattice X on X by

S∗
z (a(x)w

xϑ) = a(x+ z)wx+zϑ.

Let (Xfor,Lfor) be the formal completion of (X ,LX ) along the closed
subscheme X0 of X given by qij = 0. Let Y be a sublattice of X of finite
index. We take the formal quotient of Xfor by Y

(Qfor,Lfor) := (Xfor,Lfor)/Y,

where Qfor ⊗ k(0) � Q′′
0 if Y is the same as in Case 6.7.2. Moreover

(Qfor,Lfor) is a semi-universal PSQAS over T . In other words, the defor-
mation functor of (Qfor,Lfor)⊗ k(0) is pro-represented by W (k)[[qij ; i <
j]]. Compare [27] and Subsec 9.3.

Let τ = (τij) be a 2 × 2 complex symmetric matrix with positive
imaginary part, and set

q12 = e−2πiτ12 , q13 = e2πi(τ11+τ12), q23 = e2πi(τ12+τ22).

These are regular parameters of SQ2,K at (Qfor,Lfor) for any K with
emin(K) ≥ 3. This is also an infinitesimally local chart of the Mumford
toroidal compactification, which is in this case the so-called Voronoi
compactification, or to be a little more precise, the Mumford toroidal
compactification associated to the second Voronoi decomposition and
some arithmetic subgroup of Sp(4,Z). See [36].

6.8. Nonseparatedness of a naive moduli
We shall explain here how a naive generalization of classical level-n

structure results in a nonseparated compactification of the moduli of
abelian varieties. See [27].

In three dimensional case, let X be a lattice of rank 3. We choose

B =

⎛⎝ 2 −1 0
−1 2 −1
0 −1 2

⎞⎠ .
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The level-1 PSQASes (P0,L0) associated to B are parameterized by
3 nontrivial parameters [27, p. 197].

Let DelB /X be the quotient of the Delaunay decomposition DelB
by the translation action of X . Then DelB /X consists of three three-
dimensional cells (two tetrahedra and an octahedron), eight two-dimen-
sional cells and six one-dimensional cells and a 0-dimensional cell [27,
pp. 195-196]. Each level-1 PSQAS (P0,L0) has three irreducible com-
ponents, two (say, T1, T2) of which are P3 (modulo X action) and the
third (say, O) of which is a rational variety distinct from P3. Each of
the three irreducible components is a compactification of G3

m.
It follows that there are two different types (modulo Aut(P0)) of em-

bedding of G3
m into (P0,L0), that is, G3

m ⊂ Tk and G3
m ⊂ O. Therefore

there is a pair of R-PSQASes (P ′,L′) and (P ′′,L′′) such that

(P ′
η,L′

η) � (P ′′
η ,L′′

η), (G3
m ⊂ P ′

0) 
� (G3
m ⊂ P ′′

0 ).

This also implies that there are two inequivalent classes of classical
level-n structures on the étale (Z/nZ)3-covering (P ′

0,L′
0) of (P0,L0) as

the limits of the same (isomorphic) generic fiber. This shows that a naive
generalization of classical level-n structure will lead us to a nonseparated
moduli.

§7. The G-action and the G-linearization

Let G be a group (scheme). The purpose of this section is to prove
compatibility of various definitions about G-linearization.

7.1. The G-linearization
Definition 7.1.1. A G-linearization on (Z,L) is by definition the

data {(Tg, φg); g ∈ G} satisfying the conditions
(i) Tg is an automorphism of Z, such that Tgh = TgTh, T1 = idZ ,
(ii) φg : L → T ∗

g (L) is a bundle isomorphism with φ1 = idL,
(iii) φgh = (T ∗

hφg)φh for any g, h ∈ G((T ).
We say that (Z,L) is G-linearized if the above conditions are true.

Remark 7.1.2. If L and L′ are G-linearized, then L ⊗ L′ is also
G-linearized.

Definition 7.1.3. If (Z,L) is G-linearized, then we define a G-

action τ on the pair (Z,L). Via the isomorphism L
φh−→ T ∗

h (L), for
x ∈ Z, ζ ∈ Lx, we define

τ(h)(z, ζ) := (Th(z), φh(z)ζ).(25)
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Claim 7.1.4. τ is an action of G on (Z,L).

Proof. Via the isomorphisms

L
φh−→ T ∗

h (L)
T∗

hφg−→ T ∗
h (T ∗

g (L)) = T ∗
gh(L),

we see

τ(g) (τ(h)(z, ζ)) = τ(g) · (Th(z), φh(z)ζ)
= (Tg(Th(z)), φg(Th(z))φh(z)ζ)

= (Tgh(z), (T ∗
hφg · φh)(z)ζ)

= (Tgh(z), φgh(z) · ζ) = τ(gh)(z, ζ).

Hence τ is an action of G. Q.E.D.

Finally we note that if we are given an action τ of G on the pair
(Z,L) of a scheme Z and a line bundle L on Z, then we have a G-
linearization of L. In fact, τ is an action of G iff Tgh = TgTh and
φgh = T ∗

hφg · φh.
Claim 7.1.5. ([20, p. 295]) Associated to a given G-action τ on

(Z,L), we define a map ρτ,L(g) of H0(Z,L) to be

ρτ,L(g)(θ) := T ∗
g−1(φg(θ)) for any g ∈ G and any θ ∈ H0(Z,L).(26)

Then ρτ,L is a homomorphism.

Proof. We see

ρτ,L(gh)(θ) = T ∗
h−1g−1(φghθ) = T ∗

g−1{T ∗
h−1(T ∗

hφg · φhθ)}
= T ∗

g−1{T ∗
h−1(T ∗

hφg) · (T ∗
h−1φhθ)}

= T ∗
g−1{φg · (T ∗

h−1φhθ)} = ρτ,L(g)ρτ,L(h)(θ).

Q.E.D.

7.2. The G-linearization of OP(V )(1)
Let R be any ring. Suppose we are given an action of a group G

on an R-free module V of finite rank, in other words, a homomorphism
ρ : G → End (V ). Let V ∨ := Hom(V,R) be the dual of V , P(V )
the projective space with V = H0(P(V ), OP(V )(1)), H = OP(V )(1) the
hyperplane bundle of P(V ). Then V ∨ admits a natural affine R-scheme
structure V∨ defined by

V∨ = Spec SymV := Spec
∞⊕
n=0

SnV.
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The action ρ of G on V induces an action of G on SnV , hence on
SymV , hence on V∨, hence on the pair (P(V ),V∨ − {0}) of schemes.
We note that V∨ − {0} is a Gm-bundle over P(V ) associated with the
dual of the hyperplane bundle H of P(V ). Hence the action ρ of G on
V induces the action on the pair (P(V ),H) of schemes.

Let S be any R-scheme and P ∈ P(V )(S) any S-valued point. By
choosing affine coverings Ui := Spec Ai of S if necessary, P is a collection
of Pi ∈ P(V )(Ui) of (the equivalence class of) the points given by

γPi ∈ Hom(V,Ai)

such that the ideal of Ai generated by γP (V ) is Ai, where γPi ∼ γQi iff
γQi = cγPi for some c ∈ A×

i . Hence there are cij ∈ A×
ij := Γ(OUi∩Uj )×

such that γPi = cijγPj . In what follows, we suppose S = Ui for simplicity
and we identify P with γP .

We define an action of G on (P(V ),V∨ \ {0}) by

S∨(g)([γP ], γP ) := ([γP ◦ ρ(g−1)], γP ◦ ρ(g−1)).(27)

Then we see,

S∨(gh)(γP ) = γP ◦ ρ((gh)−1) = γP ◦ ρ(h−1)ρ(g−1)

= S∨(h)(γP )ρ(g−1) = S∨(g)S∨(h)(γP ).

Thus we have an action of G on the pair (P(V ),V∨\{0}) by Gm-bundle
automorphisms.

Definition 7.2.1. The action S∨(g) of g ∈ G on (P(V ),V∨ \{0})
induces an action on (P(V ),H), which we denote by S(g).

Remark 7.3. Let R be any ring, V an R-free module of finite
rank, and ρ : G→ End (V ) an action of G on V . Let V ∨ := Hom(V,R)
and 〈 , 〉 : V ∨ × V → R the dual pairing. Using this pairing we have a
dual action tρ of G on V ∨ such that

〈tρ(g)γ, F 〉 := 〈γ, ρ(g)F 〉,

where γ ∈ V ∨, and F ∈ V . Then tρ(gh) = tρ(h)tρ(g). Thus this is
made into a left action of G on P(V ) by taking Tg(γ) := tρ(g−1)(γ).
This Tg is the same as S∨(g) in Subsec. 7.2 because

Tg(γ)(F ) = 〈tρ(g−1)(γ), F 〉 = 〈γ, ρ(g)−1F 〉
= γ(ρ(g−1)F ) = S∨(g)(γ)(F ).
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Since we have the action Tg on P(V ), Claim 7.1.5 defines a homo-
morphism ρT,H (well known as the contragredient representation of Tg).
Then we have

(ρT,H(g)F )(γ) : = F (Tg−1γ) = F (tρ(g)γ)

= 〈tρ(g)γ, F 〉 = 〈γ, ρ(g)F 〉 = (ρ(g)F )(γ),

where x ∈ V ∨ \ {0}, F ∈ V . Hence ρT,H = ρ.
This justifies our notation (C, i, UH) (resp. (Z, i, UH)) in Lemma 3.12

(resp. in Theorem 8.5) where we indicate the action on (C,L) or (Z,L)
induced from UH simply by UH .

7.4. G-invariant closed subschemes

Let R be any ring, V an R-free module of finite rank, and G any
subgroup of PGL(V ). If Z be a G-invariant closed subscheme of P(V )
with L = OZ(1), then the G-action of (P(V ),H) keeps (Z,L) stable,
hence we have an action of G on the pair (Z,L). This gives rise to a
G-linearization of (Z,L).

Conversely

Claim 7.4.1. Let (Z,L) be an R-scheme with L a G-linearized
line bundle on Z, and V a G-submodule of H0(Z,L). Suppose that
V is R-free of finite rank and very ample. Then the natural morphism
(ψ,Ψ) : (Z,L) → (P(V ),H) is a G-equivariant closed immersion.

This is a corollary to the following

Claim 7.4.2. Let (Z,L) be an R-scheme with L a G-linearized
line bundle on Z, and V a G-submodule of H0(Z,L). Suppose that V
is R-free of finite rank and base point free. Then

1. there is a G-action S on (P(V ),H) in Subsec. 7.2,
2. the natural morphism (ψ,Ψ) : (Z,L) → (P(V ),H) is G-equivariant.

Proof. By Claim 7.1.5, H0(X,L) is a G-module. By the assump-
tion V is a G-submodule of H0(X,L). Then by Subsec. 7.2 we have a
G-action S on (P(V ),H). With the notation in Subsec. 7.2, we define
the map ψ by γψ(z)(θ) = θ(z) for θ ∈ V = H0(Z,L). This defines a nat-
ural map (ψ,Ψ) : (Z,L) → (P(V ),H) because L = ψ∗H. We prove that
with respect to the G-actions τ on (Z,L) and S on (P(V ),H), (ψ,Ψ) is
G-equivariant. Let (z, ζ) ∈ (Z,L) and P = ψ(z). Then we have

τ(g)(z, ζ) = (Tg(z), φg(z)ζ), (ψ,Ψ)(z, ζ) = (ψ(z), ζ).(28)
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Since (T ∗
g φg−1)φg = φ1 = idL by Definition 7.1.1 (iii), we see

γψ(z) ◦ ρL(g−1)(θ) = γψ(z)(T ∗
g (φg−1θ))

= (T ∗
g φg−1 (z)T ∗

g (θ)(z) = φ−1
g (z)T ∗

g (θ)(z)

= φg(z)−1θ(Tgz) = φg(z)−1γψ(Tgz)(θ),

whence [γψ(z) ◦ ρL(g−1)] = [γψ(Tgz)] = ψ(Tgz). By (27), regarding ζ−1

as the (rational) fiber coordinate of L∨, we have

S∨(g)(ψ,Ψ)(z, ζ−1) = ([γψ(z) ◦ ρL(g−1)], γψ(z) ◦ ρL(g−1)ζ−1)

= ([γψ(Tgz)], γψ(Tgz)φg(z)
−1ζ−1),

whence the fiber coordinate ζ−1 is transformed into φg(z)−1ζ−1 because
ψ(z) (resp. ψ(Tgz)) is a generator of the fiber of H. Hence S∨(g) induces
the transformation ζ �→ φg(z)ζ on L. Thus with the notation of (28)

S(g)(ψ,Ψ)(z, ζ) = ([γψ(z) ◦ ρL(g−1)], φg(z)ζ) = (ψ(Tg(z)), φg(z)ζ)

= (ψ,Ψ)(Tg(z), φg(z)ζ) = (ψ,Ψ)τ(g)(z, ζ).

This proves that (ψ,Ψ) is G-equivariant. Q.E.D.

7.5. The G-linearization in down-to-earth terms
We quote this part from [32, p.94]. The following enables us to

understand GH -linearization in down-to-earth terms.

Claim 7.5.1. Let T = Spec R, and G a finite group. Let Z be a
positive-dimensional R-flat projective scheme. L an ample G-linearized
line bundle on Z. Then for any point z ∈ Z, there exists a G-invariant
open affine R-subscheme U of Z such that z ∈ U and L is trivial on U .

Proof. See [32, Lemma 4.9]. Q.E.D.

Let T = Spec R be any affine scheme, and G a finite group. Let Z
be a positive-dimensional T -flat projective scheme. Let m : G×RG→ G
be the multiplication of G, and σ : G ×R Z → Z an action of G on Z.
Let L be an ample G-linearized line bundle on Z. The action σ satisfies
the condition:

σ(m× idZ) = σ(idG×σ).(29)

Now we shall give a concrete description of the G-linearization of
(Z,L) by using a nice open affine covering of Z. By Claim 7.5.1, we can
choose an affine open covering Uj := Spec (Rj) (j ∈ J) of Z such that
each Uj is G-invariant and the restriction of L is trivial on each Uj .
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The induced bundles σ∗L, (resp. (idG×σ)∗σ∗(L), (m× idZ)∗σ∗(L))
are all trivial on G ×R Uj (resp. G ×R G ×R Uj or G ×R G × Uj) with
the same fiber-coordinate as LUj . Let ζj be a fiber-coordinate of LUj .

Now we assume that G is a constant finite group (scheme over T ).
Since G is affine, let AG := Γ(G,OG) be the Hopf algebra of G. See
[44]. Then the isomorphism Ψ : p∗2L → σ∗(L) over Uj is multiplication
by a unit ψj(g, x) ∈ (AG ⊗R Rj)× at (g, x) ∈ G ×R Uj. Let Ajk(x) be
the one-cocycle defining L. Then σ∗(L) is defined by the one-cocycle
σ∗Ajk(x). Hence Ψ : p∗2L→ σ∗(L) over Uj and Uk are related by

ψj(g, x) =
Ajk(gx)
Ajk(x)

ψk(g, x).

This is the condition (ii) of Definition 7.1.1. The condition (iii) of
Definition 7.1.1 is expressed as

ψj(gh, x) = ψj(g, hx)ψj(h, x).

§8. The moduli schemes Ag,K and SQg,K

Let H =
⊕g

i=1(Z/eiZ) be a finite Abelian group with ei|ei+1,
emin(H) := e1, K = H⊕H∨, N = |H | =

∏g
i=1 ei and ON = Z[ζN , 1/N ].

The purpose of this section is to construct two schemes, projective (resp.
quasi-projective) SQg,K (resp. Ag,K). We will see later that Ag,K is the
fine moduli scheme of abelian varieties, which is a Zariski open subset
of the projective scheme SQg,K . As a (geometric) point set, SQg,K is
the set of all GIT-stable degenerate abelian schemes (Theorem 14.1.3).

Theorem 8.1. Let VH :=
⊕

μ∈H∨ ONv(μ). Let (Z,L) be a PSQAS
over k(0), (Q,L) a PSQAS over a CDVR R with kerλ(L) � K such that
(Z,L) � (Q,L)⊗ k(0) and the generic fiber (Qη,Lη) is an abelian vari-
ety. Let V0 := Γ(Q,L) ⊗ k(0). Then

1. dimk(0) V0 = |H |, and V0 � VH ⊗ k(0) as GH -modules,
2. V0 is uniquely determined by (Z,L), and independent of the choice

of (Q,L),
3. if emin(H) ≥ 3, then both Γ(Q,L) and V0 are very ample,
4. if emin(H) ≥ 3, then (Z,L) is embedded GH-equivariantly into

(P(VH),H) by the linear subspace V0 via the isomorphism V0 �
VH ⊗ k(0) as GH-modules.

Proof. By Theorem 4.6, there exists a CDVR R and a projective
flat morphism π : (Q,L) → Spec R (resp. π : (P,L) → Spec R) such
that (Q0,L0) � (Q,L) ⊗ k(0), and P is the normalization of Q with P0
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reduced. Then by [30, Theorems 3.9 and 4.10], for instance, here in the
totally degenerate case, we have

Γ(P0,L0) =

⎧⎨⎩ ∑
x̄∈X/Y

c(x̄)
∑
y∈Y

a(x+ y)wx+y ⊗ k(0); c(x̄) ∈ k(0)

⎫⎬⎭ ,

Γ(P,L) =

⎧⎨⎩ ∑
x̄∈X/Y

c(x̄)
∑
y∈Y

a(x+ y)wx+y ; c(x̄) ∈ R

⎫⎬⎭ ,

where x̄ is the class of x mod Y . Hence Γ(Q,L) = Γ(P,L) because
Γ(Q,L) is an R-submodule of Γ(P,L), and any of the generators of
Γ(P,L) belongs to Γ(Q,L) by the construction in Subsec. 6.2. Hence

V0 := Γ(Q,L) ⊗ k(0) = Γ(P,L) ⊗ k(0) = Γ(P0,L0),

By [32, Corollary 3.9] (P0,L0) is uniquely determined by (Q0,L0), whence
V0 is independent of the choice of (Q,L). This proves (2).

This V0 is very ample and of rank |H | by Lemma 6.3 (5) if emin(H) ≥
3. Hence so is Γ(Q,L). Since (Z,L), hence (Q0,L0), hence (P0,L0) ad-
mit a GH -action, V0 = Γ(P0,L0) is a GH -module. Hence by Claim 7.4.1,
(Z,L) is embedded GH-equivariantly into (P(VH),H). Q.E.D.

Definition 8.1.1. Let (Z,L) = (Q0,L0) be a k(0)-PSQAS. We
call V0 a characteristic subspace of Γ(Z,L), and denote V0 by V (Z,L).
This V0 is uniquely determined by (Z,L) because V0 = Γ(P0,L0) and
(P0,L0) is uniquely determined by (Z,L) = (Q0,L0).

Remark 8.1.2. In connection with the GIT-stability of (Z,L), it
is more important to know whether V (Z,L) is very ample than to know
whether L (that is, Γ(Z,L)) is very ample. See [30, Theorem 11.6] and
Theorem 14.1.3. However [30, p. 697] conjectures V (Z,L) = Γ(Z,L).

Definition 8.1.3. Let k be an algebraically closed field with k �
1/N and H a finite Abelian group with |H | = N . Let (A,L) be an
abelian variety over k. Then we define G(A,L) to be the bundle au-
tomorphism group which induces translations of A by ker(λ(L)). If
ker(λ(L)) � K := H ⊕H∨, then G(A,L) � GH by Lemma 4.2.

Let K(A,L) := ker(λ(L)) = G(A,L)/Gm.

Remark 8.1.4. Let k be an algebraically closed field with k �
1/N and (Z,L) any PSQAS over k. Hence there exists a PSQAS (Q,L)
over a CDVR R such that (Z,L) � (Q0,L0) and the generic fiber
(Qη,Lη) is an abelian variety with kerλ(Lη)) � K = H⊕H∨. Then the
natural GH -action (= G(Qη,Lη)) on (Qη,Lη) extends to that on (Q,L),
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whose restriction to (Q0,L0) is the GH -action on (Z,L). We denote by
G(Z,L) the GH -action on (Z,L). This is determined by (Z,L) uniquely
up to an automorphism of GH . Let K(Z,L) := G(Z,L)/Gm.

Definition 8.1.5. Let (Z,L) be a PSQAS over k. We call the ac-
tion τ : GH×(Z,L) → (Z,L) of GH a characteristic GH-action, or simply
characteristic, if τ induces the natural isomorphism in Remark 8.1.4

GH
∼=→ G(Z,L) ⊂ Aut(L/Z),

where Aut(L/Z) is the bundle automorphism group of L over Z.

Remark 8.1.6. Let C be a planar cubic defined by

x3
0 + ζ3x

3
1 + ζ2

3x
3
2 = 0.

This cubic C is G(3)-invariant, hence σ and τ in Subsec. 3.3 act on C.
However τ is not a translation of C. See [30, p. 712]. Therefore G(3) on
C is not a characteristic G(3)-action of C.

8.2. The level-GH structure
Definition 8.2.1. Let k be an algebraically closed field with k �

1/N . A 6-tuple (Z,L, V (Z,L), φ,GH , τ) or the triple (Z, φ, τ) over k is
a PSQAS with level-GH structure or a level-GH PSQAS if

(i) (Z,L) is a PSQAS (Q0,L0) over k with L very ample,
(ii) τ : GH × (Z,L) → (Z,L) is a characteristic GH -action,
(iii) φ : Z → P(VH) is a GH -equivariant closed immersion (with re-

spect to τ) such that V (Z,L) = φ∗(VH ⊗ k) ⊂ Γ(Z,L).

Definition 8.2.2. For a level-GH PSQAS (Z, φ, τ) over k, let

ρ(φ, τ)(g)(v) := (φ∗)−1ρτ,L(g)φ∗(v)(30)

for v ∈ VH .

Remark 8.2.3. By Claim 7.4.2, the following condition (iv) is
automatically satisfied by (Z,L) in Definition 8.2.1 :

(iv) (φ,Φ) : (Z,L) → (P(VH),H) is a GH -equivariant morphism (with
respect to τ) where H is the hyperplane bundle of P(VH) and
Φ : L = φ∗H → H the natural bundle morphism. That is,

(φ,Φ) ◦ τ(g) = S(ρ(φ, τ)g) ◦ (φ,Φ) for any g ∈ GH(31)

with the notation of Definition 7.2.1.
We added (iv) here for notational convenience. We denote (iii) and

(iv) together by φτ = Sφ or φτ(g) = S(g)φ for any g ∈ GH .
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Definition 8.2.4. Two PSQASes (Z, φ, τ) and (Z ′, φ′, τ ′) with
level-GH structure are defined to be isomorphic iff there exists a GH -
isomorphism f : (Z,L) → (Z ′, L′) such that φ′f = φ.

Remark 8.2.5. In Definition 8.2.4 (i), V (Z,L) = f∗V (Z ′, L′).
Hence f∗L′ = L so that there always exists a GH -isomorphism of bundles
(f, F (f)) : (Z,L) → (Z ′, L′), that is,

(f, F (f))τ(g) = τ ′(g)(f, F (f)) for any g ∈ GH .

The line bundle L is a scheme over Z. The GH -isomorphism F (f) :
L → L′ is a GH -isomorphism as a (line) bundle, which induces a GH -
isomorphism f : Z → Z ′. In what follows, we say this simply that
(f, F (f)) or f : (Z,L) → (Z ′, L′) is a GH-isomorphism of bundles.

Definition 8.2.6. (Z, φ, τ) is defined to be a rigid level-GH PSQAS,
or a PSQAS with rigid level-GH structure if

(i) (Z, φ, τ) is a level-GH PSQAS,
(ii) ρ(φ, τ) = UH : the Schrödinger representation of GH .

Remark 8.2.7. A rigid object in Definition 8.2.6 is a natural
generalization of a Hesse cubic. Lemma 8.2.8 shows that any PSQAS
(Z, φ, τ) can be moved into a rigid one inside the same projective space.

Lemma 8.2.8. Assume emin(K) ≥ 3. Then for a level-GH PSQAS
(Z, φ, τ) over k,

1. there exists a unique rigid level-GH PSQAS (Z,ψ, τ) isomorphic
to (Z, φ, τ),

2. there exists a unique UH-invariant subscheme (W,L) of (P(VH ),H)
such that (W, i, UH) � (Z,ψ, τ).

Proof. By Claim 7.1.5, we have

ρ(φ, τ)(gh) = ρ(φ, τ)(g)ρ(φ, τ)(h).

Hence VH is an irreducible GH -module of weight one through ρ(φ, τ).
By Schur’s lemma, there exists A ∈ GL(VH ⊗ k) such that

UH = A−1ρ(φ, τ)A = (φ∗A)−1ρτ,L(g)(θ)(φ∗A).

Hence it suffices to choose a closed immersion ψ by ψ∗ = φ∗A. Then

UH = ρ(ψ, τ) and (Z, φ, τ) � (Z,ψ, τ).(32)

The uniqueness of ψ follows from Schur’s lemma (Lemma 3.8). In
fact, suppose UH = ρ(ψ, τ) = ρ(φ, τ). Let γ := (φ∗)−1(ψ∗). Then

UH = ρ(φ, τ) = γρ(ψ, τ)γ−1 = γUHγ
−1,
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whence by Schur’s lemma, γ is a nonzero scalar. Hence ψ = φ.
Finally we prove the second assertion. An example of (W, i, UH) is

given by (ψ(Z), i, UH) by the first assertion. If we have another UH -
invariant PSQAS (W ′, j, UH) such that (W, i, UH) � (W ′, j, UH), there
is an isomorphism

f : (W, i, UH) → (W ′, j, UH).

Hence i = jf . By the proof of the first assertion, f∗ is a nonzero scalar,
hence j = i. Hence the closed subscheme W is unique. Q.E.D.

Lemma 8.2.9. Let k be an algebraically closed field with k � 1/N .
If emin(H) ≥ 3, then any level-GH PSQAS (Z, φ, τ) has trivial automor-
phism group.

Proof. Let f be any isomorphism f : (Z, φ, τ) → (Z, φ, τ). Hence
fτ(g) = τ(g)f for any g ∈ GH . Hence we have

f∗ρτ,L(g) = ρτ,L(g)f∗ on V (Z,L) for any g ∈ GH .
Since ρτ,L is an irreducible representation of GH on V (Z,L), by Schur’s
lemma (Lemma 3.8), f∗ is a scalar. Since emin(H) ≥ 3, we have φ−1 :
φ(Z)

∼=→ Z is an isomorphism by Theorem 8.1 (5). Since f∗ on V (Z,L)
is a nonzero scalar, (φ∗)−1 ◦ f∗ ◦ (φ∗) is a scalar isomorphism of VH ⊗ k,
hence φ ◦ f ◦ φ−1 is the identity of P(VH), hence it is the identity of
φ(Z). Hence f is the identity of Z. Q.E.D.

Lemma 8.3. Let k be an algebraically closed field, let H be a finite
Abelian group, H∨ the Cartier dual of H, K = H ⊕H∨ the symplectic
Abelian group and N = |H |. If k � 1/N , then there exists a polarized
abelian variety (A,L) over k such that the Heisenberg group G(A,L) of
(A,L) is isomorphic to GH ⊗ k.

Proof. See [32, Lemma 4.2]. Q.E.D.

8.4. The Hilbert scheme Hilbχ(n)

Let H , VH and GH be the same as in Subsec. 3.5. Let Hilbχ(n) be
the Hilbert scheme parameterizing all the closed subscheme (Z,L) of
P(VH) with χ(Z,Ln) = ng|H | =: χ(n). Since VH is a GH -module via
UH , GH acts on (P(VH ),H), hence on Hilbχ(n). Let

(Hilbχ(n))GH -inv

be the fixed point set of GH (the scheme-theoretic fixed points). This is
a closed ON -subscheme of Hilbχ(n). Let (Zuniv, Luniv) be the pull back
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to (Hilbχ(n))GH -inv of the universal subscheme of P(VH) over Hilbχ(n).
Then there is an open ON -subscheme U3 of (Hilbχ(n))GH -inv such that
any geometric fiber of (Zuniv, Luniv) is an abelian variety (with zero
unspecified). It is clear that GH keeps U3 stable. See [30, Subsec. 11.1].

Let AutU3(Zuniv) be the relative automorphism group scheme of
(Zuniv)U3 (see [30, Subsec. 11.1]). We define a subset U4 of U3 to be

U4 =
{
s ∈ U3;

the action of GH on (Zuniv,s, Luniv,s) is
a translation of the abelian variety Zuniv,s

}
.

Since the subgroup of AutU3(Zuniv) consisting of fiberwise translations is
an (open and) closed subgroup Z-scheme of AutU3(Zuniv), U4 is a closed
ON -subscheme of U3, which is not empty by Lemma 8.3.

We denote U4 by Ag,K and we define SQg,K to be the closure of
Ag,K (the minimal closed ON -subscheme containing Ag,K)

SQg,K := Ag,K ⊂ (Hilbχ(n))G(K)-inv.(33)

Theorem 8.5. Let H =
⊕g

i=1(Z/eiZ) with ei|ei+1 for any i and
N =

∏g
i=1 ei. If emin(H) := e1 ≥ 3, then for any algebraically closed

field k with k � 1/N , we have

SQg,K(k) =
{

(Q0, i, UH);
Q0 : a level-GH PSQAS
i : Q0 ⊂ P(VH) the inclusion

}
Proof. Let x0 be any k-point of SQg,K . Then for a suitable CDVR

R, there exists a morphism j : Spec R → SQg,K such that
(i) j(0) = x0 ∈ SQg,K , and
(ii) j(Spec k(η)) ⊂ Ag,K ⊂ Hilbχ(n).
In other words, there exists a projective R-flat subscheme (Z,L) of

(P(VH),H)R such that
(i∗) x0 = (Z0,L0) := (Z,L) ⊗ k(0) ∈ SQg,K ,
(ii∗) (Zη,Lη) is an UH -invariant abelian variety (to more precise, in-

variant under the action of UHGH on (P(VH),H)) such that
kerλ(Lη) � K := H ⊕ H∨ and the actions of GH on Zη are
translations of Zη.

where η is the generic point of S and k(η) is the fraction field of R.
In this case, (Z,L) is the pull back of (Zuniv, Luniv) by j. Con-

versely, j : Spec R → SQg,K is induced from the subscheme (Z,L) of
(P(VH),H)R by the universality of (Zuniv, Luniv).

Let i : (Z,L) → (P(VH),H)R be the natural inclusion, and VZ :=
i∗Γ(P(VH),H) = i∗VH ⊗ R. Clearly VZ is very ample on Z. Since
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j(Spec k(η)) ⊂ Ag,K , the GH -action on (Z,L) induces a rigid level-GH
structure on (Zη,Lη). That is, (Z,VZ ,L, i, UH) ⊗R k(η) is a rigid level-
GH PSQAS over k(η). In other words, Zη = i(Zη) is also a UH-invariant
subscheme of P(VH).

Meanwhile, by Theorem 4.6, by a finite base change if necessary,
there exists a rigid level-GH PSQAS (Q,LQ, φ, τ) over R such that

(Qη,LQ,η, φη, τη) � (Zη,Lη, iη, UH).

By definition, ρ(φ, τ) = UH . Hence φ(Q) is a UH -invariant subscheme
of P(VH)R. Since Zη = i(Zη) is also a UH -invariant subscheme of
P(VH)k(η), by Lemma 8.2.8 (2) (over k(η))

Zη = i(Zη) = φ(Qη).

Hence their closures in P(VH)R are the same. It follows Z = φ(Q),
hence (Z0,L0) = (φ(Q0),L0) as a subscheme of P(VH). Since Γ(Q,L) =
φ∗Γ(P(VH)R,HR) is very ample by Lemma 6.3 if emin(H) ≥ 3, we have
Z0 = φ(Q0) � Q0. It follows that

x0 = (Z0,L0, i0, UH) � (Q0,L0, φ0, τ0),

which is a rigid level-GH PSQAS. Q.E.D.

Corollary 8.6. Let |H | = N . Under the same assumption as in
Theorem 8.5, for any algebraically closed field k with k � 1/N , we have

Ag,K(k) =
{

(Q0, i, UH);
Q0 : a level-GH abelian variety
i : Q0 ⊂ P(VH) the inclusion

}
.

§9. Moduli for PSQASes

Let O = ON . In this section we prove
(i) Ag,K is the fine moduli scheme for the functor of T -smooth

PSQASes over O-schemes.
(ii) SQg,K is the fine moduli scheme for the functor of T -flat PSQASes

over reduced O-schemes.

9.1. T -smooth PSQASes
Let T be any O-scheme. In this subsection we define level-GH T -

smooth PSQASes. Since any smooth PSQAS over a field is an abelian
variety, any level-GH T -smooth PSQAS is a T -smooth scheme, any of
whose geometric fiber is an abelian variety. It may have no global (zero)
section over T .
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Definition 9.1.1. A 6-tuple (Q,L,V , φ,G, τ) (or a triple (Q,φ, τ)
for brevity) is called a T -smooth projectively stable quasi-abelian scheme
(abbr. a T -smooth PSQAS) of relative dimension g with level-GH struc-
ture if the conditions (i)-(vi) are true:

(i) Q is a projective T -scheme with the projection π : Q → T sur-
jective smooth,

(ii) L is a relatively very ample line bundle of Q,
(iii) G is a T -flat group scheme, τ : G × (Q,L) → (Q,L) is an action

of G as bundle automorphisms over Q,
(iv) φ : Q→ P(VH)T is a G-equivariant closed T -immersion of Q,
(v) there exists M ∈ Pic(T ) with trivial G-action such that L �

φ∗H ⊗ π∗M as G-modules, and V = VH ⊗O M is a locally free
G-invariant OT -submodule 1 of π∗L of rank |H | via the natural
homomorphism, (see Remark 9.1.3)

(vi) for any geometric point t of T , the fiber at t (Qt,Lt,Vt, φt,Gt, τt)
is a level-GH smooth PSQAS of dimension g over k(t).

We call (φ, τ) a level-GH structure on Q if no confusion is possible.
We also call (Q,φ, τ) a level-GH T -smooth PSQAS.

Remark 9.1.2. Let Q be a T -smooth TSQAS. Then Aut0S(Q) is
an abelian scheme over S with zero section idQ, hence any T -smooth
TSQAS Q is an Aut0S(Q)-torsor. See Theorem 13.6.5 and [33].

Remark 9.1.3. As in Definition 8.2.1 and Remark 8.2.3, φ in (iv)
is a G-morphism with respect to τ in the sense that

φτ(g) = S(ρ(φ, τ)(g))φ,

under the notation S(ρ(φ, τ)(g)) in Subsec. 7.2.
The natural homomorphism ι : V = VH ⊗O M → π∗(L) is given

as follows. Let πP : P(VH)T → T be the natural projection. By the
relation πPφ = π and the projection formula, we see

π∗(L) = π∗(φ∗(H⊗ π∗
PM)) = π∗(φ∗(H) ⊗ π∗M) = (πP)∗φ∗φ∗H⊗M,

while VH ⊗M = (πP)∗(H) ⊗M . Hence ι is induced from the natural
homomorphism H → φ∗φ∗H. In what follows we omit ι.

Definition 9.1.4. Let (Q,φ, τ) be a level-GH T -smooth PSQAS.
Then (φ, τ) is called a rigid level-GH structure if ρ(φ, τ) = UH , where
ρ(φ, τ) is defined by

ρ(φ, τ)(g)(v) := (φ∗)−1ρτ,L(g)φ∗(v)(34)

1V = π∗L for T -smooth PSQASes.
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for v ∈ V = φ∗VH ⊗O M .

Definition 9.1.5. Let σi := (Qi,Vi,Li, φi,Gi, τi) be a level-GH T -
smooth PSQAS and πi : Qi → T the projection. Then f : σ1 → σ2 is
called a morphism of level-GH T -smooth PSQASes if there exists M ∈
Pic(T ), a T -morphism f : Q1 → Q2 and a group scheme T -morphism
h : G1 → G2 such that

(i) φ1 = φ2 ◦ f ,
(ii) the following diagram is commutative:

G1 × (Q1,L1)
τ1−−−−→ (Q1,L1)⏐⏐�h×f ⏐⏐�f

G2 × (Q2,L2 ⊗OT π
∗
2(M)) −−−−→

τ2
(Q2,L2 ⊗OT π

∗
2(M)).

The morphism f : σ1 → σ2 is an isomorphism if and only if f :
Q1 → Q2 is an isomorphism as schemes.

Remark 9.1.6. From Definition 9.1.5, we infer that there exists
some M ∈ Pic(T ) such that

(i) L1 � f∗(L2) ⊗ π∗
1(M) and V1 = V2 ⊗M ,

(ii) (f, F (f)) : (Q1,L1) → (Q2,L2 ⊗ π∗
2(M)) is a G1-morphism of

bundles: that is,

(f, F (f)) ◦ τ1(g) = τ2(g) ◦ (f, F (f)), g ∈ G1,

(iii) ρ(φ1, τ1) = ρ(φ2, τ2). See [32, Lemma 5.5].
In particular, for any M ∈ Pic(T ) with trivial G-action,

(Q,V ,L, φ,G, τ) � (Q,V ⊗M,L⊗ π∗M,φ,G, τ).
Remark 9.1.7. Since any a ∈ Q(T ) (a global section of Q) acts

on Q by translation, we have

(Q,V ,L, φ,G, τ) � (Q, T ∗
aV , T ∗

aL, T ∗
aφ,G, T ∗

a τ),

where T ∗
a τ = {T ∗

aφg} for τ = {φg} as GH -linearization.

Lemma 9.1.8. Assume emin(H) ≥ 3. For a level-GH T -smooth
(resp. T -flat) PSQAS (Z, φ, τ), there exists a unique rigid level-GH T -
smooth (resp. T -flat) PSQAS (Z,ψ, τ) isomorphic to (Z, φ, τ).

Proof. One can prove this in parallel to Lemma 8.2.8.
By Definition 9.1.1, we have a 6-tuple (Z,L,V , φ,G, τ). Let V =

VH ⊗M for some M ∈ Pic(T ). We choose an affine covering Ui of T
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such that M ⊗ OUi is trivial. Let Zi := ZT × Ui. Then φi := φ|Zi
:

(Zi, LZi) → P(VH) is a closed GUi -immersion and ρρi,τ is equivalent to
UH . Hence there exists Ai ∈ GL(VH ⊗OUi) such that UH = A−1

i ρρi,τAi
by Lemma 3.7. We define a closed GUi -immersion

ψi : (Zi, LZi) → (P(VH )Ui ,HUi)

by ψ∗
i = φ∗iAi. Hence we have ρ(ψi, τ) = UH . Over Ui ∩Uj we have two

GUi∩Uj -isomorphisms

ψ∗
k : VH ⊗OUi∩Uj � V ⊗OUi∩Uj , (k = i, j).

By Lemma 3.8, there exists a unit fij ∈ O×
Ui∩Uj

such that ψ∗
i = fijψ

∗
j .

Hence ψi = ψj over Ui∩Uj as a morphism to P(VH)Ui∩Uj . Thus we have
a T -smooth (resp. T -flat) PSQAS (Z,ψ, τ) such that ρ(ψ, τ) = UH .

The same argument proves the Lemma for a T -flat PSQAS, though
T -flat PSQASes are defined later in Subsec. 9.7. This completes the
proof. Q.E.D.

Definition 9.1.9. We define a contravariant functor Ag,K from
the category of O-schemes to the category of sets by

Ag,K(T ) = the set of all level-GH T -smooth PSQASes (Q,φ, τ)
of relative dimension g modulo T -isomorphism

= the set of all rigid level-GH T -smooth PSQASes
of relative dimension g modulo T -isomorphism

by Lemma 9.1.8.

9.2. Pro-representability
Let k be an algebraically closed field, and W = W (k) the Witt ring

of k. Let C = CW be the category of local Artinian W -algebra with an
isomorphism k = R/mR making the following diagram commutative:

W −−−−→ R⏐⏐� ⏐⏐�
k

�−−−−→ R/mR.

Let ĈW be the category of all complete local noetherian W -algebras R
such that R/mn

R ∈ CW for every n. The morphisms in ĈW are local
W -algebra homomorphisms. A functor F : CW → (Sets) is called pro-
representable if there exists an A ∈ ĈW such that

F (R) = HomW -hom.(A,R).
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9.3. Deformation theory of abelian schemes
We briefly review [38]. Let k be an algebraically closed field. Let

C = CW . We caution that R ∈ C is not always a k-algebra.
Let A be an abelian variety over k, L0 an ample line bundle on A,

and λ(L0) : A→ A∨ := Pic0
A the polarization morphism.

By Grothendieck and Mumford [38, Theorems 2.3.3, 2.4.1] the quasi-
polarized moduli functor P of (A,λ(L0)) is formally smooth if λ(L0) :
A→ A∨ is separable. We will explain this.

The deformation functor M := M(A) of A is defined over C by

M(R) =
{

(X,φ0);
X is a proper R-scheme
φ0 : X ⊗R k � A

}
/R-isom.

By Grothendieck [38, Theorem 2.2.1], M is pro-represented by

W (k)[[ti,j ; 1 ≤ i, j ≤ g]]

where W (k) is the Witt ring of k.
The quasi-polarized moduli functor P := P (A,λ0) of (A,λ(L0)) over

C is defined as follows [38, pp. 240-242] :

P (R) =

⎧⎪⎪⎨⎪⎪⎩(X,λ, φ0);

(X,λ) is an abelian R-scheme
λ : X → X∨ is a homomorphism
such that λ = λ(L) for some L ∈ Pic(X)
φ0 : (X,λ) ⊗R k � (A,λ0)

⎫⎪⎪⎬⎪⎪⎭ /R-isom.

where λ0 := λ(L0) and X∨ := Pic0
X/R.

Thus any (Y, λ, φ0) ∈ P (R) always has a line bundle L such that
λ = λ(L). This fact is used in Subsec. 9.4.

By [38, Theorem 2.3.3], P (A,λ0) is a pro-representable subfunctor
of M(A), that is, the functor P (A,λ0) is pro-represented by

OW := W (k)[[ti,j ; 1 ≤ i, j ≤ g]]/a

for some ideal a where a is generated by 1
2g(g − 1) elements.

9.4. Deformations in the separably polarized case
We call λ(L0) (or L0) a separable polarization if λ(L0) : A → A∨

is a separable morphism. For instance, λ(L0) is separable if k � 1/N
where N =

√| kerλ(L0)|.
Suppose that the polarization λ0 is separable. The ideal a is gener-

ated by tij − tji for any pair i 
= j [38, Remark, p. 246]:

a = (tij − tji; 1 ≤ i < j ≤ g)



Compactification of the moduli space of abelian varieties 51

Hence P (A,λ0) is formally smooth of dimension 1
2g(g + 1) over

W (k). In this case (A,λ0) can be lifted as a formal abelian scheme
(Xfor, λ(Lfor)) over OW , that is, there exists a system (Xn, λn) of polar-
ized abelian schemes over OW,n := OW /m

n+1 such that

(Xn+1, λn+1) ⊗On � (Xn, λn),

where m is the maximal ideal of OW . Then by [10, III, 11, 5.4.5], the
formal scheme X is algebraizable, that is, there exists a polarized abelian
scheme (X,L) over Spec OW such that

(X,λ(L)) ⊗OW,n � (Xn, λn).

Let Ksu = ker(λ(L)), Gsu := G(X,L) := L×
Ksu

and Vsu := Γ(X,L).
By [25, pp. 115-117, pp.204-211], L is Gsu-linearizable. In other words,
Gsu acts on (X,L) by bundle automorphisms. Let τsu be the action of
Gsu on (X,L). Then Vsu is an OW -free Gsu-module of rank N via ρτsu,L.

By the assumption k � 1/N , λ(L) : X → X∨ is separable, and Ksu

is a constant finite symplectic Abelian group of order N2 isomorphic to
H ⊕H∨ because Ksu ⊗OW k is so.

If emin(Ksu) ≥ 3, then L is very ample because L0 = L0 is very
ample by Theorem 8.1 (Lefschetz’s theorem in this case). Let φsu :
X → P(Vsu) � P(VH)OW be the embedding of X into P(Vsu) such that
ρ(φsu, τsu) = UH . Thus we have a level-GH OW -smooth PSQAS

(X,L,Vsu, φsu,Gsu, τsu).

Theorem 9.5. Let K = H ⊕H∨ and N := |H |. If emin(H) ≥ 3,
then the functor Ag,K of level-GH smooth PSQASes over O-schemes is
represented by the quasi-projective O-formally smooth scheme Ag,K .

Proof. By Lemma 9.1.8, for a T -smooth PSQAS (Q,φ, τ) there
exists a unique rigid level-GH T -smooth PSQAS (Q,ψ, τ) such that
(Q,ψ, τ) is T -isomorphic to (Q,φ, τ). Since L is very ample by the
assumption emin(H) ≥ 3, (Q,ψ, τ) is embedded G-equivariantly into
(P(VH),H), whose image is contained in Ag,K , because ρ(ψ, τ) = UH .
This implies that there exists a unique morphism f : T → Ag,K such
that (Q,ψ, τ) is the pull back by f of the universal subscheme

(Zg,K ×Hg,K Ag,K , i, UH).

It follows that Ag,K is represented by the quasi-projective Z[ζN , 1/N ]-
scheme Ag,K .
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It remains to prove Ag,K is formally smooth over Z[ζN , 1/N ]. Let
k be any algebraically closed field with k � 1/N , and we choose any
level-GH abelian variety over k

σ := (A,L0,Γ(A,L0), φ0,G(A,L0), τ0) ∈ Ag,K(k).

By Subsec. 9.4, the quasi-polarized moduli functor P (A,λ(L0)) is for-
mally smooth because λ(L0) : A→ A∨ is separable by k � 1/N .

We define a functor F over C by

F (R) = {ξ := (Z,L,V , φ,G, τ) ∈ Ag,K(R); ξ ⊗R k � σ}

where we do not fix the isomorphism ξ ⊗R k � σ in contrast with
P (A,λ(L0)). Subsec. 9.4 shows that the map h : P (A,λ(L0)) → F
sending (Z,L) = (X,L) ×OW R to

(X,L,Vsu, φsu,Gsu, τsu) ×OW R

is surjective because Vsu, φsu, Gsu and τsu are uniquely determined, . It
follows from Lemma 8.2.9 that h is injective. Hence F = P (A,λ(L0)).
Hence Ag,K is formally smooth at σ. Q.E.D.

Corollary 9.6. SQg,K is reduced.

Proof. SinceAg,K is O-formally smooth, it is reduced. Since SQg,K
is the intersection of all closed O-subschemes containing Ag,K , it is the
intersection of all closed reduced O-subschemes containing Ag,K because
Ag,K is reduced. Hence SQg,K is reduced. Q.E.D.

9.7. T -flat PSQASes

Definition 9.7.1. Let T be any reduced O-scheme. A 5-tuple
(Q,L,V , φ,G, τ) (or a triple (Q,φ, τ) for brevity) is called a projectively
stable quasi-abelian T -flat scheme (or just a T -flat PSQAS) of relative
dimension g with level-GH structure if the conditions (ii)-(v) in Defini-
tion 9.1.1 and (i∗), (vi∗) are true:

(i∗) Q is a projective T -scheme with the projection π : Q → T sur-
jective flat,

(vi∗) for any geometric point t of T , the fiber at t (Qt,Lt, φt, τt) is a
PSQAS of dimension g over k(t) with level-GH structure.

We also call (Q,φ, τ) a level-GH T -PSQAS.

Definition 9.7.2. Let (Q,φ, τ) be a level-GH T -flat PSQAS. Then
(φ, τ) is called a rigid level-GH structure if ρ(φ, τ) = UH .
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Definition 9.7.3. Let (Qi,Vi,Li, φi,Gi, τi) be level-GH T -PSQASes
and πi : Qi → T a flat morphism (structure morphism) with T reduced.
Then f : Q1 → Q2 is called a morphism of level-GH T -PSQASes if the
conditions in Definition 9.1.5 are true.

Definition 9.7.4. The category Schred of reduced schemes is a
subcategory of the category Sch of schemes with

Obj(Schred) = reduced schemes,

Mor(Schred) = morphisms in the category of schemes.

Definition 9.7.5. We define a contravariant functor SQg,K from
the category Schred of reduced O-schemes to the category of sets by

SQg,K(T ) = the set of all level-GH T -flat PSQASes (Q,φ, τ)
of relative dimension g modulo T -isomorphism

= the set of all rigid level-GH T -flat PSQASes
of relative dimension g modulo T -isomorphism

by Lemma 9.1.8.

Theorem 9.8. Suppose emin(K) ≥ 3. Let N :=
√|K|. The func-

tor SQg,K of level-G(K) PSQASes (Q,φ, τ) over reduced schemes is
represented by the projective reduced ON -scheme SQg,K.

Proof. This is proved in parallel to Theorem 9.5. Properness of
SQg,K follows from Theorem 4.6. See [30, Theorem 10.4] for a more
precise statement. Since SQg,K is a proper subscheme of the projective
scheme Hilbχ(n) in Subsec. 8.4, it is projective. Q.E.D.

§10. The functor of TSQASes

10.1. TSQASes over k

We introduced two kinds of nice classes of degenerate abelian schemes,
PSQASes and TSQASes in Theorem 4.6.

It is TSQASes that we discuss in this section. They are nonsingu-
lar abelian varieties, or reduced even if singular, and therefore easier
to handle than PSQASes. However the very-ampleness criterion (The-
orem 4.6 (4)) fails for (P,LP ), and because of this defect, we cannot
expect the existence of the fine moduli scheme for TSQASes.

Let H be any finite Abelian group, N = |H |, k an algebraically
closed field with k � 1/N , K = H ⊕H∨ and O = ON .
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Remark 10.1.1. Let (Z,L) be any TSQAS over k. Hence there
exist an Abelian group H and a flat family (P,L) over a CDVR R
with k = R/m given in Theorem 4.6 such that (Z,L) � (P0,L0), P0

is reduced, and the generic fiber (Pη,Lη) is an abelian variety with
kerλ(Lη)) � KH = H ⊕H∨. Hence we have an action of GH on (Z,L).
See Remark 8.1.4. We denote by G(Z,L) the GH -action on (Z,L). This
is determined by (Z,L) uniquely up to an automorphism of GH . In the
totally degenerate case, the action of G(Z,L) is explicitly written as Sx
and Ta (x ∈ X/Y, a ∈ X ×Z Gm). See Definition 6.2.2.

Definition 10.1.2. Let (Z,L) be a TSQAS over k. We call τ :
GH × (Z,L) → (Z,L) a characteristic GH-action, or simply charac-
teristic, if this action of GH induces the natural isomorphism in Re-
mark 10.1.1

GH
∼=→ G(Z,L) ⊂ Aut(L/Z).

Definition 10.1.3. Let (Z,L) be a TSQAS over k. We define
(Z,L, φ∗,GH , τ) (denoted often (Z, φ∗, τ) or (Z,L, φ∗, τ)) to be a level-
GH TSQAS if if the conditions (i)-(iii) are true:

(i) (Z,L) is a PSQAS (P0,L0) over k with L ample,
(ii) τ : GH × (Z,L) → (Z,L) is a characteristic GH -action,
(iii) φ∗ : VH ⊗ k → H0(Z,L) is a GH -isomorphism.

Definition 10.1.4. We define level-GH k-TSQASes (Z1, L1, φ
∗
1, τ1)

and (Z2, L2, φ
∗
2, τ2) to be isomorphic if there exists a GH -isomorphism

f : (Z1, L1) → (Z2, L2) such that f∗φ∗1 = cφ∗2 for some nonzero c ∈ k.

10.2. T -smooth TSQASes
Let T be any O-scheme. In this subsection we define level-GH T -

smooth TSQASes. The level-GH T -smooth TSQASes are essentially the
same as level-GH T -smooth PSQASes in Subsec. 9.1. The only differ-
ence from Subsec. 9.1 is that we define them without any restriction on
emin(H). Since any smooth TSQAS over a field is an abelian variety, any
level-GH T -smooth TSQAS is a level-GH abelian scheme over T possibly
with no zero section over T .

Definition 10.2.1. A 5-tuple (P,L, φ∗,G, τ) (or a triple (P, φ∗, τ)
for brevity) is called a T -smooth PSQAS of relative dimension g with
level-GH structure if the conditions (i)-(v) are true:

(i) P is a projective T -scheme with the projection π : P → T sur-
jective smooth,

(ii) L is a relatively ample line bundle of P ,
(iii) G is a T -flat group scheme, τ : G × (P,L) → (P,L) is an action

of G on (P,L) as bundle automorphism,
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(iv) there exists a G-isomorphism φ∗ : VH ⊗O M
∼=→ π∗L for some

M ∈ Pic(T ) with trivial G-action,
(v) for any geometric point t of T , the fiber at t (Pt,Lt, φ∗t ,Gt, τt) is

a level-GH smooth TSQAS of dimension g over k(t).

We call (φ∗, τ) a level-GH structure on P if no confusion is possible.
We also call (P, φ∗, τ) a level-GH T -smooth TSQAS.

Definition 10.2.2. Let (P, φ∗, τ) be a level-GH T -smooth TSQAS.
Then (φ∗, τ) is called a rigid level-GH structure if ρ(φ∗, τ) = UH , where
ρ(φ∗, τ) is defined by

ρ(φ∗, τ)(g)(θ) := (φ∗)−1ρτ,L(g)(θ)φ∗(35)

for θ ∈ V := φ∗VH ⊗O M . If φ∗ defines a morphism φ : Z → P(VH)T ,
then ρ(φ∗, τ) = ρ(φ, τ) with the notation in Definition 9.1.4.

Definition 10.2.3. Let (Pk,Lk, φ∗k,Gk, τk) be a level-GH T -smooth
TSQAS and πk : Pk → T the projection (structure morphism). Then
f : P1 → P2 is called a morphism of level-GH T -smooth TSQASes if
there exists M ∈ Pic(T ), a T -morphism f : P1 → P2 and a group
scheme T -morphism h : G1 → G2 such that

(i∗∗) f∗φ∗2 = cφ∗1 for some unit c ∈ H0(OT )×,
(ii∗∗) the following diagram is commutative:

G1 × (P1,L1)
τ1−−−−→ (P1,L1)⏐⏐�h×f ⏐⏐�f

G2 × (P2,L2 ⊗OT π
∗
2(M)) −−−−→

τ2
(P2,L2 ⊗OT π

∗
2(M)).

The same is true as in Remark 9.1.6 by replacing ρ(φk, τk) by ρ(φ∗k, τk).

Lemma 10.2.4. For a level-GH T -smooth (resp. T -flat) TSQAS
(Z, φ∗, τ), there exists a unique rigid level-GH T -smooth (resp. T -flat)
TSQAS (Z,ψ∗, τ) such that

1. (Z,ψ∗, τ) is isomorphic to (Z, φ∗, τ),
2. ψ∗ is the GH-isomorphism with ρ(ψ∗, τ) = UH , unique up to

nonzero constant multiple.

Proof. One can prove this in parallel to Lemma 8.2.8. Q.E.D.

Definition 10.2.5. We define a contravariant functor Ag,K (the
functor of level-GH smooth TSQASes) from the category of O-schemes
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to the category of sets by

Atoric
g,K (T ) = the set of all level-GH T -smooth TSQASes (Q,φ∗, τ)

of relative dimension g modulo T -isomorphism
= the set of all rigid level-GH T -smooth TSQASes

of relative dimension g modulo T -isomorphism

by Lemma 10.2.4.

10.3. T -flat TSQASes
Definition 10.3.1. Let T be any reduced O-scheme. A 5-tuple

(P,L, φ∗,G, τ) (or a triple (P, φ∗, τ) for brevity) is called a T -flat TSQAS
of relative dimension g with level-GH structure if the conditions (ii)-(iv)
in Definition 10.2.1 and (i∗), (v∗) are true:

(i∗) P is a T -scheme with the projection π : P → T surjective flat,
(v∗) for any geometric point t of T , the fiber at t (Pt,Lt, φ∗t , τt) is a

TSQAS of dimension g over k(t) with level-GH structure.
We also call (P, φ∗, τ) a level-GH T -TSQAS.

Definition 10.3.2. Let (P, φ∗, τ) be a level-GH T -flat TSQAS.
Then (φ∗, τ) is called a rigid level-GH structure if ρ(φ∗, τ) = UH .

Definition 10.3.3. Let (Pi,Li, φ∗i ,Gi, τi) be level-GH T -TSQASes
and πi : Pi → T a flat morphism (structure morphism) with T reduced.
Then f : P1 → P2 is called an isomorphism of level-GH T -TSQASes if
the conditions in Definition 10.2.3 are true.

Definition 10.3.4. The category Spacered of reduced algebraic
spaces is a subcategory of the category Space of algebraic spaces with

Obj(Spacered) = reduced algebraic spaces,

Mor(Spacered) = morphisms in the category of algebraic spaces.

Definition 10.3.5. We define a contravariant functor SQtoric
g,K from

the category Spacered of reduced algebraic O-spaces to the category of
sets by

SQtoric
g,K (T ) = the set of all level-GH T -flat TSQASes (P, φ∗, τ)

of relative dimension g modulo T -isomorphism
= the set of all rigid level-GH T -flat TSQASes

of relative dimension g modulo T -isomorphism

by Lemma 10.2.4.



Compactification of the moduli space of abelian varieties 57

§11. The moduli spaces Atoric
g,K and SQtoric

g,K

Let H be a finite Abelian group, K = KH := H⊕H∨ and N = |H |,
and let O = ON . In this section we recall from [32, § 9] how to construct
the algebraic space SQtoric

g,K parameterizing level-GH TSQASes.
The construction in Subsec. 11.2–11.6 is carried out without any

change regardless of the value of emin(H). We do not assume emin(H) ≥
3 unless otherwise mentioned.

We summarize this section in Summary 11.11 at the end.

11.1. Preliminaries

Let k be any algebraically closed field with k � 1/N . In this sub-
section we list some basic properties of a level-GH TSQAS (P0,L0) over
k that we use in what follows.

Lemma 11.1.1. Let k be any algebraically closed field with k �
1/N . Let (P0,L0, φ

∗
0,G(P0,L0), τ0) be a level-GH TSQAS over k, and

therefore a closed fiber of the TSQAS (P,L) over a CDVR R with the
generic fiber Pη an abelian variety. Then

1. P0 is nonsingular if and only if it is an abelian variety,
2. P0 is reduced,
3. L0 is ample, and nL0 is very ample for n ≥ 2g + 1,
4. Hq(P0, nL0) = 0 for any q > 0, n > 0,
5. χ(P0, nL0) = ng|H | for any n > 0,
6. the action G(P0,L0) of GH on (P0,L0) is characteristic, that is,

it is induced from G(Pη,Lη), where any of the latter induces a
translation of an abelian variety Pη.

Proof. (1) follows from Theorem 4.6. For (2)–(5), see [2] or [32,
Theorem 2.11, p. 79]. (6) is proved (and defined) in a manner similar to
Remark 8.1.4 and Definition 10.1.2. Q.E.D.

Lemma 11.1.2. Let n be any positive integer, and d = Nn + 1.
We define Ud,H on the O-module VH in Definition 3.5 by

Ud,H(a, z, α)v(β) = adβ(z)dv(α+ β).(36)

We denote VH by Vd,H if GH acts on VH via Ud,H. Then
1. Vd,H is an irreducible GH-module of weight d,
2. let W be any O-free GH-module of finite rank. If GH acts on W

with weight d: that is, the center Gm of GH acts on W by ad idW ,
then W is equivalent to W0 ⊗O Vd,H as GH-module, where W0 is
an O-module with trivial GH-action.
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Proof. We denote the action of g ∈ GH onW by U(g), and we write
U(g) = U(a, z, α) for g = (a, z, α) ∈ GH . Let W (χ) = {w ∈W ;U(h)w =
χ(h)w for any h ∈ H}. By [32, p. 89], we have

W =
⊕
χ∈H∨

W (χ), W (χ) = U(1, 0, χ)W (0).(37)

Therefore W (0) 
= 0 if W 
= 0.
For any w ∈ W (0), we define v(χ,w) = U(1, 0, χ)w for χ ∈ H∨.
By imitating [32, p. 89], we infer

U(1, z, 0) · v(χ,w) = U(χ(z)(1, 0, χ))w = χ(z)dv(χ,w),

U(1, 0, α) · v(χ,w) = U(1, 0, χ+ α) · w = v(χ+ α,w),

whence
U(a, z, α) · v(χ,w) = U(a(1, 0, α)(1, z, 0)(1, 0, χ))w

= U(aχ(z)(1, 0, χ+ α)(1, z, 0))w

= adχ(z)dv(χ+ α,w).

(38)

We define a homomorphism F : W (0) ⊗ Vd,H →W by

F (w ⊗ v(χ)) = v(χ,w)(39)

where w ∈ W (0) and v(χ) ∈ Vd,H . Here W (0) in the left hand side of
(39) is regarded as a trivial GH -module, while W (0) in the right hand
side of (39) is an O-submodule of W . Then by (36) and (38), F is a
GH -homomorphism:

F (w ⊗ Ud,H(g)(v(χ))) = U(g)v(χ,w).

In view of (37), W is spanned by v(χ,w) for w ∈ W (0) and χ ∈ H∨.
Hence F is surjective. By (37), W and W (0) ⊗ Vd,H are O-modules of
the same rank. Hence F is an isomorphism. Q.E.D.

11.2. HilbP (X/T )
Let (X,L) be a polarized O-scheme with L very ample and P (n) an

arbitrary polynomial. Let HilbP (X) be the Hilbert scheme parameter-
izing all closed subschemes Z of X with χ(Z, nLZ) = P (n). As is well
known HilbP (X) is a projective O-scheme.

Let T be a projective scheme, (X,L) a flat projective T -scheme
with L an ample line bundle of X , and π : X → T the projection.
Then for an arbitrary polynomial P (n), let HilbP (X/T ) be the scheme
parameterizing all closed subschemes Z of X with χ(Z, nLZ) = P (n)
such that Z is contained in fibers of π. Then HilbP (X/T ) is a closed
O-subscheme of HilbP (X) ×O T . See [3, Chap. 9].
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11.3. The scheme H1 ×H2

Choose and fix a coprime pair of natural integers d1 and d2 such that
d1 > d2 ≥ 2g+ 1 and dν ≡ 1 mod N . This pair does exist because it is
enough to choose prime numbers d1 and d2 large enough such that dν ≡ 1
mod N and d1 > d2. We choose integers qν such that q1d1 + q2d2 = 1.

We consider a GH -module

Wν(K) := Wν ⊗ Vdν ,H � V ⊕Nν

dν ,H

where Nν = dgν and Wν is a free O-module of rank Nν with trivial GH -
action. Let σν be the natural action of GH on Wν(K). In what follows
we always consider σν .

Let Hν (ν = 1, 2) be the Hilbert scheme parameterizing all closed
polarized subschemes (Zν , Lν) of P(Wν(K)) such that

(a) Zν is GH -stable,
(b) χ(Zν , nLν) = ngdgν |H |, where Lν = H(Wν(K)) ⊗ OZν is the

hyperplane bundle of Zν .
Since (a) and (b) are closed conditions, Hν is a closed (hence pro-

jective) subscheme of Hilbχν (P(Wν(K)) where χν(n) = ngdgν |H |.
Let O = ON . Let Xν be the universal subscheme of P(Wν(K)) over

Hν . Let X = X1 ×OX2 and H3 = H1 ×OH2. Let pν : X1 ×OX2 → Xν

be the ν-th projection, π : X → H3 the natural projection. Hence X is a
subscheme of P(W1(K))×OP(W2(K))×OH3, flat overH3 = H1×OH2.

We note that H(Wν(K)) has a GH -linearization {ψ(ν)
g }, which we

fix once for all. Since GH transforms any closed GH -stable subscheme Z
of P(Wν(K)) onto itself, it follows that GH acts on Hν trivially. Hence,
GH transforms any fiber Xu of π : X → H3 onto Xu itself.

11.4. The scheme U1

The aim of this and the subsequent subsections is to construct a new
compactification of the moduli space of abelian varieties as the quotient
of a certain O-subscheme of HilbP (X/H3) by PGL(W1) × PGL(W2).

Let B be the pullback to X of a very ample line bundle on H3. Let
Mν = p∗ν(H(Wi(K))) ⊗OX and

M = d2M1 + d1M2 +B.(40)

Then M is a very ample line bundle on X . Since Mν is GH -linearized
and B is trivially GH -linearized, M is GH -linearized.

Let P (n) = (2nd1d2)g|H |. Let HilbP (X/H3) be the Hilbert scheme
parameterizing all closed subschemes Z of X contained in the fibers
of π : X → H3 with χ(Z, nMZ) = P (n), and ZP be the universal
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subscheme of X over it. We denote HilbP (X/H3) by HP for brevity.
Now using the double polarization trick of Viehweg, we define U1 to be
the subset of HP consisting of all subschemes (Z,MZ) of (X,M) with
the properties

(i) Z is GH -stable,
(ii) d2L1 = d1L2, where Li = Mi ⊗OZ .

By Lemma 8.3, U1 is a nonempty closed O-subscheme of HP . See
[32, Subsec. 9.3].

11.5. The scheme U2

Let U2 be the open subscheme of U1 consisting of all subschemes
(Z,MZ) of (X,M) such that besides (i)-(ii) the following are satisfied:

(iii) pν |Z is an isomorphism (ν = 1, 2),
(iv) Z is reduced with h0(Z,OZ) = 1,
(v) dνL is very ample on Z, where L = (q1M1 + q2M2) ⊗OZ ,
(vi) χ(Z, nL) = ng|H | for n > 0,
(vii) Hq(Z, nL) = 0 for q > 0 and n > 0,
(viii) H0(p∗ν) : Wν(K) ⊗ k(u) → Γ(Z, dνL) is surjective (hence an iso-

morphism by (vi) and (vii)) for ν = 1, 2.

Let (Z,MZ) ∈ HP . By (ii) and (v), we have L = q1L1 + q2L2 for
Li = Mi ⊗OZ . Since d1q1 + d2q2 = 1, we have Lν = dνL by (ii). (iii) is
an open condition by [3, Chap. 9, Lemma 7.5]. It is clear that (iv)-(viii)
are open conditions. It follows that U2 is a nonempty open O-subscheme
of U1. See [32, Subsec. 9.5].

11.6. The schemes U †
g,K and U3

See [32, Subsec. 9.7]. First we note that if (Z,L) ∈ U2, then
L = q1L1 + q2L2. On each Lν we have a GH -action on (Z,Lν) induced
from the GH -action (= GH -linearization) on ZP induced from those GH -
actions on P(Wν(K)). By Remark 7.1.2, we have a GH -linearization on
(Z,L). In what follows, we mean this GH -action on Z or (Z,L) by the
(characteristic) GH -action on (Z,L) when (Z,L) ∈ U2.

The locus Ug,K of abelian varieties (with the zero not necessarily
chosen) is an open subscheme of U2. In fact, Ug,K is the largest open
O-subscheme among all the open O-subschemes H ′ of U2 such that

(α) the projection πH′ : ZP ×HP H ′ → H ′ is smooth over H ′,
(β) at least one geometric fiber of πH′ is an abelian variety for each

irreducible component of H ′.

In general, the subset H ′′ of U2 over which the projection πH′′ :
ZP ×HP H ′′ → H ′′ is smooth is an open O-subscheme of U2. By [26,
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Theorem 6.14], any geometric fiber of πUg,K is a polarized abelian variety.
See also [30, p. 705] and [32, p. 116].

Next we define U †
g,K to be the subset of Ug,K parameterizing all

subschemes (A,L) ∈ Ug,K such that

(ix) the K-action on A induced from the GH -action on (A,L) is effec-
tive and contained in Aut0(A).

We see that U †
g,K is a nonempty open O-subscheme of Ug,K .

Finally we define U3 to be the closure of U †
g,K in U2. It is the smallest

closed O-subscheme of U2 containing U †
g,K .

We denote the pull back to U †
g,K (resp. U3) of the universal sub-

scheme of X over HP = HilbP (X/H3) by

(Auniv, Luniv) resp. (Zuniv, Luniv).(41)

Theorem 11.7. Let R be a CDVR, S := Spec R, and η the
generic point of S. Let h be a morphism from S into U3. Let (Z,L)
be the pullback by h of the universal subscheme (Zuniv, Luniv) (41) such
that (Zη,Lη) is a polarized abelian variety. Then after a finite base
change if necessary, (Z,L) is isomorphic to (P,LP ) in Theorem 4.6. In
particular, (Z0,L0) is a TSQAS over k(0).

Proof. The outline of the proof of Theorem is as follows. The
generic fiber (Zη,Lη) of (Z,L) is an abelian variety. By Theorem 4.6
there exists an R∗-TSQAS (P,LP ) after a suitable base change Spec R∗

of Spec R. So we have two flat families (Z,L)R∗ and (P,LP ) over
R∗, which we can now compare. For each of (Z,L) and (P,LP ), we
can find a natural level-GH structure extending a level-GH structure of
(Zη,Lη) (= (Pη,LP,η)). Then we can prove they are isomorphic. See [32,
Theorem 10.4] for the details when emin(H) ≥ 3. The case emin(H) ≤ 2
is proved by reducing to the case emin(H) ≥ 3 by Claims in Subsec. 11.10.
See Claim 11.10.3. Q.E.D.

Theorem 11.8. Let G = PGL(W1) × PGL(W2) and k an alge-
braically closed field with k � 1/N . Then

1. U3(k) =
{

(Z,L) ∈ U2(k);
a level-GH TSQAS with
characteristic GH action

}
2. let (Z,L) ∈ U3(k) and (Z ′, L′) ∈ U3(k) where L = M ⊗ OZ and
L′ = M ⊗ OZ′ with the notation of Subsec 11.4 Eq.(40). Then
the following are equivalent:
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(a) (Z,L) is GH-isomorphic to (Z ′, L′) with respect to their
characteristic GH -action in the sense of Remark 8.2.5,

(b) (Z,L) and (Z ′, L′) have the same G-orbit.

Proof. (1) is a corollary of Theorem 11.7. By the first assertion,
any (Z,L) ∈ U3(k) has a natural characteristic GH -action. Thus (2)
makes sense. See [32, Lemma 11.1] for a proof of (2). Q.E.D.

Theorem 11.9. Let G = PGL(W1) × PGL(W2). Then
1. U †

g,K and U3 are G-invariant,
2. the action of G on U †

g,K is proper and free (resp. proper with
finite stabilizer) if emin(H) ≥ 3 (resp. if emin(H) ≤ 2),

3. the action of G on U3 is proper with finite stabilizer.
4. the uniform geometric and uniform categorical quotient of U3

(resp. U †
g,K) by G exists as a separated algebraic O-space, which

we denote by SQ∗ toric
g,K (resp. Atoric

g,K ).

See [32, Sec. 10-11] for Theorems 11.7 -11.9 when emin(H) ≥ 3.

11.10. The case emin(H) ≤ 2
Theorems 11.7-11.9 for emin(H) ≤ 2 are proved in the same manner

as in the case emin(H) ≥ 3 by using the following Claims.

Claim 11.10.1. Let k be an algebraically closed field with k �
1/N , K = H ⊕H∨ and N = |H |. Let (P,L) be a TSQAS over k with
L GH-linearized and G(P,L) � GH , and n any positive integer (≥ 3)
prime to both N and the characteristic of k. Then there exists a TSQAS
(P †, L†) over k with the pull back L† of L GH† -linearized which is an étale
Galois covering of (P,L) with Galois group H†/H � (Z/nZ)g, where H
(resp. H†) is a maximal isotropic subgroup of K := K(P,L) = H ⊕H∨

(resp. of K† := K(P †, L†) = H† ⊕ (H†)∨ = K ⊕ (Z/nZ)2g).

Proof. We denote the given TSQAS (P,L) by (P0,L0). Let R be
a CDVR, (P,L) an R-flat family such that

(i) the generic fiber (Pη,Lη) is a level-GH abelian variety,
(ii) the closed fiber (P0,L0) of (P,L) is the given TSQAS with torus

part T0 and abelian part (A0,M0).
Since P0 is a k(0)-TSQAS with T0 = Hom(X,Gm) for some lattice X
of rank g′′, there exists a sublattice Y of X such that K(P0,L0) =
K(A0,M0) ⊕ (X/Y ) ⊕ (X/Y )∨. See [30, 5.14] and Definition 6.2.2.
Therefore it is enough to construct an étale H†/H � (Z/nZ)g-covering
(A†

0,M
†
0 ) of (A0,M0) as above.

Hence we may assume P0 is an abelian variety. In what follows
we denote (P0,L0) by (A,L). Let A[m] = ker(m idA) for any positive



Compactification of the moduli space of abelian varieties 63

integer m. By the assumption, A[n2] � (Z/n2Z)2g and N2 = |K(A,L)|.
Let L′ be the pull back of L by n idA. Then by [25, p. 56, Corollary 3;
p. 71 (iv)] there exists M ∈ Pic0(A) such that L′ = Ln

2 ⊗M . For a line
bundle F on A, we denote by φF the homomorphism A→ A∨ defined by
x �→ T ∗

xF ⊗ F−1. Then by [25, p. 57, Corollary 4] φL′ = φLn2 = n2φL.
Since T ∗

xM = M , we have

K(A,L′) := ker(φL′) = kern2φL = K(A,Ln
2
) ⊃ A[n2].

Since n is prime to N , we have A[n2] ∩K(A,L) = {0}, hence

K(A,L′) = K(A,Ln
2
) = K(A,L) ⊕A[n2].

For a maximal isotropic subgroup G† (� (Z/n2Z)g) of A[n2], we
define Δ† := (nZ/n2Z)g. It is the unique subgroup of G† isomorphic to
(Z/nZ)g. We set A† := A/Δ†, and π : A→ A† the projection. Now we
have a diagram with �π = n idA:

A
π→ A† = A/Δ† �→ A/A[n] � A.

As a subgroup of K(A,L′), we have

A[n2] = {0} ⊕G† ⊕ (G†)∨,

A[n] = {0} ⊕ Δ† ⊕ (G†/Δ†)∨,

where in particular A[n] is a totally isotropic subgroup of A[n2].
Let L† := �∗(L). Then L′ = π∗(L†). Let (Δ†)⊥ be the orthogonal

complement of Δ† in K(A,L′). Then by [20, p. 291]

K† := K(A†, L†) � (Δ†)⊥/Δ†,

where we see (Δ†)⊥ = K(A,L) ⊕ G† ⊕ (G†/Δ†)∨, where (G†/Δ†)∨ �
(nZ/n2Z)g. Let H be a maximal isotropic subgroup of K(A,L). Let
H† := H ⊕ {0} ⊕ (G†/Δ†)∨ ⊂ K†. Then H† is a maximal isotropic
subgroup of K† with (H†)∨ = H∨ ⊕ (G†/Δ†) ⊕ {0}. It follows

K† � K(A,L) ⊕ (G†/Δ†) ⊕ (G†/Δ†)∨ � H† ⊕ (H†)∨.(42)

Hence the covering � : A† → A is étale with Galois group

A[n]/Δ† � (G†/Δ†)∨ � H†/H � (Z/nZ)g ,

and L† is GH† -linearized by (42). This proves Claim 11.10.1. Q.E.D.
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Claim 11.10.2. (See also [32, Lemma 6.7]) Let R be a complete
discrete valuation ring, k(η) the fraction field of R and S := Spec R.
Let (Zi, φ∗i , τi) (i = 1, 2) be rigid-GH S-TSQASes whose generic fibers
are abelian varieties. If (Zi, φ∗i , τi) are k(η)-isomorphic, then they are
S-isomorphic.

Claim 11.10.2 follows from the following Claim 11.10.3.

Claim 11.10.3. With the same notation as above, let (P,L) be
an S-TSQAS with generic fiber (Pη,Lη) an abelian variety. Then (P,L)
is the normalization of a modified Mumford family with generic fiber
(Pη,Lη) by a finite base change if necessary.

Proof. Let n be a positive integer ≥ 3 prime to the characteristic
of k(0) and |H |. In view of Claim 11.10.1, by a finite base change S†

of S and then by taking the pull back of (P,L) to S†, we have an étale
H†/H � (Z/nZ)g-covering (P †

0 ,L†
0) of (P0,L0) such that K(P †

0 ,L†
0) =

H†⊕ (H†)∨. From now, we denote S† by S, and (P,L)×S S† by (P,L).
Let Pfor be the formal completion of P along P0. By [11, Corol-

laire 8.4], there is a category equivalence between étale coverings of
P0 and étale coverings of Pfor. Hence there exists a formal scheme
(P †

for,L†
for) which is an étale (Z/nZ)g-covering of (Pfor,Lfor). Then there

exists a projective S-scheme (P †,L†) algebraizing (P †
for,L†

for) which is an
étale (Z/nZ)g-covering of (P,L) with L† the pull back of L. It follows
that the generic fiber (P †

η ,L†
η) is a polarized abelian variety, and (P †

0 ,L†
0)

is a reduced k(0)-TSQAS and P † is normal by Claim 4.7.1.
Since n ≥ 3, by [32, 10.4] (P †,L†) is the normalization of a modified

Mumford family with generic fiber (P †
η ,L†

η). By [11, Corollaire 8.4]
(P,L) is the quotient of (P †,L†) by (Z/nZ)g, because (P0,L0) is the
quotient of (P †

0 ,L†
0) by (Z/nZ)g. Hence (P,L) is the normalization of

a modified Mumford family with generic fiber (Pη,Lη). This proves the
Claim. Q.E.D.

Summary 11.11. Let k be an algebraically closed field with k �
1/N . Let HP := HilbP (X/H3) be as in Subsec. 11.4. We define the
schemes Uk, Ug,K and U †

g,K as follows:

U1 = {(Z,L1, L2) ∈ HP ; (i)-(ii) are true},
U2 = {(Z,L) ∈ U1; (iii)-(viii) are true},

Ug,K(k) = {(Z,L) ∈ U2(k); (Z,L) is an abelian variety over k},
U †
g,K(k) = {(Z,L) ∈ Ug,K(k); (ix) is true},

U3 = the closure of U †
g,K in U2.
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Then
1. U1 is a closed O-subscheme of HP , while U2, Ug,K and U †

g,K are
nonempty O-subschemes of U1 such that U †

g,K ⊂ Ug,K ⊂ U2, and

U †
g,K(k) =

{
(A,L) ∈ U2(k);

an abelian variety over k with
characteristic GH -action

}
U3(k) =

{
(Z,L) ∈ U2(k);

a level-GH TSQAS over k with
characteristic GH action

}
,

2. (Z ′, L′) ∈ U3(k), (Z,L) ∈ U3(k) are GH -isomorphic iff they are
in the same G-orbit, where G = PGL(W1) × PGL(W2),

3. there exists a nice quotient Atoric
g,K of U †

g,K by G,
4. there exists a nice quotient SQ∗ toric

g,K of U3 by G,
5. let SQtoric

g,K := (SQ∗ toric
g,K )red.

See [32, Corollaries 10.5, 10.6] for U3(k).

§12. Moduli for TSQASes

Let O = ON . In this section we prove
(i) Atoric

g,K is the coarse moduli algebraic O-space for the functor
of level-GH smooth TSQASes over algebraic O-spaces for any
emin(K),

(ii) Atoric
g,K � Ag,K if emin(K) ≥ 3, which is the fine moduli scheme.

We also see
(iii) SQtoric

g,K is the coarse moduli algebraic O-space for the functor of
level-GH flat TSQASes over reduced algebraic O-spaces,

(iv) if emin(K) ≥ 3, there exists a natural morphism sq : SQtoric
g,K →

SQg,K , which is surjective and bijective on SQtoric
g,K , and the iden-

tity on Ag,K , hence SQtoric
g,K is a projective O-scheme.

Theorem 12.1. Let K = H ⊕H∨ and N := |H |.
1. If emin(H) ≥ 3, then Atoric

g,K � Ag,K and Atoric
g,K is represented by

the quasi-projective formally smooth O-scheme Ag,K ,
2. if emin(H) ≤ 2, then Atoric

g,K has a normal coarse moduli algebraic
O-space Atoric

g,K .

Proof. We can prove this almost in parallel to Theorem 9.5.

Let O = ON . Let dν , Wν and Wν(K) = Wν⊗OVdν ,H be the same as
in Subsec. 11.3. Similarly let (Xν , Lν), Hν , (X,L) and H3 = H1 ×O H2

be the same as in Subsections 11.4–11.5.
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Step 1. Let T be any O-scheme, and (P,L, φ∗,G, τ) any level-GH
T -smooth TSQAS with π : P → T the projection. Then we define a
natural morphism η̄ : T → Atoric

g,K as follows.
The sheaf π∗(dνL) is a vector bundle of rank dgνN over T . Let Ui

be an affine covering of T which trivializes both π∗(dνL). Then

Γ(Ui, π∗(dνL)) = Γ(PUi , dνL) � (Wν)Ui ⊗O Vdν ,H

for some locally OT -free module Wν of rank dgν with trivial G-action.
Since dνLt is very ample, we can choose closed G-immersions

(φν)Ui : PUi → P(Wν(K))Ui

by the linear system associated to π∗(dνL)Ui such that

ρ((φν)∗Ui
, τUi) = idWν ⊗Udν ,H(43)

We caution that (φν)Ui is not unique, there is freedom of isomorphisms
by GL(Wν , OUi).

By (43) the image of (φν)Ui is G-invariant, so the image of (φν)t
is GH -invariant for any t ∈ T , Since L = q1d1L + q2d2L, LUi is GUi -
linearized. Hence (PUi ,LUi) has a GUi -action, that is, fiberwise (Pt,Lt)
has a GH -action. By the definition of level-GH TSQASes, this GH -action
on (Pt,Lt) is characteristic. Hence the image of (φν )Ui is contained in
U †
g,K by Theorem 11.8 or Summary 11.11. It follows that (PUi ,LUi)

is the pull back by a morphism Ui → U †
g,K of the universal subscheme

(X,H3) in Subsec 11.3.
On Ui ∩ Uj , Γ(Ui, π∗(dνL)) and Γ(Uj , π∗(dνL)) are identified by

GL(Wν ⊗ Γ(OUi∩Uj )). Thus we have a morphism

j : T → U †
g,K/PGL(W1) × PGL(W2) = Atoric

g,K ,

where G = PGL(W1)×PGL(W2). This induces a morphism of functors

f : Atoric
g,K → hW , W := Atoric

g,K .(44)

The argument so far is true regardless of the value of emin(H).

Step 2. Now we assume emin(H) ≥ 3.
Step 2-1. Any level-GH T -smooth TSQAS is a level-GH T -smooth

PSQAS with V = π∗(L), and vice versa. Hence the functors are the
same : Atoric

g,K = Ag,K .
Step 2-2. Now we assume emin(H) ≥ 3. There is the universal

subscheme over U †
g,K (41)

(Auniv,Vuniv, Luniv, φuniv,Guniv, τuniv)
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where Guniv = GH × U †
g,K , τuniv = UH (acting on P(VH)U†

g,K
), Vuniv =

VH⊗OU†
g,K

and we choose a closed immersion φuniv : Auniv → P(VH)U†
g,K

,

such that ρ(φuniv, τuniv) = UH . This is a rigid level-GH U †
g,K-smooth

PSQAS. Hence we have a morphism η† : U †
g,K → Ag,K because Ag,K is

the fine moduli scheme of Ag,K by Theorem 9.5. Since the morphism η†

is G = PGL(W1) × PGL(W2)-invariant, we have a morphism

η̄ : Atoric
g,K → Ag,K .

Step 2-3. Conversely since Ag,K is the fine moduli scheme for Ag,K ,
there exists the universal level-GH PSQAS

πA : (ZA,VA, LA, φA,GA, τA) → Ag,K .

Then we apply Step 1 to the universal level-GH PSQAS over Ag,K . We
have a morphism from Ag,K to Atoric

g,K , which is evidently the inverse of
η̄. This proves that η̄ is an isomorphism. This proves the first assertion
of Theorem 12.1 by Theorem 9.5. See [32, Lemma 11.5].

Step 3. We consider next the case emin(H) ≤ 2. By Step 1 (44),
we have a morphism of functors f : Atoric

g,K → hW where W := Atoric
g,K .

To prove that Atoric
g,K is a coarse moduli algebraic O-space for Atoric

g,K , it
remains to prove

(a) f(Spec k) : Atoric
g,K (Spec k) → Atoric

g,K (Spec k) is bijective for any
algebraically closed field k over O,

(b) For any algebraic O-space V , and any morphism g : Atoric
g,K → hV ,

there is a unique morphism χ : hW → hV such that g = χ ◦ f ,
where W = Atoric

g,K , hV is the functor defined by hV (T ) = Hom(T, V ).
The assertion (b) is proved similarly to Step 1 and Step 2-2.
The assertion (a) follows from Theorem 11.8. In fact, let

σj := (Zj, Lj , φ∗j ,GH , τj)

be a level GH smooth k-TSQAS. Since Atoric
g,K is the orbit space of Ug,K

by G := PGL(W1) × PGL(W2), (Z1, L1) and (Z2, L2) determine the
same point of Atoric

g,K iff (Z1, L1) and (Z2, L2) have the same G-orbit. By
Theorem 11.8, (Z1, L1) and (Z2, L2) have the same G-orbit iff (Z1, L1)
and (Z2, L2) are GH -isomorphic with respect to their characteristic GH -
action in the sense of Remark 8.2.5. Thus it suffices to prove that σ1 � σ2

iff (Z1, L1) and (Z2, L2) are GH -isomorphic.
If σ1 � σ2, then by definition (Z1, L1) � (Z2, L2).
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Conversely assume (Z1, L1) � (Z2, L2) GH -isomorphic with respect
to their characteristic GH -action. Let f : (Z1, L1) → (Z2, L2) be the GH -
isomorphism. Hence (f∗)−1ρτ1,L1(g)f

∗ = ρτ2,L2(g). Meanwhile we can
choose a GH -isomorphism φ∗j : VH ⊗k → Γ(Zj , Lj) such that ρ(φ∗j , τj) =
UH . Let h := (φ∗1)

−1f∗φ∗2. Then we see UHh = hUH . Since UH is an
irreducible representation of GH , h is a nonzero scalar. Hence f∗φ∗2 = cφ∗1
for some unit c. It follows from Definition 10.2.3 that σ1 � σ2. This
proves (a). Thus Atoric

g,K is a coarse moduli algebraic O-space for Atoric
g,K .

Step 4. Finally we prove that Atoric
g,K is reduced for emin(H) ≤ 2.

We use the same notation as in the proof of Theorem 9.5. Let k be any
algebraically closed field with k � 1/N , (A,L0) be an abelian variety
over k with L0 GH -linearized, and τ0 be the GH -action associated to the
GH -linearization of L0. Let σ0 := (A,L0, φ

∗
0,GH , τ0) be a rigid level-GH

k-smooth TSQAS.
Let C = CW be the category of local Artinian W -algebra with k =

R/mR. We define a subfunctor F := Fσ0 of Atoric
g,K by

F (R) =
{
σ := (Z,L, φ∗, (GH)R, τ) ∈ Atoric

g,K (R);σ ⊗ k � σ0

}
where R ∈ C and the isomorphism σ ⊗ k � σ0 is not fixed in F .

Let (X,L), Ksu = ker(λ(L)), Gsu := G(X,L) := L×
Ksu

, Vsu :=
Γ(X,L) and the action τsu of Gsu on (X,L) be the same as in Sub-
sec 9.4. Since λ(L) : X → X∨ is separable, Ksu is isomorphic to
(H ⊕ H∨)OW , hence Gsu � (GH)OW . If emin(Ksu) ≥ 3, we choose the
unique closed GH -immersion φsu of X into P(Vsu) � P(VH)OW such
that ρ(φsu, τsu) = UH . If emin(Ksu) ≤ 2, then we choose the unique
GH -isomorphism φ∗su : (VH)OW → Γ(X,L) such that ρ(φ∗su, τsu) = UH .
In any case we have a level-GH smooth TSQAS over OW

(X,L,Vsu, φ
∗
su,Gsu, τsu).

Now we shall define a morphism of functors h : P (A,λ(L0)) → F
over C = CW . Let R ∈ C. By Subsec 9.4, for (Z, λ(L)) ∈ P (A,λ(L0))(R),
R ∈ C, we have a unique morphism

ρ ∈ Hom(Spec R, Spf OW ) = HomĈ(OW , R)

such that (Z, λ(L)) = ρ∗(X,λ(L)). Then we define

h(Z, λ(L)) = ρ∗(X,L,Vsu, φ
∗
su,Gsu, τsu) ∈ F (R).

One can check that this is well-defined.
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Subsec. 9.4 shows that h(R) : P (A,λ(L0))(R) → F (R) is surjective
for any R ∈ C. In general, h is not injective. Let

G0 := Aut(σ0) = {f ∈ Aut(A); f(0) = 0, f∗σ0 � σ0},
where 0 is the zero of A. Since f∗L0 � L0 for any f ∈ G0, we have
f∗(3L0) � 3L0. Since 3L0 is very ample, G0 is an algebraic k-group. G0

has trivial connected part because f(0) = 0 for any f ∈ G0. Hence G0

is a finite group scheme, acting nontrivially on P (A,λ(L0)). Then

F (R) = P (A,λ(L0))(R)/G0

= Hom(OW /a, R)/G0

= Hom((OW /a)G0−inv, R)

whence F is pro-represented by (OW /a)G0−inv, which is normal. This
proves that the formal completion of any local ring of Atoric

g,K is normal.
Hence it satisifies (R1) and (S2) by Serre’s criterion. See Remark 12.1.1.
This implies that any local ring of Atoric

g,K satisfies (R1) and (S2). Hence
Atoric
g,K is normal. Q.E.D.

Remark 12.1.1. Let A be a noetherian local ring. Then A is
normal if and only if (R1) and (S2) are true for A, where

1. (S2) is true if and only if depth(Ap) ≥ inf(2, ht(p)) for all p ∈
Spec (A),

2. (R1) is true if and only if A is codimension one regular.
See [19, Theorem 39] and [10, IV2, 5.8.5 and 5.8.6].

Theorem 12.2. ([32]) Let N = |H | and SQtoric
g,K = (SQ∗ toric

g,K )red.
For any K = H⊕H∨, the functor SQtoric

g,K of level-GH TSQASes (P, φ∗, τ)
over reduced algebraic O-spaces is coarsely represented by a proper (hence
separated) reduced algebraic O-space SQtoric

g,K .

Proof. We imitate the proof of Theorem 12.1. Let (P π→ T, L, φ∗,G, τ)
be a level-GH T -flat TSQAS with T reduced. Then by Step 1 of Theo-
rem 12.1, we have a morphism

j : T → U3/G = SQ∗ toric
g,K ,

where G = PGL(W1) × PGL(W2). Hence we have a morphism

jred : Tred = T → (SQ∗ toric
g,K )red =: SQtoric

g,K .

This induces a morphism of functors

f : SQtoric
g,K → hW , W = SQtoric

g,K .(45)
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As in Theorem 12.1 Step 3, it remains to prove
(a) f(Spec k) : SQtoric

g,K (Spec k) → SQtoric
g,K (Spec k) is bijective for

any algebraically closed field k over O,
(b) For any algebraic O-space V , and any morphism g : SQtoric

g,K →
hV , there is a unique morphism χ : hW → hV such that g = χ◦f ,

where hV is the functor defined by hV (T ) = Hom(T, V ). For a reduced
space T , hV (T ) = hVred(T ), that is, hV = hVred over Spacered. Hence we
may assume V is reduced.

We shall prove (b). Let g : SQtoric
g,K → hV be any morphism for a re-

duced algebraic O-space V . The universal subscheme (Zuniv, Luniv) has a
natural GH -action which is characteristic for any fiber (Zuniv,u, Luniv,u)
(u ∈ U3). We choose φ∗univ = idVH⊗OU3

. Thus we have a rigid level-
GH U3-flat TSQAS (Zuniv, Luniv, φ

∗
univ,GH , τuniv) over U3. Hence by

g : SQtoric
g,K → hV we have a morphism χ̃ : U3 → V , which turns out to

be G-invariant. Hence we have a morphism χ̄ : SQ∗ toric
g,K → V , hence

χ := χ̄red : SQtoric
g,K → Vred = V . It is clear that g = χ ◦ f .

By the same argument as in the proof of Theorem 12.1 Step 3 (a),
we see SQtoric

g,K (Spec k) = SQ∗ toric
g,K (k) = SQtoric

g,K (k). This proves (a).
This completes the proof. Q.E.D.

Theorem 12.3. ([32]) Suppose emin(K) ≥ 3. Then
1. both SQg,K and SQtoric

g,K are compactifications of Ag,K ,
2. there exists a bijective O-morphism

sq : SQtoric
g,K → SQg,K

extending the identity of Ag,K ,
3. their normalizations are isomorphic : (SQtoric

g,K )norm � (SQg,K)norm.

Corollary 12.4. SQtoric
g,K is a projective scheme if emin(K) ≥ 3.

Proof. Since SQtoric
g,K is finite over SQg,K and SQg,K is a scheme,

SQtoric
g,K is a scheme by [18, Theorem 4.1, p. 169], hence it is a projective

scheme because SQg,K is projective by (33). Q.E.D.

§13. Morphisms to Alexeev’s complete moduli spaces

In this section
(i) we briefly review Alexeev [1],
(ii) then report that

(a) any T -flat TSQAS has a canonical semi-abelian action,
(b) SQtoric

g,1 � AP
main

g,1 .
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Definition 13.1. [1] Let k be an algebraically closed field. A
g-dimensional semiabelic k-pair of degree d is a quadruple (G,P,L,Θ)
such that

(i) P is a connected seminormal complete k-variety, and any irre-
ducible component of P is g-dimensional,

(ii) G is a semi-abelian k-scheme acting on P ,
(iii) there are only finitely many G-orbits,
(iv) the stabilizer subgroup of every point of P is connected, reduced

and lies in the torus part of G,
(v) L is an ample line bundle on P with h0(P,L) = d,
(vi) Θ is an effective Cartier divisor of P with L = OP (Θ) which does

not contain any G-orbits.

Recall that a variety Z is said to be seminormal if any bijective
morphism f : W → Z with W reduced is an isomorphism.

Definition 13.2. Let T be a scheme. A g-dimensional semiabelic
T -pair of degree d is a quadruple (G,P π→ T,L,Θ) such that

(i) G is a semi-abelian group T -scheme of relative dimension g,
(ii) P is a proper flat T -scheme, on which G acts,
(iii) L is a π-ample line bundle on P with π∗(L) locally free,
(iv) any geometric fiber (Gt, Pt,Lt,Θt) (t ∈ T ) is a stable semiabelic

pair of degree d.

Definition 13.3. We define two functors: for any scheme T

APg,d(T ) =
{
(G,P π→ T,D); semi-abelic T -pair of degree d

}
/T -isom.,

APg,d(T ) =
{

(G,A π→ T,D); semi-abelic T -pair of degree d
G is an abelian T -scheme

}
/T -isom..

Theorem 13.4. (Alexeev [1, 5.10.1])

1. The component APg,d of the moduli stack of semiabelic pairs con-
taining the moduli stack APg,d of abelian pairs as well as pairs
of the same numerical type is a proper Artin stack with finite
stabilizer,

2. It has a proper coarse moduli algebraic space AP g,d over Z.

13.5. The components of AP g,d
In order to compare AP g,d with SQtoric

g,K we consider the pullback of

AP g,d to Od, which we denote AP g,d by abuse of notation. Let AP
main

g,d

be the closure of APg,d in AP g,d. AP
main

g,d 
= AP g,d in general.
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We define some algebraic subspaces of AP g,d as follows:

APg,d = {(A,D) ∈ AP g,d;A : nonsingular},
APg,K = {(A,D) ∈ APg,d; ker(λ(D)) � K},
AP g,K = the closure of APg,K in AP g,d,

AP
main

g,d = the closure of APg,d in AP g,d.

Then we see
(i) APg,d is the union of APg,K with

√|K| = d,
(ii) AP

main

g,d is a proper separated algebraic subspace of AP g,d,

(iii) dimAPg,d = dimAP g,K = dimAP
main

g,d = g(g + 1)/2 + d− 1.

13.6. The semi-abelian group action on a T -TSQAS
The purpose of this subsection to construct a semiabelian group

action on any T -flat TSQAS. See [33].

Lemma 13.6.1. Let (P0,L0) be a totally degenerate TSQAS over
k. Let X be a lattice of rank g associated to P0, DelB the Delaunay
decomposition of XR also associated to P0, and Del(d)B the set of all d-
dimensional Delaunay cells in DelB. Let τ ∈ Del(g−1)

B and σi ∈ Del(g)B
(i = 1, 2) be Delaunay cells such that τ = σ1 ∩ σ2. Let Z(σi) = O(σi) be
the irreducible component of P0 corresponding to σi. Then P0 is, along
O(τ), isomorphic to the subscheme of O(τ) × A2

k given by

Spec Γ(OO(τ))[ζ1, ζ2]/(ζ1ζ2),

where A2
k = Spec k[ζ1, ζ2]: the two-dimensional affine space over k.

Here Z(σi) is given by ζi = 0, and P0 is, along O(τ), the union of Z(σ1)
and Z(σ2), while O(τ) (� Gg−1

m,k) is given by ζ1 = ζ2 = 0, which is a
Cartier divisor of each Z(σi).

Remark 13.6.2. Instead of proving Lemma 13.6.1 here, we revisit
Case 6.7.1 to illustrate the situation. In this case, P0 = Q0, and we recall
the open affine subset U0(0) of P0:

(U0)0 = Spec R[qw1, qw2, qw
−1
1 , qw−1

2 ] ⊗ k(0)

� Spec k(0)[u1, u2, v1, v2]/(u1v1, u2v2),

where (U0)0 = U0 ⊗ k(0).
Let τ = [0, 1] × {0} ∈ Del(1)B . Then there are exactly two Delaunay

cells σ = σi (i = 1, 2) such that τ ⊂ σ and σ ∈ Del(2)B , where

σ1 = [0, 1] × [0, 1], σ2 = [0, 1] × [−1, 0].
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We see

O(τ) � Spec k(0)[u±1
1 , u2, v1, v2]/(u2, v1, v2) � Spec k(0)[u±1 ].

Let (U0)0(τ) be the subset of (U0)0 where u1 is invertible. Then we have

(U0)0(τ) = Spec k(0)[u±1 , u2, v2]/(u2v2),

Z(σ1) = Spec k(0)[u±1
1 , u2, v2]/(u2),

Z(σ2) = Spec k(0)[u±1
1 , u2, v2]/(v2).

This is what is meant by “along O(τ)” in Lemma 13.6.1.

Definition 13.6.3. Let P0 be a (not necessarily totally degener-
ate) k(0)-TSQAS of dimension g. Let Sing (P0) be the singular locus
of P0. Let Ω1

P0
be the sheaf of germs of regular one-forms over P0, and

ΘP0 := HomOP0
(Ω1

P0
, OP0) = Der(OP0 ). Then we define Ω̃P0 to be the

sheaf of germs of rational one-forms φ over P0 such that
(i) φ is regular outside Sing (P0), and it has log poles at a generic

point of every (g−1)-dimensional irreducible component of Sing (P0)
(we say φ has log poles on P0),

(ii) the sum of the residues of φ along every (g − 1)-dimensional ir-
reducible component of Sing (P0) is equal to zero.

These conditions make sense in view of Lemma 13.6.1.

Lemma 13.6.4. Let P0 be a (not necessarily totally degenerate)
k(0)-TSQAS of dimension g. We define Θ†

P0
and Ω†

P0
by.

Θ†
P0

:= HomOP0
(Ω̃P0 , OP0), Ω†

P0
:= HomOP0

(Θ†
P0
, OP0).

Then we have Θ†
P0

� O⊕g
P0

, Ω†
P0

� O⊕g
P0

.

We note that by [39, p. 112], the tangent space of the automorphism
group Aut(P0) is given by H0(P0,ΘP0).

Theorem 13.6.5. Let T be a reduced scheme, (P π→ T,L) a T -
TSQAS. Let Ω̃P/T be the sheaf as in Definition 13.6.3, Θ†

P/T the OP -dual

of Ω̃P/T and Ω†
P/T the OP -dual of Θ†

P/T . We define Aut†T (P ) to be the

maximal closed subgroup T -scheme of AutT (P ) which keep Ω†
P/T stable,

and Aut†0T (P ) the fiberwise identity component of Aut†T (P ), that is, the
minimal open subgroup T -scheme of Aut†T (P ). Then

1. Aut†T (P ) is flat over T , and the fiber (Aut†T (P ))t has the tangent
space H0(Pt,Θ

†
Pt

) for any geometric point t of T ,
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2. Aut†0T (P ) is a semi-abelian group scheme over T , flat over T .

Theorem 13.7. ([33]) Let N =
√|K|. We define a map sqap by

SQtoric
g,K � (P,L, φ∗, τ) × [v] �→ (Aut†0(P ), P,L,Div φ∗(v)) ∈ AP g,K ,

where v ∈ VH , Divφ∗(v) is a Cartier divisor of P defined by φ∗(v).
Then there exists a nonempty Zariski open subset U of P(VH) such that

1. sqap is a well-defined finite Galois morphism from SQtoric
g,K × U

but it is not surjective,
2. for any u ∈ U ,

(a) sqap : SQtoric
g,K × {u} → AP g,K is proper injective,

(b) sqap : Atoric
g,K × {u} → APg,K is an injective immersion.

Details will appear in [33].

Corollary 13.8. SQtoric
g,1 � AP

main

g,1 .

Remark 13.8.1. Assume Theorem 13.6.5. Then Corollary 13.8
is proved as follows. The scheme U †

g,1 is reduced, as is shown in the
same manner as in Theorem 12.1, hence the closure U3 of U †

g,1 is also
reduced. Over U3 we have a universal family

(Zuniv, Luniv)U3 := (Zuniv, Luniv) ×HP U3.

Since U3 is reduced and any fiber of (Zuniv, Luniv)U3 is a TSQAS by
Theorem 11.9, we can apply Theorem 13.6.5.

Since Ag,1 � APg,1 by d = 1, it is reduced by Theorem 12.1.
Hence the closure AP

main

g,1 of APg,1 in AP g,1 is reduced because it is
the intersection of all closed algebraic subspaces of AP g,1 containing
APg,1 = (APg,1)red, hence it is the intersection of all closed reduced
algebraic subspaces of AP g,1 containing (APg,1)red.

It follows from Theorem 12.1 that we have a G-morphism from U3

to AP
main

g,1 where G = PGL(W1) × PGL(W2). By the universality of

the categorical quotient, we have a morphism sqap : SQtoric
g,1 → AP

main

g,1 ,

which is an isomorphism over Ag,1. Since SQtoric
g,1 is proper, sqap is

surjective. The forgetful map

AP
main

g,1 � (G,P,L,Θ) �→ (P,L) ∈ SQtoric
g,1

is the left inverse of sqap. This proves SQtoric
g,1 � AP

main

g,1 because both

SQtoric
g,1 and AP

main

g,1 are reduced.
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§14. Related topics

14.1. Stability

Let us look at the following example. Let X = Spec C[x, y] and
Gm = Spec C[s, s−1]. Then Gm acts on X by (x, y) �→ (sx, s−1y). Let
(a, b) ∈ X and let O(a, b) be the Gm-orbit of (a, b). The (categorical)
quotient of X by Gm is given by

X//Gm = Spec C[t], (t = xy).

Any closed Gm-orbit is either O(a, 1) (a 
= 0) or O(0, 0). Hence by
mapping t = a (resp. t = 0) to the orbit O(a, 1) (resp. O(0, 0)), the
quotient X//Gm is identified with the set of closed orbits. This is a very
common phenomenon. The same is true in general.

Theorem 14.1.1. (Seshadri-Mumford) Let X = Proj B be a
projective scheme over a closed field k, and G a reductive algebraic k-
group acting linearly on B (hence on X). Then there exists an open
subscheme Xss of X consisting of all semistable points in X, and a quo-
tient Y of Xss by G, that is, Y = Proj (R), where R is the graded subring
of B of all G-invariants. To be more precise, there exist a G-invariant
morphism π from Xss onto Y such that

(1) For any k-scheme Z on which G acts, and for any G-equivariant
morphism φ : Z → X there exists a unique morphism φ̄ : Z → Y
such that φ̄ = πφ,

(2) For given points a and b of Xss

π(a) = π(b) if and only if O(a) ∩O(b) 
= ∅
where the closure is taken in Xss,

(3) Y (k) is regarded as the set of G-orbits closed in Xss.

See [26, p.38, p.40] and [41, p. 269].
A reductive group in Theorem 14.1.1 is by definition an algebraic

group whose maximal solvable normal subgroup is an algebraic torus;
for example SL(n) and Gm are reductive.

The following is well known.

Theorem 14.1.2. ([9], [24]) For a connected curve C of genus
greater than one with dualizing sheaf ωC, the following are equivalent:

1. C is a stable curve, (moduli-stable)
2. the n-th Hilbert point of C embedded by |ωmC | (m ≥ 10) is GIT-

stable for n large,
3. the Chow point of C embedded by |ωmC | (m ≥ 10) is GIT-stable.
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Proof. The proof goes as (2) =⇒ (1) =⇒ (3) =⇒ (2).
We explain only who proved these and where.
By [9, Chap. 2], let π : ZUC → UC be the universal curve such that
(i) Xh := π−1(h) (h ∈ UC) is a connected curve of genus g and

degree d = n(2g − 2) embedded by the linear system ωnXh
into

PN (N = d− g),
(ii) the m0-th Hilbert point Hm0(Xh) of Xh is SL(N +1)-semistable,

where m0 is a fixed positive integer large enough.
Then by [9, Theorem 1.0.1, p. 26], Xh is a semistable curve, that is,

a reduced connected curve with nodal singularities only, any of whose
nonsingular rational irreducible components meets the other irreducible
components of Xh at two or more points. For any semistable curve X ,
ωX is ample if and only if X is a stable curve. Hence (2) implies (1).

By [24, Theorem 5.1], if C is a stable curve, Φn(C), the image of
C by the linear system ωnC , is Chow-stable. Thus (1) implies (3). (3)
implies (2) by [8] and [26, Prop. 2.18, p. 65]. See [26, p. 215]. Q.E.D.

We have an analogous theorem for PSQASes.

Theorem 14.1.3. Let K = H ⊕H∨, N = |H |, N = |H |, and k
an algebraically closed field with k � 1/N .

Suppose emin(H) ≥ 3, and (Z,L) is a closed subscheme of P(V ).
Suppose moreover that (Z,L) is smoothable into an abelian variety whose
Heisenberg group is isomorphic to GH . Then the following are equivalent:

1. (Z,L) is a level-GH PSQAS, (moduli-stable)
2. any Hilbert point of (Z,L) of large degree is GIT-stable,
3. (Z,L) is stable under (a conjugate of) GH .

See [30, Theorem 11.6] and [31, Theorems 10.3, 10.4].

Remark 14.1.4. In Table 1 we mean by GIT-stable that the cu-
bic has a closed PGL(3)-orbit in the semistable locus. See [31] for details.

By Table 1, a planar cubic is GIT-stable if and only if it is either a
smooth elliptic curve or a 3-gon. This is a special case of Theorem 14.1.3.

14.2. Arithmetic moduli
Katz and Mazur [15] constructed an integral model X(n) of the

moduli scheme of elliptic curves with level n-structure. Level structure
is generalized as A-generators of the group of n-division points for A =
(Z/nZ)⊕2. For any n ≥ 3, X(n) is a regular Z-flat scheme such that
X(n)⊗Z[1/n, ζn] � SQ1,A. If n = 3, X(3)⊗F3 is a union of four copies
of P1, intersecting at the unique supersingular elliptic curve over F9.
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Table 1. Stability of cubics

curves (sing.) stability stab. gr.

smooth elliptic GIT-stable finite
3 lines, no triple point GIT-stable 2 dim
a line+a conic, not tangent semistable, not GIT-stable 1 dim
irreducible, a node semistable, not GIT-stable Z/2Z
3 lines, a triple point not semistable 1 dim
a line+a conic, tangent not semistable 1 dim
irreducible, a cusp not semistable 1 dim

This X(n) is the model that we wish to generalize to the higher di-
mensional case, using our PSQASes or TSQASes. This will be discussed
somewhere else.

14.3. The other compactifications
It is still unknown whether APmain

g,1 (or SQtoric
g,1 ) is normal or not.

Therefore it is not yet known whether APmain
g,1 (or SQtoric

g,1 ) is the Voronoi
compactification, one of the toroidal compactifications associated to the
second Voronoi cone decomposition. There will exist a flat family of
PSQASes or TSQASes over the Voronoi compactification. This will
define, by the universality of the target, a morphism from the Voronoi
compactification to AP

main

g,1 (or SQtoric
g,1 ) or SQtoric

g,K for some K once we
check the family is algebraic. The author conjectures that SQtoric

g,K is
normal, hence isomorphic to the Voronoi(-type) compactification.
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Notes Math., 151, Springer Verlag, 1970.

[ 7 ] G. Faltings and C.-L. Chai, Degenerations of abelian varieties, vol. 22,
Ergebnisse der Mathematik und ihrer Grenzgebiete, no. 3, Springer-
Verlag, 1990.

[ 8 ] J. Fogarty, Truncated Hilbert functors, J. Reine und Angew. Math., 234
(1969), 65–88.

[ 9 ] D. Gieseker, Lectures on moduli of curves, Tata Institute of Fundamental
Research, Bombay 1982.
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