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1 Introduction

The Gauss hypergeometric equation E(α, β, γ)

x(1 − x)
d2f

dx2
+ {γ − (α + β + 1)x}df

dx
− αβf = 0

for (α, β, γ) = (1/2, 1/2, 1) induces an isomorphism

per : C − {0, 1} → H/M (taking the ratio of solutions),

where H = {τ ∈ C | Im(τ ) > 0} and M is the monodromy

group of E(1/2, 1/2, 1). Note that M is the level 2 principal

congruence subgroup of SL2(Z), which is isomorphic to the

fundamental group π1(C − {0, 1}). We can regard per as the

period map for the family of marked elliptic curves (double

covers of P1 branching at 4 points).

As generalizations, we have some period maps and systems

of hypergeometric equations; each of them induces an isomor-

phism between a certain moduli space of algebraic varieties

and the quotient space of a certain symmetric domain by its

monodromy group.
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For examples,

1. Appell’s FD with special parameters: from families of k-

fold branched coverings of P1 to complex balls studied by

Terada and Deligne-Mostow,

2. the period map from the family of cubic surfaces to the

4-dimensional complex ball studied by Allcock-Carlson-

Toledo,

3. period maps from some families of certain K3 surfaces to

complex balls embedded in symmetric domains of type IV

lectured by Dolgachev and Kondo,

4. E(3, 6; 1/2, . . . , 1/2): from the family of the double covers

branching along 6-lines to the symmetric domain D of type

I22 studied by Sasaki-Yoshida-Matsumoto(the speaker).

Interesting automorphic forms appear when we study the

inverses of them !
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In my talk, we construct automorphic functions on the real

3-dimensional upper half space H3 = {(z, t) ∈ C × R | t > 0},

by observing the Whitehead link L = L0 ∪ L∞ in Figure 1.

F1

F3

F2

L0 L∞

Figure 1: Whitehead link

The Whitehead-link-complement S3 −L is known to admit

a hyperbolic structure: there is a discrete group W ⊂ GL2(C)

acting on on H3, and a homeomorphism

ϕ : H3/W
∼=−→ S3 − L.

Note that the situation is quite similar to the inverse of per :

per−1 : H/M −→ C − {0, 1}.
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But one has never tried to make the homeomorphism ϕ ex-

plicit. We construct automorphic functions for W in terms of

Θ
(
a
b

)
(τ ) on the symmetric domain D of type I2,2 over the ring

Z[i] appeared in Example 4, and express the homeomorphism

ϕ in terms of these automorphic functions, which realize some

branched coverings of real 3-dimensional orbifolds.

Our automorphic functions derive some properties with re-

spect to the Whitehead link:

• We can express the space S3−L as a part of a real algebraic

set (we need some inequalities). We can regard L0 and L∞

as the exceptional curves arising from the cusps. I expect

that some link invariants can be obtained algebraically by

our expression.

• We can realize symmetries of the Whitehead link as actions

of (Z/2Z)2 on these automorphic functions.

• Our automorphic functions give an arithmetical character-

ization of W .

The group W is given by 2 generators (W ' π1(S
3 − L)

which is generated by 2 elements). By the definition of W ,

for a given g ∈ GL2(C) it is difficult to know if g belongs

to W or not.
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2 A hyperbolic structure on the complement of

the Whitehead link

Let H3 be the upper half space model

H3 = {(z, t) ∈ C × R | t > 0}

of the 3-dimensional real hyperbolic space.

GL2(C) and an involution T act on H3 as

g · (z, t) =(
g11ḡ21t

2+(g11z+g12)(g21z+g22)

|g21|2t2+(g21z+g22)(g21z+g22)
,

| det(g)|t
|g21|2t2+(g21z+g22)(g21z+g22)

)
,

T · (z, t) = (z̄, t),

where

g =

(
g11 g12

g21 g22

)
∈ GL2(C).

Put

GLT
2 (C) := {〈GL2(C), T 〉 | T · g = ḡ · T}

for g ∈ GL2(C).
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The Whitehead-link-complement S3−L admits a hyperbolic

structure. We have a homeomorphism

ϕ : H3/W
∼=−→ S3 − L,

where

W := 〈g1, g2〉, g1 =

(
1 i

0 1

)
, g2 =

(
1 0

1+i 1

)
.

We call W the Whitehead-link-complement group.

A fundamental domain FD for W in H3 is in Figure 2.

−1 + i i

0−1
1

1 − i

Re(z)

Im(z)

−i

#1

#5

#9

#7 #3

#4 #8 #10

#6

#2

Figure 2: Fundamental domain FD of W in H3

The group W has two cusps.

(z, t) = (∗, +∞), (0, 0) ∼ (±i, 0) ∼ (±1, 0) ∼ (∓1 ± i, 0).

Remark 1 The monodromy groups of E(α, β, γ) for pa-

rameters satisfying

cos(2πα) =
1+i

2
, β = −α, γ ∈ Z

are conjugate to W .
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3 Discrete subgroups of GL2(C), especially Λ

We define some discrete subgroups of GL2(C) :

Γ = GL2(Z[i]),

SΓ0(1+i) = {g = (gjk) ∈ Γ | det(g) = ±1, g21 ∈ (1+i)Z[i]},

SΓ(1+i) = {g ∈ SΓ0(1+i) | g12 ∈ (1+i)Z[i]},

Γ(2) = {g ∈ Γ | g11 − 1, g12, g21, g22 − 1 ∈ 2Z[i]},

W = TWT = {ḡ | g ∈ W},

Ŵ = W ∩ W,

W̆ = 〈W,W 〉.

Convention: We regard these groups as subgroups of the

projectified group PGL2(C).

For ∀G in Γ, we denote GT = 〈G, T 〉 in GLT
2 (C).
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ΓT (2) is a Coxeter group generated by the eight reflections,

of which mirrors form an octahedron in H3, see Figure 3.

−1 + i i

0−1

Im(z)

Re(z)

Figure 3: Weyl chamber of ΓT (2)
.

We put

Λ := 〈ΓT (2),W 〉.

Λ = SΓT
0 (1+i)

� |
SΓT (1+i) SΓ0(1+i)

| |
∗ W̆ = 〈W,W 〉
| � �

ΓT (2) W W

| � �
Γ(2) Ŵ = W ∩ W
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Lemma 1 1. ΓT (2) is normal in Λ;

Λ/ΓT (2) ' the dihedral group D8 of order 8.

2. [Λ,W ] = 8, W is not normal in Λ: TWT = W .

3. The domain bounded by the four walls

a : Im(z) = 0, b : Re(z) = 0,

c : Im(z) =
1

2
, d : Re(z) = −1

2
,

and by the hemisphere

#9 : |z − −1 + i

2
| =

1√
2
.

is a fundamental domain of Λ, see Figure 4.

Re(z)

Im(z)
i
2

−1
2

0

−1+i
2

Figure 4: Fundamental domain of Λ
.

4. Λ = SΓT
0 (1+i) and [SΓ0(1+i),W ] = 4.

(We will see SΓ0(1+i)/W = (Z/2Z)2.)
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H3/ΓT (2) H3/W

\ |Z/(2Z)

H3/〈W,W 〉

\D8 |Z/(2Z)

H3/SΓ0(1+i)

\ /Z/(2Z)

H3/Λ

Our strategy is following.

At first, we realize the quotient space H3/ΓT (2) by using

theta functions Θ
(
a
b

)
(τ ) on D. Next we construct D8-invariant

functions which realize H3/Λ. This step corresponds to the

construction of the j-function from the λ-function. Finally, we

construct the 3 double covers in the right line step by step.

We must know the branch locus of each of double covers. We

investigate the symmetry of the Whitehead link.
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4 Symmetry of the Whitehead link

Orientation preserving homeomorphisms of S3 keeping L fixed

form a group (Z/2Z)2. The group consists of π-rotations with

axes F1, F2 and F3, and the identity.

F1

F3

F2

L0 L∞

Figure 5: The Whitehead link with its symmetry axes

There is also a reflection of S3 keeping a mirror (containing L)

pointwise fixed.

These rotations and the reflection can be represent as ele-

ments of Λ. We give the axes and the mirror in the fundamen-

tal domain of H3/W .
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Proposition 1 The three π-rotations with axes F1, F2 and

F3, and the reflection can be represented by the transfor-

mations

γ1 :

(
−1 1

0 1

)
, γ2 :

(
1 1

0 1

)
, γ3 :

(
−1 0

0 1

)
, T,

respectively, of H3 modulo W .

The fixed loci in FD, as well as in H3/W , of the rota-

tions γ1, γ2 and γ3 are also called the axes F1, F2 and F3;

they are depicted in FD as in Figure 6. A bullet • stands

for a vertical line: the inverse image of the point under π.

Figure 6: The fixed loci of γ1, γ2, γ3
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5 Orbit spaces under W̆ , SΓ0(1 + i) and Λ

A fundamental domain for W̆ and the orbifold H3/W̆

2

L∞ L0

F3F2

F1

A fundamental domain for SΓ0(1 + i) and the orbifold

H3/SΓ0(1 + i)

2

2
2

L∞ L0

F3

F1

F2

A fundamental domain for Λ and the boundary of H3/Λ

∞

0

a

c

d b a
b

c
d
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∞

0

F1

F2

F3

a

b

c
d

Figure 7: A better picture of the fundamental domain for SΓ0(1 + i)

Proposition 2 • The branch locus of the double cover

H3/SΓ0(1+i) of H3/Λ is the union of the walls a, b, c, d.

• That of the double cover H3/W̆ of H3/SΓ0(1+i) is the

union of the axes F2 and F3 (the axes F2 and F3 are

equivalent in the space H3/W̆ ).

• That of the double cover H3/W of H3/W̆ is the axis

F1.

6 Theta functions on D

The symmetric domain D of type I2,2 is defined as

D =

{
τ ∈ M2,2(C) | τ − τ ∗

2i
is positive definite

}
.

The group

U2,2(C) =

{
h ∈ GL4(C) | gJg∗ = J =

(
O −I2

I2 O

)}
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and an involution T act on D as

h · τ = (h11τ + h12)(h21τ + h22)
−1, T · τ = tτ,

where h =

(
h11 h12

h21 h22

)
∈ U2,2(C), and hjk are 2×2 matrices.

We define some discrete subgroups of U2,2(C):

U2,2(Z[i]) = U2,2(C) ∩ GL4(Z[i]),

U2,2(1+i) = {h ∈ U2,2(Z[i]) | h ≡ I4 mod (1+i)}.

Theta functions Θ
(
a
b

)
(τ ) on D are defined as

Θ

(
a

b

)
(τ ) =

∑
n∈Z[i]2

e[(n + a)τ (n + a)∗ + 2Re(nb∗)],

where τ ∈ D, a, b ∈ Q[i]2 and e[x] = exp[πix]. By definition,

we have the following fundamental properties.
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Fact 1 1. If b ∈ 1
1+iZ[i]2, then Θ

(
a
ib

)
(τ ) = Θ

(
a
b

)
(τ ).

If b ∈ 1
2Z[i]2, then Θ

(
a
−b

)
(τ ) = Θ

(
a
b

)
(τ ).

2. For k ∈ Z and m,n ∈ Z[i]2, we have

Θ

(
ika

ikb

)
(τ ) = Θ

(
a

b

)
(τ ),

Θ

(
a + m

b + n

)
(τ ) = e[−2Re(mb∗)]Θ

(
a

b

)
(τ ).

3. If (1+i)ab∗ /∈ Z[i] for a, b ∈ 1
1+iZ[i]2, then Θ

(
a
b

)
(τ ) = 0.

It is known that any action of U2,2(Z[i]) on τ ∈ D can be

decomposed into the following transformations:

(1) τ 7→ τ + s, where s = (sjk) is a 2 × 2 hermitian matrix

over Z[i];

(2) τ 7→ gτg∗, where g ∈ GL2(Z[i]);

(3) τ 7→ −τ−1.

Fact 2 By T and these actions, Θ
(
a
b

)
(τ ) is changed into

Θ

(
a

b

)
(T · τ ) = Θ

(
ā

b̄

)
(τ ),

Θ

(
a

b

)
(τ + s) = e[asa∗]Θ

(
a

b + as + 1+i
2 (s11, s22)

)
(τ ),

Θ

(
a

b

)
(gτg∗) = Θ

(
ag

b(g∗)−1

)
(τ ) for g ∈ GL2(Z[i]),

Θ

(
a

b

)
(−τ−1) = − det(τ )e[2Re(ab∗)]Θ

(
−b

a

)
(τ ).
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In order to get the last equality, use the multi-variable ver-

sion of the Poisson summation formula. We show the 3rd

equality.

Θ

(
a

b

)
(gτg∗)

=
∑

n∈Z[i]2

e[(n + a)(gτg∗)(n + a)∗ + 2Re(n(gg−1)b∗)]

=
∑

n∈Z[i]2

e[(ng + ag)τ (ng + ag)∗ + 2Re(ng(b(g∗)−1)∗)]

= Θ

(
ag

b(g∗)−1

)
(τ ),

since m = ng rnus over Z[i]2 for any g ∈ GL2(Z[i]).

Proposition 3 If a, b ∈ 1
1+iZ[i]2 then Θ2

(
a
b

)
(τ ) is a modular

from of weight 2 with character det for U2,2(1+i), i.e.,

Θ2

(
a

b

)
(T · τ ) = Θ2

(
a

b

)
(τ ),

Θ2

(
a

b

)
(h · τ ) = det(h) det(h21τ + h22)

2Θ2

(
a

b

)
(τ ),

for any h = (hjk) ∈ U2,2(1+i).

By following the proof of Jacobi’ identity for lattices L1 =

Z[i]2, L2 = Z[i]2A, L = 〈L1, L2〉, where

A =
1 + i

2

(
1 1

1 −1

)
, AA∗ = I2, A2 = iI2,

we have quadratic relations among theta functions Θ
(
a
b

)
(τ ).
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Theorem 1

4Θ

(
a

b

)
(τ )2

=
∑

e,f∈1+i
2 Z[i]2/Z[i]2

e[2Re((1+i)be∗)]

Θ

(
e + (1+i)a

f + (1+i)b

)
(τ )Θ

(
e

f

)
(τ ).

For a, b ∈ (Z[i]
1+i /Z[i])2, there are 10 non-vanishing Θ

(
a
b

)
(τ ).

Corollary 1 The ten Θ
(
a
b

)
(τ )2 satisfy the same linear re-

lations as the Plücker relations for the (3, 6)-Grassmann

manifold, which is the linear relations among the 10 prod-

ucts Dijk(X)Dlmn(X) of the Plücker coordinates, where

X =

 x11 . . . x16

x21 . . . x26

x31 . . . x36

 , Dijk(X) = det

 x1i x1j x1k

x2i x2j x2k

x3i x3j x3k


and {i, j, k, l,m, n} = {1, . . . , 6}.

There are 5 linearly independent Θ2
(
a
b

)
(τ ).

Remark 2 τ can be regarded as periods of the K3-surface

coming from the double cover of P2 branching along 6 lines

given by the 6 columns of X.
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7 Embedding of H3 into D

We embed H3 into D by

ı : H3 3 (z, t) 7→ i

t

(
t2 + |z|2 z

z̄ 1

)
∈ D;

we define a homomorphism

 : GL2(C) 3 g 7→
(

g/
√

| det(g)| O

O (g∗/
√

| det(g)|)−1

)
∈ U2,2(C).

They satisfy

ı(g · (z, t)) = (g) · ı(z, t) for any g ∈ GL2(C),

ı(T · (z, t)) = T · ı(z, t),

−(ı(z, t))−1 =

(


(
0 −1

1 0

)
· T

)
· ı(z, t).

We denote the pull back of Θ
(
a
b

)
(τ ) under the embedding ı :

H3 → D by Θ
(
a
b

)
(z, t).

By definition, we have the following.

Fact 3 1. For a, b ∈ 1
2Z[i]2, each Θ

(
a
b

)
(z, t) is real valued.

If 2Re(ab∗) + 2Im(ab∗) /∈ Z then Θ
(
a
b

)
(z, t) ≡ 0.

2. For a, b ∈ 1
1+iZ[i]2, each Θ

(
a
b

)
(z, t) is invariant under

the action of ΓT (2).

3. The function Θ = Θ
(

00
00

)
(z, t) is positive and invariant

under the action of ΓT .
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8 Automorphic functions for ΓT (2) and an embed-

ding of H3/ΓT (2)

Set

Θ
p

q

 = Θ
p

q

(z, t) = Θ

(p
2
q
2

)
(z, t), p, q ∈ Z[i]2

and

x0 = Θ
0, 0

0, 0

, x1 = Θ
1+i, 1+i

1+i, 1+i

,

x2 = Θ
1+i, 0

0, 1+i

, x3 = Θ
0, 1+i

1+i, 0

.

Theorem 2 The map

H3 3 (z, t) 7→ 1

x0
(x1, x2, x3) ∈ R3

induces an isomorphism between H3/ΓT (2) and the octa-

hedron

Oct = {(t1, t2, t3) ∈ R3 | |t1| + |t2| + |t3| ≤ 1}

minus the six vertices (±1, 0, 0), (0,±1, 0), (0, 0,±1).
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9 Automorphic functions for Λ and an embedding

of H3/Λ

Proposition 4 g1, g2 induce transformations of x1, x2, x3: x1

x2

x3

 · g1 =

 −1

−1

1

  x1

x2

x3

 ,

 x1

x2

x3

 · g2 =

−1

1

−1

  x1

x2

x3

 .

This a representation of the dihedral group D8 of order 8.

Theorem 3 x2
1 + x2

2, x2
1x

2
2, x2

3, x1x2x3 are Λ-invariant.

The map

λ : H3 3 (z, t) 7−→ (λ1, λ2, λ3, λ4)

= (ξ2
1 + ξ2

2, ξ2
1ξ

2
2, ξ2

3, ξ1ξ2ξ3)
∈ R4,

where ξj = xj/x0,

induces an embedding of H3/Λ into the subdomain of the

variety λ2λ3 = λ2
4.
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10 Automorphic functions for W

Set

y1 = Θ
 0, 1

1+i, 0

, y2 = Θ
1+i, 1

1+i, 0

,

z1 = Θ
0, 1

1, 0

, z2 = Θ
1+i, 1

1, 1+i

.
We define functions as

Φ1 = x3z1z2,

Φ2 = (x2 − x1)y1 + (x2 + x1)y2,

Φ3 = (x2
1 − x2

2)y1y2.

Theorem 4 Φ1, Φ2 and Φ3 are W -invariant. By the ac-

tions g = I2 + 2

(
p q

r s

)
∈ Γ(2) and T ,

Φ1 · g = e[Re((1+i)p + (1−i)s)]Φ1,

Φ2 · g = e[Re(r(1 − i))]Φ2,

Φ3 · g = Φ3.

Φ1 · T = Φ1, Φ3 · T = −Φ3.

Remark 3 Φ2 · T = (x2 − x1)y1 − (x2 + x1)y2. This is not

invariant under W but invariant under W .
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Let Isoj be the isotropy subgroup of Λ = SΓT
0 (1 + i) for Φj.

Theorem 5 We have

SΓ0(1+i) = Iso3, W̆ = Iso1∩Iso3, W = Iso1∩Iso2∩Iso3.

By this theorem, we have SΓ0(1+i)/W ' (Z/2Z)2.

Theorem 6 An element g =

(
p q

r s

)
∈ SΓ0(1+i) satis-

fying Re(s) ≡ 1 mod 2 belongs to W̆ if and only if

Re(p) + Im(s) − (−1)Re(q)+Im(q)(Im(p) + Re(s))

2

≡ ((−1)Re(r) + 1)Im(q) + (Re(q) + Im(q))(Re(r) + Im(r))

2
mod2.

The element g ∈ W̆ belongs to W if and only if

Re(p + q) +
Re(r) − (−1)Re(q)+Im(q)Im(r)

2
≡ 1 mod 2.

The element g ∈ W belongs to Ŵ = W ∩ W̄ if and only if

r ∈ 2Z[i].
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11 Embeddings of the quotient spaces

Put

f00 = (x2
2 − x2

1)y1y2 = Φ3,

f01 = (x2
2 − x2

1)z1z2z3z4,

f11 = x3z1z2 = Φ1,

f12 = x1x2z1z2,

f13 = x3(x
2
2 − x2

1)z3z4,

f14 = x1x2(x
2
2 − x2

1)z3z4,

f20 = (x2 − x1)z2z3 + (x2 + x1)z1z4,

f21 = z1z2{(x2 − x1)z1z3 + (x2 + x1)z2z4},

f22 = (x2
2 − x2

1){(x2 − x1)z1z4 + (x2 + x1)z2z3},

f30 = (x2 − x1)y1 + (x2 + x1)y2 = Φ2,

f31 = (x2 − x1)z1z3 − (x2 + x1)z2z4,

f32 = z3z4{−(x2 − x1)z1z4 + (x2 + x1)z2z3},

where (x0, x1, x2, x3) and (z1, z2, z3, z4) are

Θ
0, 0

0, 0

, Θ
1+i, 1+i

1+i, 1+i

, Θ
1+i, 0

0, 1+i

, Θ
0, 1+i

1+i, 0

,

Θ
0, 1

1, 0

, Θ
1+i, 1

1, 1+i

, Θ
 0, i

1, 0

, Θ
 1+i, i

1, 1+i

.
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Proposition 5 We have

4z2
1 = (x0 + x1 + x2 + x3)(x0 − x1 − x2 + x3),

4z2
2 = (x0 + x1 − x2 − x3)(x0 − x1 + x2 − x3),

4z2
3 = (x0 + x1 − x2 + x3)(x0 − x1 + x2 + x3),

4z2
4 = (x0 + x1 + x2 − x3)(x0 − x1 − x2 − x3).

Proposition 6 fjp are W -invariant. These change the

signs by the actions of γ1, γ2 and γ3 as in the table

γ1 γ2 γ3

f0j + + +

f1j + − −
f2j − + −
f3j − − +

Theorem 7 The analytic sets V1, V2, V3 of the ideals

I1 = 〈f11, f12, f13, f14〉, I2 = 〈f21, f22〉, I3 = 〈f31, f32〉

are F2 ∪ F3, F1 ∪ F3, F1 ∪ F2.

Corollary 2 The analytic set Vjk of the ideals 〈Ij, Ik〉 is

Fl for {j, k, l} = {1, 2, 3}.

25



Theorem 8 The map

ϕ0 : H3/SΓ0(1+i) 3 (z, t) 7→ (λ1, . . . , λ4, η01) ∈ R5

is injective, where η01 = f01/x
6
0. Its image Image(ϕ0) is

determined by the image Image(λ) under λ : H3 3 (z, t) 7→

(λ1, . . . , λ4) and the relation

256f 2
01

= (λ2
1 − 4λ2)

∏
ε3=±1

(λ2
3 − 2(x2

0 + λ1)λ3 + ε38x0λ4

+x4
0 − 2x2

0λ1 + λ2
1 − 4λ2),

as a double cover of Image(λ) branching along its bound-

ary.

F1, F2 and F3 can be illustrated as in Figure 8. Each of the

two cusps ∞̄ and 0̄ is shown as a hole. These holes can be

deformed into sausages as in Figure 9.

F1

F1

F3
F3

F3

F2

F2

∞̄

0̄

Figure 8: Orbifold singularities in Image(ϕ0) and the cusps ∞̄ and 0̄
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L∞
L0

F3

F1

F2

Figure 9: The cusp-holes are deformed into two sausages

Theorem 9 The map

ϕ1 : H3/W̆ 3 (z, t) 7→ (ϕ0, η11, . . . , η14) ∈ R9

is injective, where η1j = f1j/x
deg(f1j)
0 . The products f1pf1q

(1 ≤ p ≤ q ≤ 4) can be expressed as polynomials of x0,

λ1, . . . , λ4 and f01. The image Image(ϕ0) together with

these relations determines the image Image(ϕ1) under the

map ϕ1.

The boundary of a small neighborhood of the cusp ϕ1(0) is a

torus, which is the double cover of that of the cusp ϕ0(0); note

that two F2-curves and two F3-curves stick into ϕ0(0). The

boundary of a small neighborhood of the cusp ϕ1(∞) remains

to be a 2-sphere; note that two F1-curves and two F3-curves

stick into ϕ0(∞), and that four F1-curves stick into ϕ1(∞).
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F2 F3

F1

2

ϕ1(0)

ϕ1(∞)

Figure 10: The double covers of the cusp holes

Theorem 10 The map

ϕ : H3/W 3 (z, t) 7→ (ϕ1, η21, η22, η31, η32) ∈ R13

is injective, where ηij = fij/x
deg(fij)
0 . The products f2qf2r

f3qf3r and f1pf2qf3r (p = 1, . . . , 4, q, r = 1, 2) can be ex-

pressed as polynomials of x0, λ1, . . . , λ4 and f01. The im-

age Image(ϕ1) together with these relations determines the

image Image(ϕ) under the map ϕ.

The boundary of a small neighborhood of the cusp ϕ(∞) is

a torus, which is the double cover of that of the cusp ϕ1(∞);

recall that four F1-curves stick into ϕ1(∞). The boundary of

a small neighborhood of the cusp ϕ(0) is a torus, which is the

unbranched double cover of that of the cusp ϕ1(0), a torus.
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Eventually, the sausage and the doughnut in Figure 10 are

covered by two linked doughnuts, tubular neighborhoods of the

curves L0 and L∞ of the Whitehead link.

F1

F3

F2

L0 L∞
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