Invariant functions with respect to the Whitehead-link

Keiji Matsumoto

(joint work with Haruko Nishi and Masaaki Yoshida)

1 Introduction

The Gauss hypergeometric equation $E(\alpha, \beta, \gamma)$

$$x(1-x)\frac{d^2f}{dx^2} + \{\gamma - (\alpha + \beta + 1)x\}\frac{df}{dx} - \alpha\beta f = 0$$

for $(\alpha, \beta, \gamma) = (1/2, 1/2, 1)$ induces an isomorphism

 $per: \mathbb{C} - \{0, 1\} \to \mathbb{H}/M$ (taking the ratio of solutions), where $\mathbb{H} = \{\tau \in \mathbb{C} \mid \text{Im}(\tau) > 0\}$ and M is the monodromy group of E(1/2, 1/2, 1). Note that M is the level 2 principal congruence subgroup of $SL_2(\mathbb{Z})$, which is isomorphic to the fundamental group $\pi_1(\mathbb{C} - \{0, 1\})$. We can regard *per* as the period map for the family of marked elliptic curves (double covers of \mathbb{P}^1 branching at 4 points).

As generalizations, we have some period maps and systems of hypergeometric equations; each of them induces an isomorphism between a certain moduli space of algebraic varieties and the quotient space of a certain symmetric domain by its monodromy group. For examples,

- 1. Appell's F_D with special parameters: from families of kfold branched coverings of \mathbb{P}^1 to complex balls studied by
 Terada and Deligne-Mostow,
- the period map from the family of cubic surfaces to the 4-dimensional complex ball studied by Allcock-Carlson-Toledo,
- 3. period maps from some families of certain K3 surfaces to complex balls embedded in symmetric domains of type IV lectured by Dolgachev and Kondo,
- 4. E(3,6;1/2,...,1/2): from the family of the double covers branching along 6-lines to the symmetric domain D of type I₂₂ studied by Sasaki-Yoshida-Matsumoto(the speaker).

Interesting automorphic forms appear when we study the inverses of them !

In my talk, we construct automorphic functions on the real 3-dimensional upper half space $\mathbb{H}^3 = \{(z, t) \in \mathbb{C} \times \mathbb{R} \mid t > 0\}$, by observing the Whitehead link $L = L_0 \cup L_\infty$ in Figure 1.

Figure 1: Whitehead link

The Whitehead-link-complement $S^3 - L$ is known to admit a hyperbolic structure: there is a discrete group $W \subset GL_2(\mathbb{C})$ acting on on \mathbb{H}^3 , and a homeomorphism

$$\varphi: \mathbb{H}^3/W \xrightarrow{\cong} S^3 - L.$$

Note that the situation is quite similar to the inverse of per:

$$per^{-1}: \mathbb{H}/M \longrightarrow \mathbb{C} - \{0,1\}$$

But one has never tried to make the homeomorphism φ explicit. We construct automorphic functions for W in terms of $\Theta\binom{a}{b}(\tau)$ on the symmetric domain \mathbb{D} of type $I_{2,2}$ over the ring $\mathbb{Z}[i]$ appeared in Example 4, and express the homeomorphism φ in terms of these automorphic functions, which realize some branched coverings of real 3-dimensional orbifolds.

Our automorphic functions derive some properties with respect to the Whitehead link:

- We can express the space S^3-L as a part of a real algebraic set (we need some inequalities). We can regard L_0 and L_{∞} as the exceptional curves arising from the cusps. I expect that some link invariants can be obtained algebraically by our expression.
- We can realize symmetries of the Whitehead link as actions of $(\mathbb{Z}/2\mathbb{Z})^2$ on these automorphic functions.
- Our automorphic functions give an arithmetical characterization of W.

The group W is given by 2 generators $(W \simeq \pi_1(S^3 - L))$ which is generated by 2 elements). By the definition of W, for a given $g \in GL_2(\mathbb{C})$ it is difficult to know if g belongs to W or not.

2 A hyperbolic structure on the complement of the Whitehead link

Let \mathbb{H}^3 be the upper half space model

$$\mathbb{H}^3 = \{ (z,t) \in \mathbb{C} \times \mathbb{R} \mid t > 0 \}$$

of the 3-dimensional real hyperbolic space.

 $GL_2(\mathbb{C})$ and an involution T act on \mathbb{H}^3 as

$$g \cdot (z,t) = \left(\frac{g_{11}\bar{g}_{21}t^2 + (g_{11}z + g_{12})\overline{(g_{21}z + g_{22})}}{|g_{21}|^2 t^2 + (g_{21}z + g_{22})\overline{(g_{21}z + g_{22})}}, \frac{|\det(g)|t}{|g_{21}|^2 t^2 + (g_{21}z + g_{22})\overline{(g_{21}z + g_{22})}}\right),$$

$$T \cdot (z, t) = (\bar{z}, t),$$

where

$$g = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \in GL_2(\mathbb{C}).$$

Put

$$GL_2^T(\mathbb{C}) := \{ \langle GL_2(\mathbb{C}), T \rangle \mid T \cdot g = \bar{g} \cdot T \}$$

for $g \in GL_2(\mathbb{C})$.

The Whitehead-link-complement S^3-L admits a hyperbolic structure. We have a homeomorphism

$$\varphi: \mathbb{H}^3/W \xrightarrow{\cong} S^3 - L,$$

where

$$W := \langle g_1, g_2 \rangle, \quad g_1 = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}, \quad g_2 = \begin{pmatrix} 1 & 0 \\ 1+i & 1 \end{pmatrix}.$$

We call W the Whitehead-link-complement group.

A fundamental domain FD for W in \mathbb{H}^3 is in Figure 2.

Figure 2: Fundamental domain FD of W in \mathbb{H}^3

The group W has two cusps.

$$(z,t) = (*,+\infty), \quad (0,0) \sim (\pm i,0) \sim (\pm 1,0) \sim (\mp 1 \pm i,0).$$

Remark 1 The monodromy groups of $E(\alpha, \beta, \gamma)$ for parameters satisfying

$$\cos(2\pi\alpha) = \frac{1+i}{2}, \quad \beta = -\alpha, \quad \gamma \in \mathbb{Z}$$

are conjugate to W.

3 Discrete subgroups of $GL_2(\mathbb{C})$, especially Λ

We define some discrete subgroups of $GL_2(\mathbb{C})$:

$$\Gamma = GL_2(\mathbb{Z}[i]),$$

$$S\Gamma_0(1+i) = \{g = (g_{jk}) \in \Gamma \mid \det(g) = \pm 1, \ g_{21} \in (1+i)\mathbb{Z}[i]\},$$

$$S\Gamma(1+i) = \{g \in S\Gamma_0(1+i) \mid g_{12} \in (1+i)\mathbb{Z}[i]\},$$

$$\Gamma(2) = \{g \in \Gamma \mid g_{11} - 1, g_{12}, g_{21}, g_{22} - 1 \in 2\mathbb{Z}[i]\},$$

$$\overline{W} = TWT = \{\overline{g} \mid g \in W\},$$

$$\hat{W} = W \cap \overline{W},$$

$$\tilde{W} = \langle W, \overline{W} \rangle.$$

Convention: We regard these groups as subgroups of the projectified group $PGL_2(\mathbb{C})$.

For ${}^{\forall}G$ in Γ , we denote $G^T = \langle G, T \rangle$ in $GL_2^T(\mathbb{C})$.

 $\Gamma^{T}(2)$ is a Coxeter group generated by the eight reflections, of which mirrors form an octahedron in \mathbb{H}^{3} , see Figure 3.

We put

 $\Lambda := \langle \Gamma^T(2), W \rangle.$

Lemma 1 1. $\Gamma^T(2)$ is normal in Λ ;

 $\Lambda/\Gamma^T(2) \simeq$ the dihedral group D_8 of order 8.

- 2. $[\Lambda, W] = 8$, W is not normal in Λ : $TWT = \overline{W}$.
- 3. The domain bounded by the four walls

$$a : \operatorname{Im}(z) = 0, \quad b : \operatorname{Re}(z) = 0,$$

 $c : \operatorname{Im}(z) = \frac{1}{2}, \quad d : \operatorname{Re}(z) = -\frac{1}{2},$

and by the hemisphere

$$\#9: |z - \frac{-1+i}{2}| = \frac{1}{\sqrt{2}}$$

is a fundamental domain of Λ , see Figure 4.

Figure 4: Fundamental domain of Λ

4.
$$\Lambda = S\Gamma_0^T(1+i) \text{ and } [S\Gamma_0(1+i), W] = 4.$$

(We will see $S\Gamma_0(1+i)/W = (\mathbb{Z}/2\mathbb{Z})^2.$)

$\mathbb{H}^3/\Gamma^T(2)$			\mathbb{H}^3/W
\			$\mathbb{Z}/(2\mathbb{Z})$
			$\mathbb{H}^3/\langle W,\overline{W}\rangle$
	\setminus_{D_8}		$\mathbb{Z}/(2\mathbb{Z})$
			$\mathbb{H}^3/S\Gamma_0(1\!+\!i)$
	\setminus		$\mathbb{Z}/(2\mathbb{Z})$
		\mathbb{H}^3/Λ	

Our strategy is following.

At first, we realize the quotient space $\mathbb{H}^3/\Gamma^T(2)$ by using theta functions $\Theta\binom{a}{b}(\tau)$ on \mathbb{D} . Next we construct D_8 -invariant functions which realize \mathbb{H}^3/Λ . This step corresponds to the construction of the *j*-function from the λ -function. Finally, we construct the 3 double covers in the right line step by step. We must know the branch locus of each of double covers. We investigate the symmetry of the Whitehead link.

4 Symmetry of the Whitehead link

Orientation preserving homeomorphisms of S^3 keeping L fixed form a group $(\mathbb{Z}/2\mathbb{Z})^2$. The group consists of π -rotations with axes F_1 , F_2 and F_3 , and the identity.

Figure 5: The Whitehead link with its symmetry axes

There is also a reflection of S^3 keeping a mirror (containing L) pointwise fixed.

These rotations and the reflection can be represent as elements of Λ . We give the axes and the mirror in the fundamental domain of \mathbb{H}^3/W . **Proposition 1** The three π -rotations with axes F_1 , F_2 and F_3 , and the reflection can be represented by the transformations

$$\gamma_1: \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}, \ \gamma_2: \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ \gamma_3: \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \ T,$$

respectively, of \mathbb{H}^3 modulo W.

The fixed loci in FD, as well as in \mathbb{H}^3/W , of the rotations γ_1, γ_2 and γ_3 are also called the axes F_1, F_2 and F_3 ; they are depicted in FD as in Figure 6. A bullet • stands for a vertical line: the inverse image of the point under π .

Figure 6: The fixed loci of γ_1 , γ_2 , γ_3

5 Orbit spaces under $\breve{W}, S\Gamma_0(1+i)$ and Λ

A fundamental domain for \breve{W} and the orbifold \mathbb{H}^3/\breve{W}

A fundamental domain for $S\Gamma_0(1+i)$ and the orbifold

 $\mathbb{H}^3/S\Gamma_0(1+i)$

A fundamental domain for Λ and the boundary of \mathbb{H}^3/Λ

Figure 7: A better picture of the fundamental domain for $S\Gamma_0(1+i)$

- **Proposition 2** The branch locus of the double cover $\mathbb{H}^3/S\Gamma_0(1+i)$ of \mathbb{H}^3/Λ is the union of the walls a, b, c, d.
 - That of the double cover ℍ³/W of ℍ³/SΓ₀(1+i) is the union of the axes F₂ and F₃ (the axes F₂ and F₃ are equivalent in the space ℍ³/W).
 - That of the double cover ℍ³/W of ℍ³/W is the axis F₁.

6 Theta functions on \mathbb{D}

The symmetric domain \mathbb{D} of type $I_{2,2}$ is defined as

$$\mathbb{D} = \bigg\{ \tau \in M_{2,2}(\mathbb{C}) \mid \frac{\tau - \tau^*}{2i} \text{ is positive definite} \bigg\}.$$

The group

$$U_{2,2}(\mathbb{C}) = \left\{ h \in GL_4(\mathbb{C}) \mid gJg^* = J = \begin{pmatrix} O & -I_2 \\ I_2 & O \end{pmatrix} \right\}$$

and an involution T act on \mathbb{D} as

 $h \cdot \tau = (h_{11}\tau + h_{12})(h_{21}\tau + h_{22})^{-1}, \quad T \cdot \tau = {}^t \tau,$

where $h = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} \in U_{2,2}(\mathbb{C})$, and h_{jk} are 2×2 matrices. We define some discrete subgroups of $U_{2,2}(\mathbb{C})$:

$$U_{2,2}(\mathbb{Z}[i]) = U_{2,2}(\mathbb{C}) \cap GL_4(\mathbb{Z}[i]),$$

$$U_{2,2}(1+i) = \{h \in U_{2,2}(\mathbb{Z}[i]) \mid h \equiv I_4 \mod (1+i)\}.$$

Theta functions $\Theta\binom{a}{b}(\tau)$ on \mathbb{D} are defined as

$$\Theta\binom{a}{b}(\tau) = \sum_{n \in \mathbb{Z}[i]^2} \mathbf{e}[(n+a)\tau(n+a)^* + 2\operatorname{Re}(nb^*)],$$

where $\tau \in \mathbb{D}$, $a, b \in \mathbb{Q}[i]^2$ and $\mathbf{e}[x] = \exp[\pi i x]$. By definition, we have the following fundamental properties.

Fact 1 1. If $b \in \frac{1}{1+i}\mathbb{Z}[i]^2$, then $\Theta\binom{a}{ib}(\tau) = \Theta\binom{a}{b}(\tau)$. If $b \in \frac{1}{2}\mathbb{Z}[i]^2$, then $\Theta\binom{a}{-b}(\tau) = \Theta\binom{a}{b}(\tau)$.

2. For $k \in \mathbb{Z}$ and $m, n \in \mathbb{Z}[i]^2$, we have

$$\Theta \begin{pmatrix} i^k a \\ i^k b \end{pmatrix} (\tau) = \Theta \begin{pmatrix} a \\ b \end{pmatrix} (\tau),$$

$$\Theta \begin{pmatrix} a+m \\ b+n \end{pmatrix} (\tau) = \mathbf{e}[-2\operatorname{Re}(mb^*)] \Theta \begin{pmatrix} a \\ b \end{pmatrix} (\tau).$$

3. If $(1+i)ab^* \notin \mathbb{Z}[i]$ for $a, b \in \frac{1}{1+i}\mathbb{Z}[i]^2$, then $\Theta\binom{a}{b}(\tau) = 0$.

It is known that any action of $U_{2,2}(\mathbb{Z}[i])$ on $\tau \in \mathbb{D}$ can be decomposed into the following transformations:

- (1) $\tau \mapsto \tau + s$, where $s = (s_{jk})$ is a 2 × 2 hermitian matrix over $\mathbb{Z}[i]$;
- (2) $\tau \mapsto g\tau g^*$, where $g \in GL_2(\mathbb{Z}[i])$;
- (3) $\tau \mapsto -\tau^{-1}$.

Fact 2 By T and these actions, $\Theta\binom{a}{b}(\tau)$ is changed into

$$\begin{split} \Theta\begin{pmatrix}a\\b\end{pmatrix}(T\cdot\tau) &= \Theta\begin{pmatrix}\bar{a}\\\bar{b}\end{pmatrix}(\tau),\\ \Theta\begin{pmatrix}a\\b\end{pmatrix}(\tau+s) &= \mathbf{e}[asa^*]\Theta\begin{pmatrix}a\\b+as+\frac{1+i}{2}(s_{11},s_{22})\end{pmatrix}(\tau),\\ \Theta\begin{pmatrix}a\\b\end{pmatrix}(g\tau g^*) &= \Theta\begin{pmatrix}ag\\b(g^*)^{-1}\end{pmatrix}(\tau) \quad \text{for } g \in GL_2(\mathbb{Z}[i]),\\ \Theta\begin{pmatrix}a\\b\end{pmatrix}(-\tau^{-1}) &= -\det(\tau)\mathbf{e}[2\operatorname{Re}(ab^*)]\Theta\begin{pmatrix}-b\\a\end{pmatrix}(\tau). \end{split}$$

In order to get the last equality, use the multi-variable version of the Poisson summation formula. We show the 3rd equality.

$$\begin{split} \Theta \begin{pmatrix} a \\ b \end{pmatrix} (g\tau g^*) \\ &= \sum_{n \in \mathbb{Z}[i]^2} \mathbf{e}[(n+a)(g\tau g^*)(n+a)^* + 2\mathrm{Re}(n(gg^{-1})b^*)] \\ &= \sum_{n \in \mathbb{Z}[i]^2} \mathbf{e}[(ng+ag)\tau (ng+ag)^* + 2\mathrm{Re}(ng(b(g^*)^{-1})^*)] \\ &= \Theta \begin{pmatrix} ag \\ b(g^*)^{-1} \end{pmatrix} (\tau), \end{split}$$

since m = ng rnus over $\mathbb{Z}[i]^2$ for any $g \in GL_2(\mathbb{Z}[i])$.

Proposition 3 If $a, b \in \frac{1}{1+i}\mathbb{Z}[i]^2$ then $\Theta^2\binom{a}{b}(\tau)$ is a modular from of weight 2 with character det for $U_{2,2}(1+i)$, i.e.,

$$\Theta^2 \binom{a}{b} (T \cdot \tau) = \Theta^2 \binom{a}{b} (\tau),$$

$$\Theta^2 \binom{a}{b} (h \cdot \tau) = \det(h) \det(h_{21}\tau + h_{22})^2 \Theta^2 \binom{a}{b} (\tau),$$

for any $h = (h_{jk}) \in U_{2,2}(1+i).$

By following the proof of Jacobi' identity for lattices $L_1 = \mathbb{Z}[i]^2$, $L_2 = \mathbb{Z}[i]^2 A$, $L = \langle L_1, L_2 \rangle$, where

$$A = \frac{1+i}{2} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}, \quad AA^* = I_2, \ A^2 = iI_2,$$

we have quadratic relations among theta functions $\Theta\binom{a}{b}(\tau)$.

Theorem 1

$$4\Theta\binom{a}{b}(\tau)^{2}$$

$$= \sum_{e,f \in \frac{1+i}{2}\mathbb{Z}[i]^{2}/\mathbb{Z}[i]^{2}} \mathbf{e}[2\operatorname{Re}((1+i)be^{*})]$$

$$\Theta\binom{e+(1+i)a}{f+(1+i)b}(\tau)\Theta\binom{e}{f}(\tau)$$

For $a, b \in (\frac{\mathbb{Z}[i]}{1+i}/\mathbb{Z}[i])^2$, there are 10 non-vanishing $\Theta\binom{a}{b}(\tau)$. **Corollary 1** The ten $\Theta\binom{a}{b}(\tau)^2$ satisfy the same linear relations as the Plücker relations for the (3, 6)-Grassmann manifold, which is the linear relations among the 10 products $D_{ijk}(X)D_{lmn}(X)$ of the Plücker coordinates, where

$$X = \begin{pmatrix} x_{11} & \dots & x_{16} \\ x_{21} & \dots & x_{26} \\ x_{31} & \dots & x_{36} \end{pmatrix}, \ D_{ijk}(X) = \det \begin{pmatrix} x_{1i} & x_{1j} & x_{1k} \\ x_{2i} & x_{2j} & x_{2k} \\ x_{3i} & x_{3j} & x_{3k} \end{pmatrix}$$

and $\{i, j, k, l, m, n\} = \{1, \dots, 6\}.$

There are 5 linearly independent $\Theta^2 \begin{pmatrix} a \\ b \end{pmatrix} (\tau)$.

Remark 2 τ can be regarded as periods of the K3-surface coming from the double cover of \mathbb{P}^2 branching along 6 lines given by the 6 columns of X.

7 Embedding of \mathbb{H}^3 into \mathbb{D}

We embed \mathbb{H}^3 into \mathbb{D} by

$$\imath: \mathbb{H}^3 \ni (z,t) \mapsto \frac{i}{t} \begin{pmatrix} t^2 + |z|^2 & z \\ \bar{z} & 1 \end{pmatrix} \in \mathbb{D};$$

we define a homomorphism

$$j: GL_2(\mathbb{C}) \ni g \mapsto \begin{pmatrix} g/\sqrt{|\det(g)|} & O\\ O & (g^*/\sqrt{|\det(g)|})^{-1} \end{pmatrix} \in U_{2,2}(\mathbb{C}).$$

They satisfy

$$\begin{split} \imath(g \cdot (z,t)) &= \jmath(g) \cdot \imath(z,t) \quad \text{for any } g \in GL_2(\mathbb{C}), \\ \imath(T \cdot (z,t)) &= T \cdot \imath(z,t), \\ -(\imath(z,t))^{-1} &= \left(\jmath \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \cdot T \right) \cdot \imath(z,t). \end{split}$$

We denote the pull back of $\Theta\binom{a}{b}(\tau)$ under the embedding i: $\mathbb{H}^3 \to \mathbb{D}$ by $\Theta\binom{a}{b}(z,t)$.

By definition, we have the following.

- Fact 3 1. For $a, b \in \frac{1}{2}\mathbb{Z}[i]^2$, each $\Theta\binom{a}{b}(z,t)$ is real valued. If $2\operatorname{Re}(ab^*) + 2\operatorname{Im}(ab^*) \notin \mathbb{Z}$ then $\Theta\binom{a}{b}(z,t) \equiv 0$.
 - 2. For $a, b \in \frac{1}{1+i}\mathbb{Z}[i]^2$, each $\Theta\binom{a}{b}(z,t)$ is invariant under the action of $\Gamma^T(2)$.
 - 3. The function $\Theta = \Theta {\binom{00}{00}}(z,t)$ is positive and invariant under the action of Γ^T .

8 Automorphic functions for $\Gamma^T(2)$ and an embedding of $\mathbb{H}^3/\Gamma^T(2)$

Set

$$\Theta \begin{bmatrix} p \\ q \end{bmatrix} = \Theta \begin{bmatrix} p \\ q \end{bmatrix} (z,t) = \Theta \begin{pmatrix} \frac{p}{2} \\ \frac{q}{2} \end{pmatrix} (z,t), \quad p,q \in \mathbb{Z}[i]^2$$

and

$$x_{0} = \Theta\begin{bmatrix} 0, 0\\ 0, 0 \end{bmatrix}, \quad x_{1} = \Theta\begin{bmatrix} 1+i, 1+i\\ 1+i, 1+i \end{bmatrix}, \\ x_{2} = \Theta\begin{bmatrix} 1+i, 0\\ 0, 1+i \end{bmatrix}, \quad x_{3} = \Theta\begin{bmatrix} 0, 1+i\\ 1+i, 0 \end{bmatrix}.$$

Theorem 2 The map

$$\mathbb{H}^3 \ni (z,t) \mapsto \frac{1}{x_0}(x_1, x_2, x_3) \in \mathbb{R}^3$$

induces an isomorphism between $\mathbb{H}^3/\Gamma^T(2)$ and the octahedron

$$Oct = \{(t_1, t_2, t_3) \in \mathbb{R}^3 \mid |t_1| + |t_2| + |t_3| \le 1\}$$

minus the six vertices $(\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1)$.

9 Automorphic functions for Λ and an embedding of \mathbb{H}^3/Λ

Proposition 4 g_1 , g_2 induce transformations of x_1, x_2, x_3 :

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot g_1 = \begin{pmatrix} -1 \\ -1 \\ x_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix},$$
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot g_2 = \begin{pmatrix} -1 \\ 1 \\ x_2 \\ x_3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

This a representation of the dihedral group D_8 of order 8.

Theorem 3 $x_1^2 + x_2^2$, $x_1^2 x_2^2$, x_3^2 , $x_1 x_2 x_3$ are Λ -invariant. The map

$$\begin{split} \lambda : \mathbb{H}^3 \ni (z,t) \longmapsto & \stackrel{(\lambda_1, \lambda_2, \lambda_3, \lambda_4)}{=} \in \mathbb{R}^4, \\ where \ \xi_j &= x_j/x_0, \\ induces \ an \ embedding \ of \ \mathbb{H}^3/\Lambda \ into \ the \ subdomain \ of \ the \\ variety \ \lambda_2\lambda_3 &= \lambda_4^2. \end{split}$$

10 Automorphic functions for W

Set

$$y_{1} = \Theta \begin{bmatrix} 0, 1 \\ 1+i, 0 \end{bmatrix}, \quad y_{2} = \Theta \begin{bmatrix} 1+i, 1 \\ 1+i, 0 \end{bmatrix}, \\ z_{1} = \Theta \begin{bmatrix} 0, 1 \\ 1, 0 \end{bmatrix}, \quad z_{2} = \Theta \begin{bmatrix} 1+i, 1 \\ 1, 1+i \end{bmatrix}.$$

We define functions as

$$\begin{split} \Phi_1 &= x_3 z_1 z_2, \\ \Phi_2 &= (x_2 - x_1) y_1 + (x_2 + x_1) y_2, \\ \Phi_3 &= (x_1^2 - x_2^2) y_1 y_2. \end{split}$$

Theorem 4 Φ_1, Φ_2 and Φ_3 are W-invariant. By the actions $g = I_2 + 2 \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in \Gamma(2)$ and T, $\Phi_1 \cdot g = \mathbf{e}[\operatorname{Re}((1+i)p + (1-i)s)]\Phi_1,$ $\Phi_2 \cdot g = \mathbf{e}[\operatorname{Re}(r(1-i))]\Phi_2,$ $\Phi_3 \cdot g = \Phi_3.$ $\Phi_1 \cdot T = \Phi_1, \quad \Phi_3 \cdot T = -\Phi_3.$

Remark 3 $\Phi_2 \cdot T = (x_2 - x_1)y_1 - (x_2 + x_1)y_2$. This is not invariant under W but invariant under \overline{W} .

Let Iso_j be the isotropy subgroup of $\Lambda = S\Gamma_0^T(1+i)$ for Φ_j .

Theorem 5 We have

 $S\Gamma_0(1+i) = \operatorname{Iso}_3, \quad \breve{W} = \operatorname{Iso}_1 \cap \operatorname{Iso}_3, \quad W = \operatorname{Iso}_1 \cap \operatorname{Iso}_2 \cap \operatorname{Iso}_3.$

By this theorem, we have $S\Gamma_0(1+i)/W \simeq (\mathbb{Z}/2\mathbb{Z})^2$.

Theorem 6 An element $g = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in S\Gamma_0(1+i)$ satisfying $\operatorname{Re}(s) \equiv 1 \mod 2$ belongs to \breve{W} if and only if

$$\equiv \frac{\text{Re}(p) + \text{Im}(s) - (-1)^{\text{Re}(q) + \text{Im}(q)}(\text{Im}(p) + \text{Re}(s))}{2}$$

$$\equiv \frac{((-1)^{\text{Re}(r)} + 1)\text{Im}(q) + (\text{Re}(q) + \text{Im}(q))(\text{Re}(r) + \text{Im}(r))}{2}$$

 $\mod 2$.

The element $g \in \breve{W}$ belongs to W if and only if

$$\operatorname{Re}(p+q) + \frac{\operatorname{Re}(r) - (-1)^{\operatorname{Re}(q) + \operatorname{Im}(q)} \operatorname{Im}(r)}{2} \equiv 1 \mod 2.$$

The element $g \in W$ belongs to $\hat{W} = W \cap \overline{W}$ if and only if $r \in 2\mathbb{Z}[i]$.

11 Embeddings of the quotient spaces

Put

$$\begin{split} f_{00} &= (x_2^2 - x_1^2)y_1y_2 = \Phi_3, \\ f_{01} &= (x_2^2 - x_1^2)z_1z_2z_3z_4, \\ f_{11} &= x_3z_1z_2 = \Phi_1, \\ f_{12} &= x_1x_2z_1z_2, \\ f_{13} &= x_3(x_2^2 - x_1^2)z_3z_4, \\ f_{14} &= x_1x_2(x_2^2 - x_1^2)z_3z_4, \\ f_{20} &= (x_2 - x_1)z_2z_3 + (x_2 + x_1)z_1z_4, \\ f_{21} &= z_1z_2\{(x_2 - x_1)z_1z_3 + (x_2 + x_1)z_2z_4\}, \\ f_{22} &= (x_2^2 - x_1^2)\{(x_2 - x_1)z_1z_4 + (x_2 + x_1)z_2z_3\}, \\ f_{30} &= (x_2 - x_1)y_1 + (x_2 + x_1)y_2 = \Phi_2, \\ f_{31} &= (x_2 - x_1)z_1z_3 - (x_2 + x_1)z_2z_4, \\ f_{32} &= z_3z_4\{-(x_2 - x_1)z_1z_4 + (x_2 + x_1)z_2z_3\}, \end{split}$$

where (x_0, x_1, x_2, x_3) and (z_1, z_2, z_3, z_4) are

$$\Theta\begin{bmatrix}0,0\\0,0\end{bmatrix}, \ \Theta\begin{bmatrix}1+i,1+i\\1+i,1+i\end{bmatrix}, \ \Theta\begin{bmatrix}1+i,0\\0,1+i\end{bmatrix}, \ \Theta\begin{bmatrix}0,1+i\\1+i,0\end{bmatrix}, \\ \Theta\begin{bmatrix}0,1\\1,0\end{bmatrix}, \ \Theta\begin{bmatrix}1+i,1\\1,1+i\end{bmatrix}, \ \Theta\begin{bmatrix}0,i\\1,0\end{bmatrix}, \ \Theta\begin{bmatrix}1+i,i\\1,1+i\end{bmatrix}.$$

Proposition 5 We have

$$4z_1^2 = (x_0 + x_1 + x_2 + x_3)(x_0 - x_1 - x_2 + x_3),$$

$$4z_2^2 = (x_0 + x_1 - x_2 - x_3)(x_0 - x_1 + x_2 - x_3),$$

$$4z_3^2 = (x_0 + x_1 - x_2 + x_3)(x_0 - x_1 + x_2 + x_3),$$

$$4z_4^2 = (x_0 + x_1 + x_2 - x_3)(x_0 - x_1 - x_2 - x_3).$$

Proposition 6 f_{jp} are W-invariant. These change the signs by the actions of γ_1 , γ_2 and γ_3 as in the table

	γ_1	γ_2	γ_3
f_{0j}	+	+	+
f_{1j}	+	—	_
f_{2j}	—	+	_
f_{3j}	—	—	+

Theorem 7 The analytic sets V_1 , V_2 , V_3 of the ideals

 $I_1 = \langle f_{11}, f_{12}, f_{13}, f_{14} \rangle, \quad I_2 = \langle f_{21}, f_{22} \rangle, \quad I_3 = \langle f_{31}, f_{32} \rangle$ are $F_2 \cup F_3, F_1 \cup F_3, F_1 \cup F_2.$

Corollary 2 The analytic set V_{jk} of the ideals $\langle I_j, I_k \rangle$ is F_l for $\{j, k, l\} = \{1, 2, 3\}.$

Theorem 8 The map

 $\varphi_0: \mathbb{H}^3/S\Gamma_0(1+i) \ni (z,t) \mapsto (\lambda_1, \dots, \lambda_4, \eta_{01}) \in \mathbb{R}^5$

is injective, where $\eta_{01} = f_{01}/x_0^6$. Its image $\text{Image}(\varphi_0)$ is determined by the image $\text{Image}(\lambda)$ under $\lambda : \mathbb{H}^3 \ni (z, t) \mapsto$ $(\lambda_1, \ldots, \lambda_4)$ and the relation

$$256f_{01}^{2} = (\lambda_{1}^{2} - 4\lambda_{2}) \prod_{\varepsilon_{3}=\pm 1} (\lambda_{3}^{2} - 2(x_{0}^{2} + \lambda_{1})\lambda_{3} + \varepsilon_{3}8x_{0}\lambda_{4} + x_{0}^{4} - 2x_{0}^{2}\lambda_{1} + \lambda_{1}^{2} - 4\lambda_{2}),$$

as a double cover of $\text{Image}(\lambda)$ branching along its boundary.

 F_1 , F_2 and F_3 can be illustrated as in Figure 8. Each of the two cusps $\bar{\infty}$ and $\bar{0}$ is shown as a hole. These holes can be deformed into sausages as in Figure 9.

Figure 8: Orbifold singularities in Image(φ_0) and the cusps $\bar{\infty}$ and $\bar{0}$

Figure 9: The cusp-holes are deformed into two sausages

Theorem 9 The map

 $\varphi_1: \mathbb{H}^3/\breve{W} \ni (z,t) \mapsto (\varphi_0, \eta_{11}, \dots, \eta_{14}) \in \mathbb{R}^9$

is injective, where $\eta_{1j} = f_{1j}/x_0^{\deg(f_{1j})}$. The products $f_{1p}f_{1q}$ $(1 \leq p \leq q \leq 4)$ can be expressed as polynomials of x_0 , $\lambda_1, \ldots, \lambda_4$ and f_{01} . The image $\operatorname{Image}(\varphi_0)$ together with these relations determines the image $\operatorname{Image}(\varphi_1)$ under the map φ_1 .

The boundary of a small neighborhood of the cusp $\varphi_1(0)$ is a torus, which is the double cover of that of the cusp $\varphi_0(0)$; note that two F_2 -curves and two F_3 -curves stick into $\varphi_0(0)$. The boundary of a small neighborhood of the cusp $\varphi_1(\infty)$ remains to be a 2-sphere; note that two F_1 -curves and two F_3 -curves stick into $\varphi_0(\infty)$, and that four F_1 -curves stick into $\varphi_1(\infty)$.

Figure 10: The double covers of the cusp holes

Theorem 10 The map

 $\varphi: \mathbb{H}^3/W \ni (z,t) \mapsto (\varphi_1, \eta_{21}, \eta_{22}, \eta_{31}, \eta_{32}) \in \mathbb{R}^{13}$

is injective, where $\eta_{ij} = f_{ij}/x_0^{\deg(f_{ij})}$. The products $f_{2q}f_{2r}$ $f_{3q}f_{3r}$ and $f_{1p}f_{2q}f_{3r}$ (p = 1, ..., 4, q, r = 1, 2) can be expressed as polynomials of $x_0, \lambda_1, ..., \lambda_4$ and f_{01} . The image Image (φ_1) together with these relations determines the image Image (φ) under the map φ .

The boundary of a small neighborhood of the cusp $\varphi(\infty)$ is a torus, which is the double cover of that of the cusp $\varphi_1(\infty)$; recall that four F_1 -curves stick into $\varphi_1(\infty)$. The boundary of a small neighborhood of the cusp $\varphi(0)$ is a torus, which is the unbranched double cover of that of the cusp $\varphi_1(0)$, a torus. Eventually, the sausage and the doughnut in Figure 10 are covered by two linked doughnuts, tubular neighborhoods of the curves L_0 and L_{∞} of the Whitehead link.

References

- [F] E. Freitag, Modulformen zweiten Grades zum rationalen und Gaußschen Zahlkörper, Sitzungsber. Heidelb. Akad. Wiss., 1 (1967), 1–49.
- [I] J. Igusa, *Theta Functions*, Springer-Verlag, Berlin, Heidelberg, New York 1972.
- [MSY] K. Matsumoto, T. Sasaki and M. Yoshida, The monodromy of the period map of a 4-parameter family of K3 surfaces and the Aomoto-Gel'fand hypergeometric function of type (3,6), Internat. J. of Math., 3 (1992), 1–164.
- [M1] K. Matsumoto, Theta functions on the bounded symmetric domain of type $I_{2,2}$ and the period map of 4-parameter family of K3 surfaces, *Math. Ann.*, **295** (1993), 383–408.
- [M2] K. Matsumoto, Algebraic relations among some theta functions on the bounded symmetric domain of type $I_{r,r}$, to appear in Kyushu J. Math.
- [MY] K. Matsumoto and M. Yoshida, Invariants for some real hyperbolic groups, Internat. J. of Math., 13 (2002), 415– 443.
- [T] W. Thurston, Geometry and Topology of 3-manifolds, Lecture Notes, Princeton Univ., 1977/78.

- [W] N. Wielenberg, The structure of certain subgroups of the Picard group. Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 3, 427–436.
- [Y] M. Yoshida, Hypergeometric Functions, My Love, Aspects of Mathematics, E32, Friedr Vieweg & Sohn, Braunschweig, 1997.