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1 Introduction

The Gauss hypergeometric equation E(a, 3,7)
2

x(l—a:)%#—{v— (&+ﬁ+1)x}%—aﬁf:0
for (o, B,7v) = (1/2,1/2,1) induces an isomorphism

per : C —{0,1} — H/M (taking the ratio of solutions),
where H = {7 € C | Im(7) > 0} and M is the monodromy
group of F(1/2,1/2,1). Note that M is the level 2 principal
congruence subgroup of SLs(Z), which is isomorphic to the
fundamental group m(C — {0,1}). We can regard per as the
period map for the family of marked elliptic curves (double
covers of P! branching at 4 points).

As generalizations, we have some period maps and systems
of hypergeometric equations; each of them induces an isomor-
phism between a certain moduli space of algebraic varieties

and the quotient space of a certain symmetric domain by its

monodromy group.



For examples,

1. Appell’s Fp with special parameters: from families of k-
fold branched coverings of P! to complex balls studied by
Terada and Deligne-Mostow,

2. the period map from the family of cubic surfaces to the
4-dimensional complex ball studied by Allcock-Carlson-

Toledo,

3. period maps from some families of certain K3 surfaces to
complex balls embedded in symmetric domains of type IV

lectured by Dolgachev and Kondo,

4. FE(3,6;1/2,...,1/2): from the family of the double covers
branching along 6-lines to the symmetric domain D of type

Iy studied by Sasaki-Yoshida-Matsumoto(the speaker).

Interesting automorphic forms appear when we study the

inverses of them !



In my talk, we construct automorphic functions on the real
3-dimensional upper half space H? = {(z,¢) € C x R | t > 0},
by observing the Whitehead link L = Ly U L., in Figure 1.

L

Figure 1: Whitehead link

The Whitehead-link-complement S® — L is known to admit
a hyperbolic structure: there is a discrete group W C G Ly(C)

acting on on H?, and a homeomorphism
o H/W — % — L.
Note that the situation is quite similar to the inverse of per :

per ' H/M — C — {0, 1}.



But one has never tried to make the homeomorphism ¢ ex-
plicit. We construct automorphic functions for W in terms of
C) (Z) (7) on the symmetric domain D of type 59 over the ring
Z[i] appeared in Example 4, and express the homeomorphism
¢ in terms of these automorphic functions, which realize some
branched coverings of real 3-dimensional orbifolds.

Our automorphic functions derive some properties with re-

spect to the Whitehead link:

e We can express the space S®— L as a part of areal algebraic
set (we need some inequalities). We can regard Ly and L,
as the exceptional curves arising from the cusps. I expect
that some link invariants can be obtained algebraically by

our expression.

e We can realize symmetries of the Whitehead link as actions

of (Z/27.)* on these automorphic functions.

e Our automorphic functions give an arithmetical character-
ization of W.
The group W is given by 2 generators (W =~ m(S° — L)
which is generated by 2 elements). By the definition of W,
for a given g € GLy(C) it is difficult to know if g belongs
to W or not.



2 A hyperbolic structure on the complement of
the Whitehead link

Let H? be the upper half space model
H? = {(2,t) e Cx R |t > 0}

of the 3-dimensional real hyperbolic space.

G L(C) and an involution T" act on H? as

g- (Za t) -
911G+ (g112+912) (g212+ g22) | det(g)]t
921 #t2+ (921 2+ 922) (G212 +G22) 7 |g21|* 2+ (921 2+ 922) (G212 +G22) 7
T-(z,t)=(2,1),
where
g1 912
= € GLy(C).
g (921 922) 2(C)
Put

GLy(C) = {{(GLs(C),T) | T-g=g-T}

for g € GLy(C).



The Whitehead-link-complement S®— L admits a hyperbolic

structure. We have a homeomorphism

SNy .

o H° /W

where

1
I4+2 1

We call W the Whitehead-link-complement group.

A fundamental domain F'D for W in H? is in Figure 2.
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Figure 2: Fundamental domain F'D of W in H?
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The group W has two cusps.

(0,0) ~ (=£,0) ~ (£1,0) ~ (F1 £ 4,0).

(z,t) = (%, +00),

Remark 1 The monodromy groups of E(«a,3,v) for pa-

rameters satisfying

v E L

_0{7

are conjugate to W.



3 Discrete subgroups of GLy(C), especially A

We define some discrete subgroups of G Ly(C) :

—
|

G Lo(Z]1]),

STo(1+4) = {g=(gjr) € T | det(g) = &1, ga € (1+4)Z]i]},

ST(14i) = {g € STo(1+17) | g1z € (1+0)Z][]},
)

=
(N

= {9 €Tl | g —1,912,921, 920 — 1 € 2Z[i]},
W =TWT ={g|ge W},
W =WwWnw,
W = (W,W).
Convention: We regard these groups as subgroups of the
projectified group PG Ly(C).
For G in I, we denote GT = (G, T) in GLI(C).



I'(2) is a Coxeter group generated by the eight reflections,

of which mirrors form an octahedron in H?, see Figure 3.
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A= (TT(2), W),

A= STE(1+4)
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Lemma 1 1. T'1(2) is normal in A;

the dihedral group Dg of order 8.

Y

AJTH(2)

2. [N, W] =38, W is not normal in \: TWT =W.

3. The domain bounded by the four walls
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1s a fundamental domain of \, see Figure 4.
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Figure 4: Fundamental domain of A

4.

4. A= STE(1+4) and [STo(1+i), W]

(We will see STo(1+1)/W = (Z/27)?.)



H3 /17 (2) H3 /W

\ |2/ (22

/(W W)

\Ds ‘Z/(2Z)

H3/STo(1+1)

\ /7/22)

H3 /A
Our strategy is following.

At first, we realize the quotient space H?/T'T(2) by using
theta functions © (3) (7) on D. Next we construct Dg-invariant
functions which realize H?/A. This step corresponds to the
construction of the j-function from the A-function. Finally, we
construct the 3 double covers in the right line step by step.
We must know the branch locus of each of double covers. We

investigate the symmetry of the Whitehead link.
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4 Symmetry of the Whitehead link

Orientation preserving homeomorphisms of S keeping L fixed
form a group (Z/27Z)%. The group consists of w-rotations with
axes Fi, Fy and Fj, and the identity.

PR
Lo Lo /

Figure 5: The Whitehead link with its symmetry axes

There is also a reflection of S? keeping a mirror (containing L)
pointwise fixed.
These rotations and the reflection can be represent as ele-

ments of A. We give the axes and the mirror in the fundamen-

tal domain of H*/W.
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Proposition 1 The three m-rotations with azves Fy, Fy and
F3, and the reflection can be represented by the transfor-

mations

(-1 1 (11 (-1 0y
71 - 0 17/72- 0 1 y V3 0 17 3

respectively, of H> modulo W.

The fized loci in FD, as well as in H? /W, of the rota-
tions v1,%vs and y3 are also called the axes Fi, F5 and Fj;
they are depicted in F'D as in Figure 6. A bullet e stands

for a vertical line: the inverse image of the point under .

Figure 6: The fixed loci of 71, 72, 73
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5 Orbit spaces under W, STy(1+ i) and A

A fundamental domain for W and the orbifold H3 /W

O

Lo
BN Ly

2MJ3

A fundamental domain for ST'y(1 + ¢) and the orbifold

H3/STo(1 + 4)
(]
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Fl/\\
[ 9
2 2
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Figure 7: A better picture of the fundamental domain for ST(1 + 7)

Proposition 2 e The branch locus of the double cover

H3/STo(1+14) of H?/A is the union of the walls a, b, c, d.

e That of the double cover HP /W of H®/ST(144) is the
union of the axes Fy and F3 (the axes Fy and F3 are

equivalent in the space H? /W ).

e That of the double cover H?/W of H?/W is the awis
Fi.

6 Theta functions on D

The symmetric domain I of type I is defined as

D= {7‘ € My 5(C) | ! ;_T is positive deﬁnite}.

(4

The group

Uz9(C) = {h € GLy(C) | gJg"=J = (102 _o]2>}

14



and an involution 7" act on D as

h-17= <h117'+h12)(h217'—|—h22)_1, T -17= tT,

hin ha
where h =
(h21 has
We define some discrete subgroups of Us o(C):

) € Uy 2(C), and hjj are 2 x 2 matrices.

Uso(Z[i]) = Uso(C) N GL4(Z[i)),
U272<1+i> = {h S U272<Z[Z]> ‘ h = I, mod <1+Z)}

Theta functions ©(}) () on D are defined as

e (Z) (1) = HEZZ%P e[(n + a)7(n + a)* + 2Re(nb*)],

where 7 € D, a,b € Q[i]* and e[x] = exp[rix]. By definition,

we have the following fundamental properties.

15



Fact 1 1. Ifb e wZ[i]*, then ©(;) (1) = ©(}) (7).
If b € SZ[i)*, then ©( %) (1) = O(}) (7).

2. For k € Z and m,n € Z[i]*, we have

o) m = ;)

o (a * m) (1) = e[—2Re(mb")|O (Z) (7).

b+n
3. If (14+i)ab* ¢ Z[i] for a,b € £=Z[i]*, then ©(}) (1) = 0.
[t is known that any action of Uss(Z[i]) on 7 € D can be

decomposed into the following transformations:

(1) 7 — 7 + s, where s = (sj;) is a 2 x 2 hermitian matrix
over Z[i|;

(2) 7+ g7g*, where g € GLo(7Z]i]);

-1

(3) 7+ —7

Fact 2 By T and these actions, O () (7) is changed into

@(b) (7 +5) = e[asa*]@<b+as+ ! (511,322)>(T)’

o) tora) = ©( o1, )(r) for g € GLu(Zil)

o (Z) (—r 1) = —det(r)e[2Re(ab")|® (_ab) (7).

16



In order to get the last equality, use the multi-variable ver-
sion of the Poisson summation formula. We show the 3rd

equality.

()t

= Y elin+a)(grg’)n+a)* + 2Re(n(gg ™))

nezli)?

— Z el[(ng + ag)t(ng + ag)* + 2Re(ng(b(g*)™1)")]

neZ[i)?

o

since m = ng rnus over Z[i]* for any g € G Lo(Z]i]).

Proposition 3 Ifa,b € £=Z[i]* then ©°(}) () is a modular
from of weight 2 with character det for Uyo(1+1), i.e

o’ (Z) (T-7) =6 (Z) (7),

o’ (Z) (h-7) = det(h) det(hoy T + hao)?6? <‘b‘) (7).
for any h = (hiy,) € Uss(1+4).

By following the proof of Jacobi’ identity for lattices L, =
Z[’i]27 L2 = Z[’L]Q/L L = <L1, L2>, where

Cl4if1 1 . )
A= 9 (1 _1>, AA —IQ,A—’LIQ,

we have quadratic relations among theta functions O (j) (7).
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Theorem 1

4@( )(7)2

- ¥

9Re((144)be")]
e FEM T[22l
e+ (1+1)a e
7 (f + <1+z‘>b) () (f) (7

For a,b € (%@/Z[i])% there are 10 non-vanishing O () (7).

S

S

Corollary 1 The ten @(Z) (7)? satisfy the same linear re-
lations as the Pliicker relations for the (3,6)-Grassmann

manifold, which is the linear relations among the 10 prod-

ucts Diji(X)Dpnn(X) of the Plicker coordinates, where

rir ... Ti6 Ty Ty Tk
X = Il c e 26 , Dz]k<X) = det Lo 5132]‘ ok
r3r ... T36 I3, X35 T3k

and {i, 7, k,l,m,n} ={1,...,6}.
There are 5 linearly independent ©2 (Z) (7).

Remark 2 7 can be regarded as periods of the K3-surface
coming from the double cover of P? branching along 6 lines

given by the 6 columns of X.
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7 Embedding of H’ into D

We embed H? into D by

2:H39(2t)|—>g el 2 c D
J t Z 1 )

we define a homomorphism

. [ 9/V/]detlg)] O
ran@ 29 (VG ) ) el

They satisty

) = J(g)-u(zt) forany g € GLy(C),
) =T Z(Za t)a
1

ot = (o] ) 1)

We denote the pull back of ©(})(7) under the embedding ¢ :
H? — D by O(})(z,1).

By definition, we have the following.

Fact 3 1. Fora,b € 3Z[i]*, each O(3)(z,t) is real valued.
If 2Re(ab*) + 2Im(ab*) ¢ Z then O(})(z,t) = 0.

2. For a,b € =Z[i]?, each O(})(z,t) is invariant under

the action of T'1(2).

3. The function © = @(88) (z,t) is positive and invariant

under the action of I'".
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8 Automorphic functions for I'/(2) and an embed-
ding of H?/T'(2)

Set
p p 5 )
0P| =e[?] et =0(3) 0. paczi
q q 2
and
'I.O:@ O,O}a xlz@[1+271+2 ’
0,0 144,147
3:2—@_1+Z"O,], . :@{O,lfz".
0, 1+1 1+72,0]

Theorem 2 The map
1
H® > (2,t) — —(21, 19, 73) € R?
Lo
induces an isomorphism between H?/I'T(2) and the octa-

hedron
Oct = {(t1,ta, t3) € R® | [ty| + |to] + |t3] < 1}

minus the siz vertices (£1,0,0), (0, £1,0), (0,0, +1).

20



9 Automorphic functions for A and an embedding
of H?/A

Proposition 4 ¢, g» induce transformations of x1, s, x3:

I —1 I
o | -g1=| —1 T |,
X3 1 T3
I —1 I
Ty | G2 = 1 To
xrs —1 I3

This a representation of the dihedral group Dg of order 8.

Theorem 3 7 + x3, ziw3, a3, xir9m3 are A-invariant.

The map

()\17 /\27 )\37 )‘4)

4
= (@48 08 8 ant) C

A HP? S (2,t) —

where £ = xj/xo,
induces an embedding of H’ /A into the subdomain of the

variety Aods = A7
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10 Automorphic functions for W

Set
0.1 1441
o 011 p=eftth)
4 [1+@0] Y2 [1+@0]
Z“:@PJL ZT:@F+%1'
1,0 1,142

We define functions as

P = 32129,
Dy = (w9 — x1)y1 + (T2 + 21)yo,

Oy = (27 — 23)Y192.

Theorem 4 ¢, Dy and 3 are W-invariant. By the ac-
tions g = Iy + 2 (]; CS]) c'(2) and T,

Bi-g = elRe((1+i)p + (1—0)3)]y
Dy g = e[Re(r(1 —1))]Po,
(I)g g = (I)g.

O, T =30, O3-T=—bs

Remark 3 &, - T = (29 — x1)y1 — (o + 21)y2. This is not

mwvariant under W but invariant under W.
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Let Iso; be the isotropy subgroup of A = ST (1+74) for ;.

Theorem 5 We have

STo(1+7) = Isos, W = [so;NIsos, W = Iso; NIsoaNIsos.

By this theorem, we have STo(1+4)/W ~ (Z/27)?.

Theorem 6 An element g = (]: CS]) e STy(1+44) satis-

fying Re(s) = 1 mod 2 belongs to W iof and only if

Re(p) 4 Im(s) — (=1)Re@+m(0)(Im(p) 4 Re(s))
2
((=1)%") + 1Im(q) + (Re(q) + Im(q))(Re(r) + Im(r))

mod?2.

The element g € W belongs to W if and only if

Re(r) — (—1)Re@+m{a) Ty (y)
2

The element g € W belongs to W=wnw iof and only if
r € 27]i].

Re(p + q) + = 1 mod 2.
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11 Embeddings of the quotient spaces

Put

foo = (23— 2])y1yo = O3,

foo = (25 — x7) 2120232,

Ji1 = w3z120 = Py,

Ji2 = miT92122,

fis = xs(x; — x7) 2321,

fiu = mimo(as — 1) 2324,

fao = (22— 1)2023 + (T2 + 1) 2124,

for = zzo{(ve — 21) 2123 + (72 + 21) 2024

foo = (25 — 2 (29 — 21) 2124 + (22 + 1) 2023},

fao = (v2 — z1)y1 + (22 + 21)y2 = Do,
fa1 = (x9— x1)2123 — (2 + 21) 2924,

fao = z324{— (22 — x1)2124 + (2 + 21) 2223},

where (g, x1, T2, x3) and (21, 29, 23, 24) are

@[0,0]’ @[H—i,l—i—i], @[14—@',0], @[O,l—l—i]’

0,0 144, 14+ 0, 1+i 144, 0
@[O’ll, @[1+z,;]7 9[(),217 @[H—z,z.]'
1,0 1,144 1,0 1,144

24



Proposition 5 We have

428 = (w9 + 21 + To + T3) (20 — 71 — T2 + X3),
4z§ = (rg+x1 — 29 — x3) (0 — 1 + T2 — T3),
425 = (wo+ o1 — 29 + 23) (30 — Ty + T + T3),
4z = (w4 o1+ 29 — 23) (10 — T — T3 — T3).

Proposition 6 f;, are W-invariant. These change the

signs by the actions of v1, v2 and 3 as in the table

fo |+ + +
Jiy |+ — —
Joj | — + —
f3il— — +

Theorem 7 The analytic sets Vi, Vo, V3 of the ideals

I = (fu1, fi2, fiss fia), Lo = (fo1, fa2), I3 = (fs1, f32)

are F2 UF3, F1 UFg, F1 U FQ.

Corollary 2 The analytic set Vj; of the ideals (I;, 1)) is
Fy f07“ {]7 k? l} - {17 27 3}

25



Theorem 8 The map
©o - HB/SF()<1—|—i> > (Z, If) — <)\1, cee )\4,7}()1) c R5

is injective, where nyy = fo1/xy. Its image Tmage(py) is
determined by the image Image()\) under \ : H? 3 (2,t) —
(A1, ..., 1) and the relation

256 3,

= (A —4X9) H (A3 = 2(x5 + A1) As + 3820
eg==+1

+ag — 202 + A — 4)),

as a double cover of Image(\) branching along its bound-

ary.

Fy, F5 and F3 can be illustrated as in Figure 8. Each of the
two cusps oo and 0 is shown as a hole. These holes can be

deformed into sausages as in Figure 9.

Fy

Figure 8: Orbifold singularities in Image(yp) and the cusps co and 0
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C%
T~ Lo
Fy
n > R ~7

Figure 9: The cusp-holes are deformed into two sausages

Theorem 9 The map

Q1 HB/W > (z,t) — (0o, M1, - -, 14) € R

is injective, where m; = flj/xgeg(flj)- The products fipf1q

(1 < p < q<4) can be expressed as polynomials of xy,
AL, -, and for. The image Image(pg) together with

these relations determines the image Image(py1) under the

map 1.

The boundary of a small neighborhood of the cusp ¢1(0) is a
torus, which is the double cover of that of the cusp ¢(0); note
that two Fy-curves and two Fz-curves stick into ¢p(0). The
boundary of a small neighborhood of the cusp (1(0c0) remains
to be a 2-sphere; note that two Fj-curves and two Fj-curves

stick into pg(00), and that four Fi-curves stick into ¢1(00).

27



F2 \ Fg

Figure 10: The double covers of the cusp holes

Theorem 10 The map

o H? /W > (2,1) — (o1, 71, M2, W31, M32) € R

deg(f;j)

is injective, where n;; = fij/x, . The products fo for
f3qf37“ and flpf?qf?)r (p — 17' "747 q,T = 172) can be ex-
pressed as polynomials of xg, Ai,..., s and fo1. The im-

age Image(p1) together with these relations determines the

image Image(p) under the map .

The boundary of a small neighborhood of the cusp ¢(00) is
a torus, which is the double cover of that of the cusp ¢1(0);
recall that four Fi-curves stick into ¢q(00). The boundary of
a small neighborhood of the cusp ¢(0) is a torus, which is the
unbranched double cover of that of the cusp ¢1(0), a torus.
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Eventually, the sausage and the doughnut in Figure 10 are

covered by two linked doughnuts, tubular neighborhoods of the
curves Ly and L, of the Whitehead link.

Ly

Log

Fi /F2
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