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1. Introduction.

We study the differential equation H («,3) for the function
f(x23) under the condition v = 2/3, where f(y) is a solution
of the Gauss H.G.D.E E(a, 3,7):

2
y(1 — y)dd—?ﬂf(y) = (et B+ 1>y}%f<y> — aBf(y) =o.

2

H (a, 3) has four regular singular points ¢ = 1, w,w* and oo,

where w = —T¥=9; this is a Heun differential equation.



We first show that the periods for the family {C(x) | « €
C — {1,w,w?}} of cubic curves

C(x) = {[to,t1,t2] € P? | tg + 3 + t5 — 3wttty = 0} C P?
of the Hesse normal form satisfy H(1/3,1/3).

We next give a monodromy representation of H(a, 3).

Finally, we find parameters o, (3 and fundamental solutions
of H(a,3) such that the monodromy group of these so-
lutions coincides with a representation of the fundamental
group of the Borromean-rings-complement.



2. The Heun equation derived from the
Gauss H.G.D.E.

Let f be a solution of H.G.D.E. E(«, 3,7) and 2 be the map
C>x+— y=a>€c C. We study the differential equation for
the function h(xz) = f(x3) = *(f).

Since we have

d d d2 d d?

—h(x) = 3x*— ——h(x) = 62— 9t —
Zoh(x) =3z dyf(y), Tan(@) =6z dyf(y) + 9z dny(y),
d%f(y) and j—;?f(y) are expressed as

1 d 1 d? 2 d
@%h(m)a 9w4dw2h(w) — ——h(x),

9x° dx
respectively.




Thus h(x) satisfies the differential equation

2
(1= 2 k(@) — (@)

1 d
+Hv - (a+ 8+ 1)w3}[—2—h(w)] — afBh(z) =0,
3x<dx
which is equivalent to

2()
da?

h(x)

z(1—x3) +{(3v—2)— (3a—|—3[3—|—1):133}——9a5:1:2h(33) = 0.

When ~ = 2/3, this equation reduces to

2
H(a,B) : (1—m3)d—2h(:p)—(3a+35+1)x2ih(m)—9a5mh(m) =0,
dx dx

2

which has four regular singular points = 1, w,w“ and oc.

Hence, H(a, 3) is a Heun differential equation.



3. Periods of cubic curves of the Hesse
normal form.

Any non-singular cubic curve In P2 can be transformed into
the Hesse normal form
C(x) = {[to, t1,t2] € P? | t3 + 3 + 3 — 3wtot 1ty = 0},

r € C — {1,w,w?}, by a projective transformation.

Since C(x) is a Riemann surface of genus 1, there exists a
nowhere vanishing holomorphic 1-from

todt1 — t1dtg
Lp p—

t2 — xtoty

for any =z € C — {1, w, w?}.



We take an element ¢ of H{(C(0),Z) for x = 0; we can
make the continuation c(x) € H{(C(x),Z) of the cycle c
along a path in C — {1,w,w?} by the local triviality of the

family {C(x)}. The integral p(z) = fc(w) @ is called a period
of C(x).

Proposition 1 The period p(z) = fc(w)go of C(x) satisfies
the differential equation H(1/3,1/3).



Proof. Set (u,v) = (t1/tg,t2/tg) and
q=q(z;u,v) = ud + oS+ 1 — 3ruv;

the curve C(x) is expressed as q(x;u,v) = 0.

Note that
du

p(T) =/ 5 :
c(x) V< — xU

By the local triviality of the family {C(x)}, we have

d 0 Ov(x,u)
— P (x;u, v)du _/ P }du,
dx Je(x) (z) (‘9:13 Gv ox
where Ydu = ¥ (x;u,v)du is a meromorphic 1-form on C(x),

and we regard the variable v as the implicit function of x
and u by the equality q(xz;u,v) = 0.



Differentiating the equality
g(z;u,v) = ud + v(z, u)® — 3zuv(z,u) =0

with respect to =, we have

ov(z,
vl u) — 3uv(x,u) — 3zu

ox ox
which is equivalent to

3v(x, u)?

ov(z,u)  uv(z,u)

ox  vi(x,u) —axu

Thus %fc(w)zp(w;u,v)du is given as

0 Uv 0
/c(a:){(a + v2 — wuc‘?vhb}du.

ov(x,u) 0

P



Hence we have

ip(:v) — / —u(v® + wu)du
dx c(x) (v2 — zu)3 ’
d? B 2xu3 (502 + zu)
~p(e) = / e

We show that the 1-from 7(x;u,v)du is exact, where
d? d

(1= 2%) 5 — 32> — alp(x) = / M)

2xut — (923 — 10)u3v? — 9z2u?v? + Txuv® — 8

"7(33; u, v) — (’02 - ZE’U,)5



Since dq = qudu + gydv = 0, we have

qu u? — zv

dv = ——du = — 5 du.
Qv V4 — U

_ (ud—=1)uw
 (v¥—zu)3

O piu+ 2 Fa _{(a u? — zv 9
ou “ ov v ou

and n+ dF is

For a meromorphic function F

on C(x), dF is

)F}du,

v2 — ru v

ru? - 5usv? - 3x2uv - druvd — v°
(v — zu)d

which vanishes on C(x).

q(x; u, v)du,
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4. Monodromy representation.

Fact 1 (Theorem 6.1 in [K) ] If none of o, 3,yv—a and v—p3
is an integer, then there exists a fundamental system f(y) =

(fo(’y)
f1(y)

respect to this system is generated by
1 0 1 1 — e 2mc
—(1— 8—271'2',6) e—2miv | ° 0 e 2mi(atB—) J°

These matrices are given by the continuation of f(y) along
a loop encircling the point y = 0 once in the positive sence
and along a loop encircling the point y = 1 once in the
positive sence, respectively.

) of E(a, 3,~) such that the monodromy group with
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By putting v = 2/3 for the matrices in Fact 1, we set

1 0 1 1 — e 2mi

Note that the eigenvalues of po are 1 and w and that
1 0
3 _ 1 _
o =1= (0 1) '

Proposition 2 If none of a,3,2/3 —«a and 2/3 — 3 is an inte-
ger, then there exists a fundamental system of H(«a,3) such

that the monodromy group with respect to this system is
generated by

—1 2 —2
P1,  POP1Pgy s  PoPlPqy -

12



Proof. Under the condition for parameters in this proposi-

3
tion, h(x) = <;(1)E333;

of H(a,3). We take a base point g as a small positive real
number e.

) IS a fundamental system of solutions

Let 41,4, and £ 2 be loops as in the following figure.
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When x varies along /1, y = z3 turns the point y = 1 once
in the positive sence. Thus h(x) changes into pih(x) by the
continuation along the loop 4;.

Since y = z3 turns the point y = 0 once in the positive sence
when x varies along the arc with center at 0 in the loop £,
h(x) changes into pgh(x) by the continuation along this arc.
Thus h(x) changes into poplpalh(m) by the continuation
along the loop ¥4,,.

Similarly, h(x) changes into p(z)plpazh(a:) by the continuation
along a certain loop £ ..

Since 71 (C — {1,w,w?},zg) is generated by the three loops
¢1, £u, and £ 2, the monodromy group with respect to h(x)
is generated by pi, pop1py " and pZpipy 2. ]
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The monodromy group of the fundamental system h(x) of
the differential equation H(1/3,1/3) is generated by

miy; = mgmlmo_j, (7 =0,1,2),
where
1 0 11— w?
m‘):(—1+w2 w)’ ml:(o 1 )
] 0 w? 1 ;-
For the matrix P = (_1 fo? 1 > Pm;P~" (3 =0,1,2,3)

are

w2-4 1 1 0
—1 0/’ 3 1)°

respectively.

(0 ) (5 22)
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The group generated by Pm ;P! (j = 1, 2, 3) coincides with
the level 3 principal congruence subgroup

r'(3) = {(‘Z Z) € SLy(Z)|a —1,b,c,d — 1 € 32}.

—1 0 3 1

-1 1 1 0
The group generated by ( ) and ( ) IS conju-
gate to the congruence subgroup

T'o(3) = {(Z’ Z) € SLy(Z)|a —1,¢,d —1 € 32},

since I'(3) is normal in GL3y(Z), I'g(3)/T'(3) ~ Z/(3Z), and
@Pymo(@P) ™ = (3 7,

3 0 belongs to I'x(3), where Q =
1 0
Lo(Z).
(2 _1) € GL3(Z)
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We have the commmutative diagram:

~

C —{0,1,w,w?} LR H/T(3)

1| pr |

~

c—{0,1} -5 m/re3),

where H is the upper half space, the map 2 is ¢ — y = xS,
the map pr is the natural projection, the maps h and f are
given by the ratio of the fundamental solutions of (QP)h(x)
and (QP)f(y), respectively.
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5. A representation of the fundamental
group of the Borromean-rings-complement

It is shown Iin [W] that the fundamental group of the
Borromean-rings-complement is isomorphic to the subgroup
B of SL»(Z[t]) generated by three elements

/(1 0 (1 2 (244 2
g1 = _1 1/’ g2 = 0 1 ’ g3 = _1 . .

Lemma 1 We have

—1 2 —2
go =1, g2=9gog9199 > 93 = 959197 5
where

—1 —-1-—1
go — (1_73 0 > € SLy(C).
2
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Proof. We can easily show this lemma by direct computa-
tions. We here explain how to find the matrix gg.
The matrices g;,g2 and gz can be expressed as

gj =1 — ’Uj t’l)jJ (] — 1,2,3),

where
S;_ (0 -1 /0 (14 (14
— 1 0 ’ V1 = 1/’ V2 = 0 sy U3 = _1 .

Since any element g € SL,(C) satisfies 'gJg = J, we have

ggjg_l =1 —g(vj t’ujJ)g_1 =TI — (gv;) t(g’vj)J.
Thus if the matrix g satisfies g(vy,v2) = (v2,v3) then g =

gg19~ 1, g3 = g%g197 % We put gy = —(va,v3)(v1,v2)" ! so
that gj = I. O
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Theorem 1 The monodromy group of H(«a,3) for o« and j3
satisfying

e27‘ria — iw(, 6271'7;6 _ iwC'

Is conjugate to the group B, where ( = 1i2\/g and ¢/ = 12L\/5

Proof. In fact, for parameters in Theorem 1 and the matrix

P:( O. 1—|—i>,
w — ¢ w

PpoP~ ' =g9, PpiP~!'=g.

we have

Proposition 2 and Lemma 1 imply this theorem.

We explain our method to find these parameters and the
matrix P.
20



Recall that

1 0 1 1 — e 2mi
PO = _(1 . 6—271"1:,3) w )’ P1 = 0 w26—2ﬂ'i(0ﬂ‘|‘ﬁ) ?

(—1 —1—73) ( 1 O)
go = | 1—3 » g1 = .

1
If g1 is conjugate to p; then the Jordan normal form 0 1)

of g1 must coincide with that of p;. Thus we have the
condition w2e~2ma+B) — 1. we eliminate a in p; by this

condition, and put b = e 270, p1 becomes

(1 1_“’/1’) —T—vlog, wv= (Vl_“’/b).

0 1 0

21



Note that
—1 —1 w
Py "goP1 = wPy "poP2 = ( wz)

for

We have
wP(2)poP(z) "1 = go,

where z is a variable in C — {0} and

1
PR =i e-

P ZP; ! € SLy(C), Z= (z 1) .
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By the equality P(z)v = vy, which implies P(z)p1P(z)~! =
g1, we have two algebraic equations with variables b and z.

The first equation reduces to
(b—w)(z—w(b—-1)) =0.
If b = w then p; becomes I; thus z should be w(b —1).

By eliminating z from the second equation by this identity,
we have the quadratic equation

b? — iw?b+w =0,

of which solutions are iw21i2\/g. Note that their inverses

are iwlLZ\/g.

The matrix P is given by /(1 + i)zP(z) for b = exp(—27i3) =
iw?¢ and z = w(iw?¢ — 1). ]
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