Automorphic functions for the Borromean-ringscomplement group

松本 圭司 (K. Matsumoto) (北大 理)

Complex Analysis and Geometry of Hyperbolic Spaces RIMS, Dec. 7, 2005

1. Introduction

The Borromean rings L in $S^3 = \mathbb{R}^3 \cup \{\infty\}$ is given as

The Borromean-rings-complement $S^3 - L$ admits a hyperbolic structure: there is a group B in $GL_2(\mathbb{Z}[i])$ acting on the 3-dim. hyperbolic space \mathbb{H}^3 , and there is a homeomorphism

$$\varphi : \mathbb{H}^3 / B \xrightarrow{\cong} S^3 - L.$$

In this talk, we construct automorphic functions for B (analytic functions on \mathbb{H}^3 which are invariant under B), and express the homeomorphism φ in terms of these automorphic functions.

We realize the quotient space \mathbb{H}^3/B as part of an affine algebraic variety in \mathbb{R}^6 , and write down the defining equations.

2. A hyperbolic structure on the complement of the Borromean rings

The complement of the Borromean rings admits a hyperbolic structure, i.e.,

 $S^3 - L \simeq \mathbb{H}^3/B,$

where $\mathbb{H}^3 = \{(z,t) \in \mathbb{C} \times \mathbb{R} \mid t > 0\}$, and *B* is a subgroup of $\Gamma = GL_2(\mathbb{Z}[i])$ generated by

$$g_1 = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \quad g_2 = \begin{pmatrix} 1 & 2i \\ 0 & 1 \end{pmatrix}, \quad g_3 = \begin{pmatrix} 2+i & 2i \\ -1 & -i \end{pmatrix},$$

and the scalar matrix iI_2 .

The fundamental domain for B is given as

 \mathbb{H}^3/B has three cusps c_i ; they are represented by

$$c_1: (z,t) = (*,\infty), \quad c_2: (z,t) = (1+i,0) \sim (3+i,0),$$

 $c_3: (z,t) = (0,0) \sim (2,0) \sim (4,0) \sim (2i,0) \sim (2+2i,0) \sim (4+2i,0).$

By considering of its volume, we have $[\Gamma : B] = 48$.

Note that the generators g_j of B belongs to

 $\Gamma_1(2) = \{ g = (g_{jk}) \in \Gamma \mid g_{12}, g_{11} - g_{22} \in 2\mathbb{Z}[i] \}.$

Proposition 1

$$\langle \Gamma(2), B \rangle = \Gamma_1(2),$$

where $\Gamma(2) = \{g = (g_{jk}) \in \Gamma \mid g_{12}, g_{21}, g_{11} - g_{22} \in 2\mathbb{Z}[i]\}.$

Let T be the involution

 $T:(z,t)\mapsto (\bar{z},t).$

For a subgroup $G \in GL_2(\mathbb{C})$, the group generated by G and Twith relations $gT = T\overline{g}$ for any $g \in G$ is denoted G^T .

The group $\Gamma_1^T(2)$ is generated by the six reflections

$$\gamma_1 = T, \quad \gamma_2 = \begin{pmatrix} 1 & 0 \\ -i & 1 \end{pmatrix} T, \quad \gamma_3 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} T,$$
$$\gamma_4 = \begin{pmatrix} 1 & 2i \\ 0 & 1 \end{pmatrix} T, \quad \gamma_5 = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} T, \quad \gamma_6 = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} T.$$

 $\Gamma^{T}(2)$ is generated by the eight reflections with mirrors given in the figure

Note that the Weyl chamber bounded by these eight mirrors is an (ideal) octahedron in the hyperbolic space \mathbb{H}^3 .

We have the following inclusion relations:

3. Automorphic functions for $\Gamma^T(2)$

 \mathbb{H}^3 can be embedded into the hermitian symmetric domain $\mathbb{D} = \{\tau \in M_{2,2}(\mathbb{C}) \mid (\tau - \tau^*)/2i \text{ is positive definite}\}$ of type $I_{2,2}$ by

$$j: \mathbb{H}^3 \ni (z,t) \mapsto \frac{i}{t} \begin{pmatrix} t^2 + |z|^2 & z \\ \overline{z} & 1 \end{pmatrix} \in \mathbb{D}.$$

Through this embedding, $GL_2(\mathbb{C})$ and T act on \mathbb{D} as

$$j(g \cdot (z,t)) = \frac{1}{|\det(g)|} g j(z,t) g^*, \quad j(T \cdot (z,t)) = {}^t j(z,t).$$

Theta functions $\Theta \begin{pmatrix} a \\ b \end{pmatrix}$ on $\mathbb D$ are defined as

$$\Theta\binom{a}{b}(\tau) = \sum_{n \in \mathbb{Z}[i]^2} \mathbf{e}[(n+a)\tau(n+a)^* + 2\mathsf{Re}(nb^*)],$$

where $\mathbf{e}[x] = \exp(\pi i x)$, $\tau \in \mathbb{D}$, $a, b \in \mathbb{Q}[i]^2$.

Fact 1 1. For $k \in \mathbb{Z}$ and $m, n \in \mathbb{Z}[i]^2$, we have

$$\begin{split} \Theta {i^k a \choose i^k b}(\tau) &= \Theta {a \choose b}(\tau), \\ \Theta {a+m \choose b+n}(\tau) &= \mathbf{e}[-2\mathsf{Re}(mb^*)]\Theta {a \choose b}(\tau). \end{split}$$

2. We have

$$\Theta {a \choose b} (g\tau g^*) = \Theta {ag \choose b(g^*)^{-1}} (\tau) \quad \text{for } g \in \Gamma,$$

$$\Theta {a \choose b} (T \cdot \tau) = \Theta {\overline{a} \choose \overline{b}} (\tau).$$

The pull back of $\Theta\binom{a}{b}(\tau)$ by $j: \mathbb{H}^3 \to \mathbb{D}$ is denoted $\Theta\binom{a}{b}(z,t)$. For $a, b \in (\frac{\mathbb{Z}[i]}{2})^2$, we use the convention:

$$\Theta\binom{a}{b}(z,t) = \Theta\binom{2a}{2b}(z,t) = \Theta\binom{2a}{2b}.$$

Set

$$x_{0} = \Theta \begin{bmatrix} 0,0\\0,0 \end{bmatrix}, \ x_{1} = \Theta \begin{bmatrix} 1+i,1+i\\1+i,1+i \end{bmatrix}, \ x_{2} = \Theta \begin{bmatrix} 1+i,0\\0,1+i \end{bmatrix}, \ x_{3} = \Theta \begin{bmatrix} 0,1+i\\1+i,0 \end{bmatrix}.$$

Note that x_0 is positive and invariant under the action of Γ^T .

One of the main results in [MY] is the following.

Fact 2 x_1 , x_2 , x_3 are invariant under the action of $\Gamma^T(2)$.

The map

$$\mathbb{H}^{3} \ni (z,t) \mapsto \frac{1}{x_{0}}(x_{1},x_{2},x_{3}) \in \mathbb{R}^{3}$$

induces an isomorphism between $\mathbb{H}^3/\Gamma^T(2)$ and the octahedron

{
$$(t_1, t_2, t_3) \in \mathbb{R}^3 | |t_1| + |t_2| + |t_3| \le 1$$
}

minus the six vertices $(\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1)$.

4. Automorphic functions for $\Gamma_1^T(2)$

Lemma 1 By the actions of g_1 , g_2 , g_3 , the functions x_1, x_2, x_3 are transformed as

$$(x_1, x_2, x_3) \cdot g_1 = (x_1, x_2, x_3) \begin{pmatrix} 1 \\ 1 \end{pmatrix}, (x_1, x_2, x_3) \cdot g_2 = (x_1, x_2, x_3), (x_1, x_2, x_3) \cdot g_3 = (x_1, x_2, x_3) \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

The functions $x_1 + x_3$ and $x_1 - x_3$ are invariant modulo sign under the action of $\Gamma_1^T(2)$.

Lemma 2 By the actions of g_1, g_2, g_3 and T, their signs change as

Proposition 2 The functions x_0 , x_2 , x_1x_3 , $x_1^2 + x_3^2$ are invariant under the action of $\Gamma_1^T(2)$. The map

$$\varphi_0 : \mathbb{H}^3 \ni (z,t) \mapsto \frac{1}{x_0^2} (x_0 x_2, x_1 x_3, x_1^2 + x_3^2) \in \mathbb{R}^3$$

induces an isomorphism between $\mathbb{H}^3/\Gamma_1^T(2)$ and $\varphi_0(\mathbb{H}^3)$.

5. Automorphic functions for B

Set $w_1 = \Theta \begin{bmatrix} 1,0\\0,1 \end{bmatrix}$, $w_2 = \Theta \begin{bmatrix} i,0\\0,1 \end{bmatrix}$, $w_3 = \Theta \begin{bmatrix} 1,1+i\\1+i,1 \end{bmatrix}$, $\omega_4 = \Theta \begin{bmatrix} i,1+i\\1+i,1 \end{bmatrix}$. By using Fact 1, we have the following.

Lemma 3 The functions w_1, \ldots, w_4 are invariant modulo sign under the action of $\Gamma_1^T(2)$.

Especially, by the actions of g_1, g_2, g_3, T , their signs change as

	g_1	g_2	g_{3}	T
w_1	+	+	—	+
w_2	+	—	+	+
w_{3}		+	+	+
w_{4}	+	—	+	—

This lemma implies the following Proposition.

Proposition 3 The functions $f_1 = w_2w_4$, $f_2 = (x_1 + x_3)w_1$, $f_3 = (x_1 - x_3)w_3$ are invariant under the action of *B*.

By the actions of

$$\gamma_1 = T, \quad \gamma_2 = \begin{pmatrix} 1 & 0 \\ -i & 1 \end{pmatrix} T, \quad \gamma_3 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} T,$$

we have

Let Iso_j be the subgroup of $\Gamma_1^T(2)$ consisting of elements keeping f_j invariant for j = 1, 2, 3, and Iso_0 the subgroup of $\Gamma_1^T(2)$ consisting of elements keeping $f_1f_2f_3$ invariant.

Proposition 4 We have

 $\Gamma_1(2) = \operatorname{Iso}_0, \quad B = \operatorname{Iso}_1 \cap \operatorname{Iso}_2 \cap \operatorname{Iso}_3.$

The group B is normal in $\Gamma_1^T(2)$; $\Gamma_1^T(2)/B \simeq (\mathbb{Z}_2)^3$.

Proof. The group $\Gamma_1^T(2)$ is generated by the group B and the reflections γ_1, γ_2 and γ_3 . Since the index $[\Gamma_1^T(2) : B]$ is eight, we have $B = \text{Iso}_1 \cap \text{Iso}_2 \cap \text{Iso}_3$ and $\Gamma_1^T(2)/B \simeq (\mathbb{Z}_2)^3$ by Proposition 3. Proposition 3 also shows that the function $f_1f_2f_3$ is invariant under the action of $\Gamma_1(2)$, and that it changes its sign by T. \Box

Remark 1 $\Gamma_1^T(2)/B \simeq (\mathbb{Z}_2)^3$ corresponds to some symmetries of the Borromean rings L. See the figure.

We can assume that any element $g \in \Gamma_1(2)$ takes the form $I_2 + \begin{pmatrix} 2p & 2q \\ r & 2s \end{pmatrix}$, otherwise multiply *i* to *g*. For example, $ig_3 = I_2 + \begin{pmatrix} -2+2i & -2 \\ -i & 0 \end{pmatrix}$.

Theorem 1 The element $g = I_2 + \begin{pmatrix} 2p & 2q \\ r & 2s \end{pmatrix} \in \Gamma_1(2)$ belongs to B if and only if $\operatorname{Re}(q) + \operatorname{Im}(r) \equiv 0$ and

$$\frac{1+(-1)^{\operatorname{Re}(r)+\operatorname{Im}(r)}}{2}\operatorname{Re}(q) + \frac{1-(-1)^{\operatorname{Re}(r)+\operatorname{Im}(r)}}{2}\operatorname{Im}(q)$$

 $\equiv \operatorname{Re}(p+s) + \operatorname{Im}(p+s),$

modulo 2.

Proposition 5 We have

$$4w_{1}^{2} = 4\Theta \begin{bmatrix} 1,0\\0,1 \end{bmatrix}^{2} = (x_{0} + x_{1} + x_{2} + x_{3})(x_{0} - x_{1} + x_{2} - x_{3}),$$

$$4w_{2}^{2} = 4\Theta \begin{bmatrix} i,0\\0,1 \end{bmatrix}^{2} = (x_{0} + x_{1} + x_{2} - x_{3})(x_{0} - x_{1} + x_{2} + x_{3}),$$

$$4w_{3}^{2} = 4\Theta \begin{bmatrix} 1,1+i\\1+i,1 \end{bmatrix}^{2} = (x_{0} + x_{1} - x_{2} - x_{3})(x_{0} - x_{1} - x_{2} + x_{3}),$$

$$4w_{4}^{2} = 4\Theta \begin{bmatrix} i,1+i\\1+i,1 \end{bmatrix}^{2} = (x_{0} + x_{1} - x_{2} + x_{3})(x_{0} - x_{1} - x_{2} - x_{3}).$$

Proof. Use Theorem 1 in [M2] and Lemma 3.2 in [MY]. \Box

Theorem 2 The map

$$\varphi : \mathbb{H}^3 \ni (z,t) \mapsto \frac{1}{x_0^2}(x_0x_2, x_1x_3, x_1^2 + x_3^2, f_1, f_2, f_3) \in \mathbb{R}^6$$

Succes an isomorphism between \mathbb{H}^3/B and $\varphi(\mathbb{H}^3)$

induces an isomorphism between \mathbb{H}^3/B and $\varphi(\mathbb{H}^3)$.

 f_j^2 are expressed in terms of $\Gamma_1^T(2)$ -invariant functions:

$$16f_{1}^{2} = (x_{0}^{2} - x_{2}^{2})^{2} - 2(x_{0}^{2} + x_{2}^{2})(x_{1}^{2} + x_{3}^{2}) + (x_{1}^{2} + x_{3}^{2})^{2} -4(x_{1}x_{3})^{2} - 8(x_{0}x_{2})(x_{1}x_{3}),$$

$$4f_{2}^{2} = (x_{1}^{2} + x_{3}^{2} + 2x_{1}x_{3})((x_{0} + x_{2})^{2} - (x_{1}^{2} + x_{3}^{2}) - 2x_{1}x_{3}),$$

$$4f_{3}^{2} = (x_{1}^{2} + x_{3}^{2} - 2x_{1}x_{3})((x_{0} - x_{2})^{2} - (x_{1}^{2} + x_{3}^{2}) + 2x_{1}x_{3}).$$

These relations together with the image of the map φ_0 determine the image of the map φ .

Proof. By Proposition 5, f_j vanishes only on the mirror of the reflection γ_j for j = 1, 2, 3. Note that the space \mathbb{H}^3/B is the eight fold covering of $\mathbb{H}^3/\Gamma_1^T(2)$ branching along the union of the mirrors of γ_1 , γ_2 and γ_3 , which corresponds to the zero locus of $f_1 f_2 f_3$. Thus the map φ realize this covering. Use Proposition 5 to express f_j^2 in terms of x_0, \ldots, x_3 .

6. Differential equations with monodromy B

Let $H(\alpha,\beta)$ be the differential equation for $f(x^3)$ under the condition $\gamma = 2/3$, where f(y) is a solution of the Gauss hypergeometric differential equation

$$y(1-y)f''(y) + \{\gamma - (\alpha + \beta + 1)y\}f'(y) - \alpha\beta f(y) = 0.$$

We have

 $H(\alpha,\beta): (1-x^3)h''(x) - (3\alpha + 3\beta + 1)x^2h'(x) - 9\alpha\beta xh(x) = 0,$

which has four regular singular points $x = 1, \omega, \omega^2$ and ∞ . Hence, $H(\alpha, \beta)$ is a Heun differential equation.

Remark 2 The periods of cubic curves

$$C(x) = \{ [t_0, t_1, t_2] \in \mathbb{P}^2 \mid t_0^3 + t_1^3 + t_2^3 - 3xt_0t_1t_2 = 0 \},\$$

 $(x \in \mathbb{C} - \{1, \omega, \omega^2\})$ of the Hesse normal form satisfy the differential equation H(1/3, 1/3).

Theorem 3 The monodromy group of $H(\alpha, \beta)$ for α and β satisfying

$$e^{2\pi i\alpha} = i\omega\zeta, \qquad e^{2\pi i\beta} = i\omega\zeta'$$

is conjugate to the group *B*, where $\zeta = \frac{1 \pm \sqrt{5}}{2}$ and $\zeta' = \frac{1 \mp \sqrt{5}}{2}$.

References

- [F] E. Freitag, Modulformen zweiten Grades zum rationalen und Gaußschen Zahlkörper, Sitzungsber. Heidelb. Akad. Wiss., 1 (1967), 1–49.
- [M1] K. Matsumoto, Theta functions on the bounded symmetric domain of type $I_{2,2}$ and the period map of 4-parameter family of K3 surfaces, *Math. Ann.*, **295** (1993), 383–408.
- [M2] K. Matsumoto, Algebraic relations among some theta functions on the bounded symmetric domain of type $I_{r,r}$, to appear in *Kyushu J. Math.*
- [M3] K. Matsumoto, A Heun differential equation derived from the Gauss hypergeometric differential equation, preprint 2005.

- [MNY] K. Matsumoto, H. Nishi and M. Yoshida, Automorphic functions for the Whitehead-link-complement group, preprint 2005.
- [MSY] K. Matsumoto, T. Sasaki and M. Yoshida, The monodromy of the period map of a 4-parameter family of K3 surfaces and the Aomoto-Gel'fand hypergeometric function of type (3,6), *Internat. J. of Math.*, **3** (1992), 1–164.
 - [MY] K. Matsumoto and M. Yoshida, Invariants for some real hyperbolic groups, *Internat. J. of Math.*, **13** (2002), 415– 443.
 - [T] W. Thurston, Geometry and Topology of 3-manifolds, Lecture Notes, Princeton Univ., 1977/78.

- [W] N. Wielenberg, The structure of certain subgroups of the Picard group, *Math. Proc. Cambridge Philos. Soc.*, 84 (1978), no. 3, 427–436.
- [Y] M. Yoshida, *Hypergeometric Functions, My Love,* Aspects of Mathematics, E32, Friedr Vieweg & Sohn, Braunschweig, 1997.