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1. Introduction

The Borromean rings L in S3 = R3 ∪ {∞} is given as
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The Borromean-rings-complement S3 − L admits a hyperbolic

structure: there is a group B in GL2(Z[i]) acting on the 3-dim.

hyperbolic space H3, and there is a homeomorphism

ϕ : H3/B
∼=−→ S3 − L.

In this talk, we construct automorphic functions for B (analytic

functions on H3 which are invariant under B), and express the

homeomorphism ϕ in terms of these automorphic functions.

We realize the quotient space H3/B as part of an affine algebraic

variety in R6, and write down the defining equations.
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2. A hyperbolic structure on the comple-
ment of the Borromean rings

The complement of the Borromean rings admits a hyperbolic

structure, i.e.,

S3 − L ' H3/B,

where H3 = {(z, t) ∈ C × R | t > 0}, and B is a subgroup of

Γ = GL2(Z[i]) generated by

g1 =

(
1 0

−1 1

)
, g2 =

(
1 2i

0 1

)
, g3 =

(
2 + i 2i

−1 −i

)
,

and the scalar matrix iI2.
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The fundamental domain for B is given as

Im(z)

Re(z)0 4

4 + 2i2i

i

1
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H3/B has three cusps cj; they are represented by

c1 : (z, t) = (∗,∞), c2 : (z, t) = (1 + i,0) ∼ (3 + i,0),

c3 : (z, t) = (0,0) ∼ (2,0) ∼ (4,0) ∼ (2i,0) ∼ (2+2i,0) ∼ (4+2i,0).

By considering of its volume, we have [Γ : B] = 48.

Note that the generators gj of B belongs to

Γ1(2) = {g = (gjk) ∈ Γ | g12, g11 − g22 ∈ 2Z[i]}.

Proposition 1

〈Γ(2), B〉 = Γ1(2),

where Γ(2) = {g = (gjk) ∈ Γ | g12, g21, g11 − g22 ∈ 2Z[i]}.
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Let T be the involution

T : (z, t) 7→ (z̄, t).

For a subgroup G ∈ GL2(C), the group generated by G and T

with relations gT = T ḡ for any g ∈ G is denoted GT .

The group ΓT
1(2) is generated by the six reflections

γ1 = T, γ2 =

(
1 0

−i 1

)
T, γ3 =

(
−1 0

0 1

)
T,

γ4 =

(
1 2i

0 1

)
T, γ5 =

(
−1 2

0 1

)
T, γ6 =

(
1 0

1 −1

)
T.
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ΓT (2) is generated by the eight reflections with mirrors given in

the figure

−1 + i i

0−1

Im(z)

Re(z)
.

Note that the Weyl chamber bounded by these eight mirrors is

an (ideal) octahedron in the hyperbolic space H3.
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We have the following inclusion relations:

ΓT
1(2)

Z2
�

(Z2)2
| Γ1(2)

ΓT (2) (Z2)2
| �

Z2
�

Γ(2) B
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3. Automorphic functions for ΓT(2)

H3 can be embedded into the hermitian symmetric domain D =

{τ ∈ M2,2(C) | (τ − τ∗)/2i is positive definite} of type I2,2 by

 : H3 3 (z, t) 7→
i

t

(
t2 + |z|2 z

z̄ 1

)
∈ D.

Through this embedding, GL2(C) and T act on D as

(g · (z, t)) =
1

|det(g)|
g (z, t) g∗, (T · (z, t)) = t(z, t).
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Theta functions Θ
(
a
b

)
on D are defined as

Θ
(a

b

)
(τ) =

∑
n∈Z[i]2

e[(n + a)τ(n + a)∗ + 2Re(nb∗)],

where e[x] = exp(πix), τ ∈ D, a, b ∈ Q[i]2.

Fact 1 1. For k ∈ Z and m, n ∈ Z[i]2, we have

Θ
(ika

ikb

)
(τ) = Θ

(a

b

)
(τ),

Θ
(a + m

b + n

)
(τ) = e[−2Re(mb∗)]Θ

(a

b

)
(τ).

2. We have

Θ
(a

b

)
(gτg∗) = Θ

( ag

b(g∗)−1

)
(τ) for g ∈ Γ,

Θ
(a

b

)
(T · τ) = Θ

(ā

b̄

)
(τ).

10



The pull back of Θ
(
a
b

)
(τ) by  : H3 → D is denoted Θ

(
a
b

)
(z, t).

For a, b ∈ (Z[i]
2 )2, we use the convention:

Θ
(a

b

)
(z, t) = Θ

[
2a

2b

]
(z, t) = Θ

[
2a

2b

]
.

Set

x0 = Θ
[
0,0
0,0

]
, x1 = Θ

[
1+i,1+i
1+i,1+i

]
, x2 = Θ

[
1+i,0
0,1+i

]
, x3 = Θ

[
0,1+i
1+i,0

]
.

Note that x0 is positive and invariant under the action of ΓT .
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One of the main results in [MY] is the following.

Fact 2 x1, x2, x3 are invariant under the action of ΓT (2).

The map

H3 3 (z, t) 7→
1

x0
(x1, x2, x3) ∈ R3

induces an isomorphism between H3/ΓT (2) and the octahedron

{(t1, t2, t3) ∈ R3 | |t1| + |t2| + |t3| ≤ 1}

minus the six vertices (±1,0,0), (0,±1,0), (0,0,±1).
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4. Automorphic functions for ΓT
1(2)

Lemma 1 By the actions of g1, g2, g3, the functions x1, x2, x3

are transformed as

(x1, x2, x3) · g1 = (x1, x2, x3)

 1

1

1

 ,

(x1, x2, x3) · g2 = (x1, x2, x3),

(x1, x2, x3) · g3 = (x1, x2, x3)

 −1

1

−1

 .

The functions x1+x3 and x1−x3 are invariant modulo sign under

the action of ΓT
1(2).
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Lemma 2 By the actions of g1, g2, g3 and T, their signs change

as

g1 g2 g3 T
x1 + x3 + + − +
x1 − x3 − + + +

Proposition 2 The functions x0, x2, x1x3, x2
1 + x2

3 are invariant

under the action of ΓT
1(2). The map

ϕ0 : H3 3 (z, t) 7→
1

x2
0

(x0x2, x1x3, x2
1 + x2

3) ∈ R3

induces an isomorphism between H3/ΓT
1(2) and ϕ0(H3).
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5. Automorphic functions for B

Set w1 = Θ
[
1,0
0,1

]
, w2 = Θ

[
i,0
0,1

]
, w3 = Θ

[
1,1+i
1+i,1

]
, ω4 = Θ

[
i,1+i
1+i,1

]
.

By using Fact 1, we have the following.

Lemma 3 The functions w1, . . . , w4 are invariant modulo sign

under the action of ΓT
1(2).

Especially, by the actions of g1, g2, g3, T , their signs change as

g1 g2 g3 T
w1 + + − +
w2 + − + +
w3 − + + +
w4 + − + −
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This lemma implies the following Proposition.

Proposition 3 The functions f1 = w2w4, f2 = (x1 + x3)w1,

f3 = (x1 − x3)w3 are invariant under the action of B.

By the actions of

γ1 = T, γ2 =

(
1 0

−i 1

)
T, γ3 =

(
−1 0

0 1

)
T,

we have

γ1 γ2 γ3
f1 − + +
f2 + − +
f3 + + −
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Let Isoj be the subgroup of ΓT
1(2) consisting of elements keeping

fj invariant for j = 1,2,3, and Iso0 the subgroup of ΓT
1(2)

consisting of elements keeping f1f2f3 invariant.

Proposition 4 We have

Γ1(2) = Iso0, B = Iso1 ∩ Iso2 ∩ Iso3.

The group B is normal in ΓT
1(2); ΓT

1(2)/B ' (Z2)
3.

Proof. The group ΓT
1(2) is generated by the group B and the

reflections γ1, γ2 and γ3. Since the index [ΓT
1(2) : B] is eight, we

have B = Iso1 ∩ Iso2 ∩ Iso3 and ΓT
1(2)/B ' (Z2)

3 by Proposition

3. Proposition 3 also shows that the function f1f2f3 is invariant

under the action of Γ1(2), and that it changes its sign by T . ¤
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Remark 1 ΓT
1(2)/B ' (Z2)

3 corresponds to some symmetries of

the Borromean rings L. See the figure.
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We can assume that any element g ∈ Γ1(2) takes the form I2 +(
2p 2q

r 2s

)
, otherwise multiply i to g. For example, ig3 = I2 +(

−2 + 2i −2

−i 0

)
.

Theorem 1 The element g = I2 +

(
2p 2q

r 2s

)
∈ Γ1(2) belongs

to B if and only if Re(q) + Im(r) ≡ 0 and

1+(−1)Re(r)+Im(r)

2 Re(q) + 1−(−1)Re(r)+Im(r)

2 Im(q)

≡ Re(p + s) + Im(p + s),

modulo 2.
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Proposition 5 We have

4w2
1 = 4Θ

[
1,0

0,1

]2

= (x0 + x1 + x2 + x3)(x0 − x1 + x2 − x3),

4w2
2 = 4Θ

[
i,0

0,1

]2

= (x0 + x1 + x2 − x3)(x0 − x1 + x2 + x3),

4w2
3 = 4Θ

[
1,1+i

1+i,1

]2

= (x0 + x1 − x2 − x3)(x0 − x1 − x2 + x3),

4w2
4 = 4Θ

[
i,1+i

1+i,1

]2

= (x0 + x1 − x2 + x3)(x0 − x1 − x2 − x3).

Proof. Use Theorem 1 in [M2] and Lemma 3.2 in [MY]. ¤
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Theorem 2 The map

ϕ : H3 3 (z, t) 7→
1

x2
0

(x0x2, x1x3, x2
1 + x2

3, f1, f2, f3) ∈ R6

induces an isomorphism between H3/B and ϕ(H3).

f2
j are expressed in terms of ΓT

1(2)-invariant functions:

16f2
1 = (x2

0−x2
2)

2 − 2(x2
0+x2

2)(x
2
1+x2

3) + (x2
1+x2

3)
2

−4(x1x3)
2 − 8(x0x2)(x1x3),

4f2
2 = (x2

1 + x2
3 + 2x1x3)((x0 + x2)

2 − (x2
1 + x2

3) − 2x1x3),

4f2
3 = (x2

1 + x2
3 − 2x1x3)((x0 − x2)

2 − (x2
1 + x2

3) + 2x1x3).

These relations together with the image of the map ϕ0 deter-

mine the image of the map ϕ.
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Proof. By Proposition 5, fj vanishes only on the mirror of the

reflection γj for j = 1,2,3. Note that the space H3/B is the

eight fold covering of H3/ΓT
1(2) branching along the union of

the mirrors of γ1, γ2 and γ3, which corresponds to the zero locus

of f1f2f3. Thus the map ϕ realize this covering. Use Proposition

5 to express f2
j in terms of x0, . . . , x3. ¤

22



6. Differential equations with monodromy
B

Let H(α, β) be the differential equation for f(x3) under the con-

dition γ = 2/3, where f(y) is a solution of the Gauss hypergeo-

metric differential equation

y(1 − y)f ′′(y) + {γ − (α + β + 1)y}f ′(y) − αβf(y) = 0.

We have

H(α, β) : (1−x3)h′′(x) − (3α+3β+1)x2h′(x) − 9αβxh(x) = 0,

which has four regular singular points x = 1, ω, ω2 and ∞. Hence,

H(α, β) is a Heun differential equation.
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Remark 2 The periods of cubic curves

C(x) = {[t0, t1, t2] ∈ P2 | t30 + t31 + t32 − 3xt0t1t2 = 0},

(x ∈ C − {1, ω, ω2}) of the Hesse normal form satisfy the differ-

ential equation H(1/3,1/3).

Theorem 3 The monodromy group of H(α, β) for α and β sat-

isfying

e2πiα = iωζ, e2πiβ = iωζ′

is conjugate to the group B, where ζ = 1±
√

5
2 and ζ′ = 1∓

√
5

2 .
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