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CURVES AND CALABI-YAU VARIETIES
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ABSTRACT. In this paper, we define a generalized arithmetic-geometric
mean pg among 29 terms motivated by 27-formulas of theta constants.
By using Thomae’s formula, we give two expressions of pg when initial
terms satisfy some conditions. One is given in terms of period integrals
of a hyperelliptic curve C' of genus g. The other is by a period integral of
a certain Calabi-Yau g-fold given as a double cover of the g-dimensional
projective space PY.

1. INTRODUCTION

Let {an,0}n and {ay 1 }» be positive real sequences defined by the recurrence
relations

an,,0 + an .1

(11) Ap4+1,0 = T, An41,1 = 4/An,00n,1,

and initial terms ap o = ao, ap,1 = a1 with 0 < a; < ap. One can easily
show that {an o}, and {a, 1}, have a common limit, which is called the
arithmetic-geometric mean of ag and a1, and is denoted by 1 (ag,aq). By the
homogeneity of the arithmetic and geometric means, we have pq(cag,cay) =
cp(ap, ap) for any positive real number c.

On the other hand, two Jacobi’s theta constants 6y and 6, satisfy the
following 27-formulas:

2 _ Bo(1)* 4 01(7)?

(1.2) 0o (27) . ,

91 (27’)2 = 00(7’)91 (7'),

where

0i(1) = > _exp(rvV—=1(n’t +in)),  i=0,1,
nez
and 7 belongs to the upper half space H. If we find an element 7 € H such
that 0, (7)2/00(7)? = a1 /ag for given initial terms ag and a;, then we have
ao 60(7‘)2 90(7‘)2
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2 Arithmetic-Geometric Means

by (1.1), (1.2) and lim 6,(2"7) = 1. Moreover, the Jacobi’s formula between

0o(7)? and an elliptic integral implies that

ao _ Vaj—a?

2 /1 dx
__% _ = . k=
pi(ao,a1) 7w Jo /(1 —22)(1 — k222) ag

In this paper, we define a generalized arithmetic-geometric mean p, among
29 terms (...,ar,...) (I € Fj) motivated by the 27-formulas (2.3) of theta
constants obtained by Theorem 2 in [3] p.139. By using Thomae’s formula, we
give two expressions of 11, whose initial terms are given as (3.1) for some 2g+1
real numbers p;. One is given in terms of period integrals of the hyperelliptic
curve C of genus g represented by the double cover of the complex projective
line P! branching at oo and 2g+1 points p;. The other is by a period integral of
the Calabi-Yau g-fold which is the double cover of the g-dimensional projective
space P9 branching along the dual hyperplanes of the images of oo and p;
(j=1,...,2g9 + 1) under the Veronese embedding of P! into P9.

In 1876, Borchardt studied in [1] the case of ¢ = 2: the generalized
arithmetic-geometric mean ps of a = (ago, ao1,a10,a11) was given by the
iteration of four means

apo + ap1 +aip + a1 /QooGo1 + \/a11a10

4 ’ 2 ’
Vo010 + /a11001 V/@ooa11 + +/a10ao1
2 ’ 2 ’

and po(a) was expressed in terms of period integrals of a hyperelliptic curve
of genus 2. Mestre showed in [4] that ps(a) could be expressed in terms of p;
and some algebraic functions of a when

app > Gg1 = G1p > A11, QpEEG11 > G141Q-

2. COMPARISON TO THETA CONSTANTS

We define a hyperelliptic curve C of genus g by

C:y*=(z—p1) (T — pags1),

where p;’s are real numbers satisfying p1 < -+ < p2g41. As in [6] p.76,
we choose the cycles Ay,..., Ay, By,..., By in the union of the following two
sheets (I),(II) in Figure 1. Here R is the set of non-negative real numbers,
the range of values of y is written, and the cycles in the sheet II are written
in thick lines. Note that the cycles satisfy

AZA]:BlBJ:O, Alszézj

for 1 < 4,5 < g under the intersection form.
We define holomorphic forms w; for j =1,...,¢g as
2/ ldx

wW,; = .
! y
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Sheet I (solid line)

pi__ Rt o ps__ Bt py .. P2g41 oo
R, V-IR:. -R; —y~IR.

Sheet II (dotted line)

R “R
D1 T peo D3 t pa . P2g+1 o
R, —V/=1R4 Ry VvV—-1Ry
Cycles
B By o
A >
A Ao Y ¥
P1 | P2 b3 I— ! . P2g+1 o0
............... <. )
............................ <................................4

FIGURE 1. Symplectic basis

We define integrals Ti(j ) by

xI~Ydx

2g+1
T — pi) ki—’;+1(pk_x)

T70) _ / Pt
pi \/HZ::1(

for 1 < i < 2gand 1 < j < g. Then the integrals Ti(j) are positive real
numbers. Using these integrals, we express the period integrals of C"

g

/A w; = (—1y219) /B w = 2/=1(3 (- TY).

k=i
We set

(2.1) A= (/Ai wj)ij, B= (/Bi w;)ij

and consider the normalized period matrix 7 by A-period:
(2.2) T=DBA L

By Riemann’s bilinear relations, det(A) is a non-zero real number and 7 is a
symmetric matrix whose imaginary part is positive definite. Note also that 7
is purely imaginary.

Remark 2.1. Since the Vandermonde matrix det(:vgfl)lgi,jgg is positive on
Poi—1 < x5 < pay, (—1)9(9‘H)/2 det(A) is positive.
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For I = (i1,...,i4) € F§, we define theta constants as
0;(7) = Z exp(nv/—1-n1'n+7v—1-n-I).
neZz9

Proposition 2.2. Let M be a positive definite symmetric g X g real matriz.
Then 0;(v/—1M) is positive for each I € F}.

Proof. By the inversion formula of the theta function in [5] p.195, we have

VAR - 61(v=TM) = 3 exp (VT + (VT - 5)).

nez9

where /det(M) takes a positive value. Since each term of the right hand side
is positive, the left hand side is positive. O

We consider variable u = (uy) rerg whose coordinates are indexed by F3.
The pair (67(7)); is denoted by 6(r). For I € F§ , we define quadratic
polynomials Fy(u) of 29 variables u = (ur);crg by

1
F](’u) = 2_9 Z Ur+pup.
PeF}

We remark that the coeflicients of 29F;(u) are in Z>¢. By Theorem 2 in [3]
p-139, we have 27-formulas of theta constants

(2.3) 07(27)% = F1(6(1))

for I € FY.

Now prepare some combinatorial notations for the statement of Thomae’s
formula. For an index I € F$, we define a subset Sy of R = {1,...,2g+1, 00}
as follows. Let 7; be elements of M (2, g,F5) defined as

i-th
Mgt = O --- 0 1 0 --- 0 7
1 -« 1 0 0 --- 0

i-th
s = O --- 0 1 0 --- 0 7
1 -+« 1 1 0 --- 0

fori=1,...,29g+ 1. Then a subset T of R — {29+ 1,00} ={1,2,...,2¢g} is
characterized by the equality

0
05
JETT
We set
g _ Ty if #T7 is even,
7T u{2g + 1} if #T7 is odd.

Let U be the set {1,3,5,...,2g+ 1} and R; o Ry be the symmetric difference
of sets R; and Rs.
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Proposition 2.3 ([6] p.120, [2]). Let A be the period matriz of C' in (2.1).
Then we have

(2m)290;(1)*
e S - II ®-» 1] @ -p)
1<j,i,j€S10U 1<4,3,j¢SroU

Here we used the fact that 0;(7) is a real number to determine the sign of
Thomae’s formula in [6].

3. STATEMENT AND PROOF OF THE MAIN THEOREM

Definition 3.1 (AGM sequences).

(1) For an element u = (ur); € R?’, we define the termwise root \/u of

w by (Vur)r.
(2) Let a = (ar); be an element in (Ry)*. We define ar, = (arr)1
inductively by the relation

ao,; = ar, axq1,1 = Fr(y/ag).
A proof of the following proposition will be left to readers.

Proposition-Definition 3.2 (Generalized arithmetic-geometric mean). For

an element a = (ag); in (R4)?’, the limits klim ax, 1 exist and are independent
—0Q

of indexes I. This common limit is called the generalized arithmetic-geometric

mean of (ar); and denoted by pg(ar).

Problem 3.3. Is it possible to express the generalized arithmetic-geometric
mean fig(ar) of a = (ar)r € (R)% in terms of period integrals of a family
of varieties parametrized by a ¢

Theorem 3.4. Let py < -+ < pag41 be real numbers. We define ay by

(3.1) ar = I @-») T @ -»)

1<J,1,j€SroU 1<j,i,7€SroU

Then we have
o (2m)9
:ug(a’[> - | det(A) |7

where A is the period matriz of C in (2.1).

Proof. By the initial condition, we have

(2m)907(7)?
| det(A)]

ag, 1 =

We show that
(27)90;7(277)?

Il = T qet(A)]
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by induction on n. Since 0;(2"7) is a positive real number by Proposition 2.2
for each I, we have

An+41,1 :F(\/ an)

2m)9 - F(0(2"
:( m) (0(2"7)) (by the induction hypothesis)

| det(A)]
219 - 9 2n—|—1 2
:( ) ]deé((A)| ™) (by the formula (2.3))
Therefore we have
n—oo " T [det(A)]

4. PERIOD OF CALABI-YAU VARIETY OF CERTAIN TYPE

We study a relation between the generalized arithmetic-geometric mean of
the last section and a period of a Gorenstein Calabi-Yau variety of a certain

type.

Definition 4.1 (Calabi-Yau varieties). A wvariety X only with Gorenstein
singularities is called a Calabi- Yau variety if the dualizing sheaf of X is trivial
and X has a global crepant resolution.

Let P = P9 be the g dimensional projective space and Hy --- Hag4o be
hyperplanes of P. There is a unique line bundle £ on P and a unique iso-
morphism ¢ : L8 ~ Ox (= 32972 H;) up to a non-zero constant. Using the
isomorphism ¢, we define a double covering X = Spec(Ox @ L), where the
multiplication on £L ® L — Ox is given by the isomorphism .

By the following Proposition 4.2, X becomes a Calabi-Yau variety, since it
admits a global crepant resolution.

Proposition 4.2.

(1) If U?EJ{QHi 18 normal crossing, then the variety X has only Gorenstein
singularities. Also it admits a global crepant resolution.

(2) Under the above hypotheses, the dualizing sheaf is isomorphic to the
structure sheaf.

Proof. (1) Locally on P, the variety X is defined by the equation n? =

&1---&,, where &;,...,&, are local coordinates. Therefore this variety U is
an affine toric variety defined by Spec(c’N M*), where
1 1
M*:Z9+(§"”7§)ZCQQ’ O'V:(R_F)g.

Let o be the dual simplex of ¢"and M be the dual lattice of M. Since o is
generated by elements contained primitive hyperplanes, X is Gorenstein. We
can construct a global crepant resolution as follows. We make a refinement
of the simplex ¢ into a regular fan Uy¢,, ow indexed by the set p, of “unfair
tournament” of {1,...,g}. A sequence w = (wr,...,wy_1) is an element of
the set p, if it satisfies the following properties:
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(i) wy is equal to 1 or 2 and
(ii) w; is equal to w;—q ori+1for2<i<g-—1.

For an element w of p,, we define o as a cone generated by
By ={u1 =e1 +e2,U2 = €y, +€3,U3 =€y, +€4...,Ug_1 = €y, , + €,
Ug = 2€w,_, },

where e; is the standard basis of Z9 D M. Since the set By is a free base of
M, the fan Uye,, 0w is regular and it defines a smooth toric variety X. The

coordinates associated to Z9 C M* are written as &,...,§,;. (1 corresponds
to %(17 ..., 1).) Let z1,..., 2z, be the coordinates associated to the dual base
By, of M. Then we have

Z’{LI .. z;j‘g — . 5657

1

Thus 51% --&3 = 21 -+ z4. Therefore the pull back of the rational differential
form wx to the affine toric variety associated to oy is a non-zero constant
multiple of dz; A --- A dzg, which shows that the map X — X is a crepant
resolution. Since the local crepant resolutions depend only on the choice of
order of the components of the branching divisor, they are patched together
into a global crepant resolution.

(2) Let &1,...,&, be inhomogeneous coordinates of P with the infinite hy-
perplane Hy o and I; = [;(§) be inhomogeneous linear forms defining the
hyperplane H; for ¢ = 1,...,2g + 1. Then defining equation of the double
covering X can be written as

2g+1

= H Li(€)

As is shown in the proof of (1),
1
(4.1) wx = —d& N - NdE,
n
is a global generator of the dualizing sheaf of X. U

For real numbers p; < --- < pag41, we define linear forms /; by

i =& —piba+pis+ -+ (=1)7 1pf 71 + (—1)9pf

and set H; = {l; = 0}. By using the Vandermonde matrix, we see that

U2g +2H is a normal crossing divisor.
We define a subset A of RY as

A={(x1,...,24) ](—l)i_llgi_l(xl,...,xg) >0fori=1,...,9+1, and
(=1)lgi(w1,...,my) > 0fori=1,...,g}.
We set
1
x = e Ao Adgy, and 9 = {(6.) € X | €€ Ak > 0}
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Then v = v4 — 7— defines a g-chain in X. We have the following rela-
tion between the generalized arithmetic-geometric mean and a period of the
Calabi-Yau variety X. The following theorem is obtained by Theorem 2 in
[7].

Theorem 4.3. Let (ar)r be an element of RY. defined in (3.1). Under the
above notation, we have
2m9

Jywx

plar) =

Proof. Let C; be a copy of the curve C given by y; = H?i;l(:zzj —pi). We

define a map 7 : C; x --- x Cy — X by sending ((x1,v1),-..,(24,Yg)) to the
point whose {x-coordinate and n-coordinate are the (g + 1 — k)-th elementary

symmetric function of z1,...,z4 and [[{_, y;, respectively. Then we have
mTrwyx = Z sgn(o) BY_; we (i)
0ESy

Since T, (A1 X --- x Ay) = (—1)909FT1/229715 e have

29_1/wX =| det(4) | .
gl

By Theorem 3.4, we have the theorem. U

5. GENUS TWO CASE

In this section, we will give a detailed study for the case of g = 2. Refer
to [1] and [4] for the original results by Borchardt and recent related works
by Mestre, respectively. We begin with (ago, ao1, @10, @11) as initial data for
AGM sequences. The recursive relations for ay ; (I € F3,k = 0,1,---) are

given as ag,; = ay and ax11,1 = Fr(\/ak00, - ,/ak,11), Where

1
2 2 2 2
Foo(uoo, uo1, w10, u11) = — (ugy + ug, + uig + uiyp),

4
Fo1(uoo, vo1, w10, u11) = §(U00U01 + u11u10),
Fio(uo0, uo1, 10, U11) = §(u00u1o + u11u01),
Fi1(uoo, uo1, 10, u11) = §(uoou11 + u10Uo1)-

In the following, we assume that agy > a19 > a11 > ao1 and agpagr >
aipai1. First we define positive real numbers k1 > ko and 0 < I < |1 < 1
such that

(ago + ao1)?® — (a1p +a11)® = k3, (aoo — ao1)? — (a10 — a11)* = k3,
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1+102 21,
apo + ap1 = mkl7 aip +ai = mkjla
1+13 2,
apo — aop1r = qkza ajp — a1 = mkéa
We set
0 1
P1=VY, p2= 5
(1—15%)(1—1%
2(lila + 1) ago
p3 =

(1—012) 1 =12 (ky+ ko) (1 =11 1)’
2([1 lo + 1) aol

P A =1k — ko) (1 b 1)
_ dapoaot
P (ke — k) (ka1 k) (1= %) (1— 1%
Then we have
(5.1) (ago : agy = aly : aiy) = ((ps — p1)(ps — p1)(ps — p3)(pa — p2) :
(pa —p1)(ps — P1)(P5 — Pa)(P3 — D2)
(p3 — p2)(ps — p2)(ps — p3)(pa — p1)
(Pa — p2)(P5s — p2)(ps — pa)(P3 — p1))

Therefore by Theorem 3.4, we have

4 2&00

lim an .00

’

n—eo B | det(A) | \/(p3s — p1)(ps — p1)(p5 — p3)(Pa — p2)

_ 8> (1= 2)2(1 — 2)2 (apoao1 — aroa11)3(1 —11l2)3 ‘
‘ det(A) ’ 1 2 aooa()laloall(l% — l%)(l + lllz)

where A is the period matrix of C' in (2.1).
Using the result of §4, we have
d&1 A d&

>|:4-/WH5 ,

| det(A

i1 (&1 — piba + p})
where A is a domain in R? defined by Iy > 0, —ly > 0,—I3 > 0,14 > 0 and
Is > 0. This is a period integral of the covering X of P? defined by
5
=] —pi&+p).

i=1
We notice that the variety X is the (nodal) Kummer surface of the Jacobian
of C.
Remark 5.1. When

apgp > Qg1 = @10 > 11, QEEA11 > AQ1G10,
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pa(a) can be expressed in terms of the arithmetic-geometric mean py and

expressions pa, . ..,ps by a (see [4]).
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