ARITHMETIC-GEOMETRIC MEANS FOR HYPERELLIPTIC CURVES AND CALABI-YAU VARIETIES

KEIJI MATSUMOTO AND TOMOHIDE TERASOMA

ABSTRACT. In this paper, we define a generalized arithmetic-geometric mean μ_g among 2^g terms motivated by 2τ -formulas of theta constants. By using Thomae's formula, we give two expressions of μ_g when initial terms satisfy some conditions. One is given in terms of period integrals of a hyperelliptic curve C of genus g. The other is by a period integral of a certain Calabi-Yau g-fold given as a double cover of the g-dimensional projective space \mathbf{P}^g .

1. Introduction

Let $\{a_{n,0}\}_n$ and $\{a_{n,1}\}_n$ be positive real sequences defined by the recurrence relations

(1.1)
$$a_{n+1,0} = \frac{a_{n,0} + a_{n,1}}{2}, \quad a_{n+1,1} = \sqrt{a_{n,0}a_{n,1}},$$

and initial terms $a_{0,0} = a_0$, $a_{0,1} = a_1$ with $0 < a_1 < a_0$. One can easily show that $\{a_{n,0}\}_n$ and $\{a_{n,1}\}_n$ have a common limit, which is called the arithmetic-geometric mean of a_0 and a_1 , and is denoted by $\mu_1(a_0, a_1)$. By the homogeneity of the arithmetic and geometric means, we have $\mu_1(ca_0, ca_1) = c\mu_1(a_0, a_1)$ for any positive real number c.

On the other hand, two Jacobi's theta constants θ_0 and θ_1 satisfy the following 2τ -formulas:

(1.2)
$$\theta_0(2\tau)^2 = \frac{\theta_0(\tau)^2 + \theta_1(\tau)^2}{2}, \quad \theta_1(2\tau)^2 = \theta_0(\tau)\theta_1(\tau),$$

where

$$\theta_i(\tau) = \sum_{n \in \mathbb{Z}} \exp(\pi \sqrt{-1}(n^2 \tau + in)), \qquad i = 0, 1,$$

and τ belongs to the upper half space **H**. If we find an element $\tau \in \mathbf{H}$ such that $\theta_1(\tau)^2/\theta_0(\tau)^2 = a_1/a_0$ for given initial terms a_0 and a_1 , then we have

$$\frac{a_0}{\mu_1(a_0,a_1)} = \frac{\theta_0(\tau)^2}{\mu_1(\theta_0(\tau)^2,\theta_1(\tau)^2)} = \frac{\theta_0(\tau)^2}{\mu_1(\theta_0(2^n\tau)^2,\theta_1(2^n\tau)^2)} = \theta_0(\tau)^2$$

2000 Mathematics Subject Classification. Primary 14K20; Secondary 32G20.

by (1.1), (1.2) and $\lim_{n\to\infty} \theta_i(2^n\tau) = 1$. Moreover, the Jacobi's formula between $\theta_0(\tau)^2$ and an elliptic integral implies that

$$\frac{a_0}{\mu_1(a_0, a_1)} = \frac{2}{\pi} \int_0^1 \frac{dx}{\sqrt{(1 - x^2)(1 - k^2 x^2)}}, \quad k = \frac{\sqrt{a_0^2 - a_1^2}}{a_0}.$$

In this paper, we define a generalized arithmetic-geometric mean μ_g among 2^g terms (\ldots, a_I, \ldots) $(I \in \mathbf{F}_2^g)$ motivated by the 2τ -formulas (2.3) of theta constants obtained by Theorem 2 in [3] p.139. By using Thomae's formula, we give two expressions of μ_g whose initial terms are given as (3.1) for some 2g+1 real numbers p_j . One is given in terms of period integrals of the hyperelliptic curve C of genus g represented by the double cover of the complex projective line \mathbf{P}^1 branching at ∞ and 2g+1 points p_j . The other is by a period integral of the Calabi-Yau g-fold which is the double cover of the g-dimensional projective space \mathbf{P}^g branching along the dual hyperplanes of the images of ∞ and p_j $(j=1,\ldots,2g+1)$ under the Veronese embedding of \mathbf{P}^1 into \mathbf{P}^g .

In 1876, Borchardt studied in [1] the case of g=2: the generalized arithmetic-geometric mean μ_2 of $a=(a_{00},a_{01},a_{10},a_{11})$ was given by the iteration of four means

$$\frac{a_{00} + a_{01} + a_{10} + a_{11}}{4}, \quad \frac{\sqrt{a_{00}a_{01}} + \sqrt{a_{11}a_{10}}}{2}, \\ \frac{\sqrt{a_{00}a_{10}} + \sqrt{a_{11}a_{01}}}{2}, \quad \frac{\sqrt{a_{00}a_{11}} + \sqrt{a_{10}a_{01}}}{2},$$

and $\mu_2(a)$ was expressed in terms of period integrals of a hyperelliptic curve of genus 2. Mestre showed in [4] that $\mu_2(a)$ could be expressed in terms of μ_1 and some algebraic functions of a when

$$a_{00} > a_{01} = a_{10} > a_{11}, \quad a_{00}a_{11} > a_{01}a_{10}.$$

2. Comparison to theta constants

We define a hyperelliptic curve C of genus q by

$$C: y^2 = (x - p_1) \cdots (x - p_{2g+1}),$$

where p_j 's are real numbers satisfying $p_1 < \cdots < p_{2g+1}$. As in [6] p.76, we choose the cycles $A_1, \ldots, A_g, B_1, \ldots, B_g$ in the union of the following two sheets (I),(II) in Figure 1. Here \mathbf{R}_+ is the set of non-negative real numbers, the range of values of y is written, and the cycles in the sheet II are written in thick lines. Note that the cycles satisfy

$$A_i \cdot A_j = B_i \cdot B_j = 0, \quad A_i \cdot B_j = \delta_{ij}$$

for $1 \leq i, j \leq g$ under the intersection form.

We define holomorphic forms ω_j for $j = 1, \ldots, g$ as

$$\omega_j = \frac{x^{j-1}dx}{y}.$$

$$p_1$$
 p_2 p_3 p_4 p_4 p_2 p_3 p_4 p_4 p_4 p_2 p_3 p_2 p_3 p_4 p_4 p_4 p_4 p_4 p_5 p_6 p_7 p_8 p_9 p_9

Sheet II (dotted line)

$$p_1$$
 p_2 p_3 p_4 p_4 p_4 p_4 p_2 p_3 p_4 p_4 p_4 p_4 p_4 p_4 p_5 p_6

Cycles

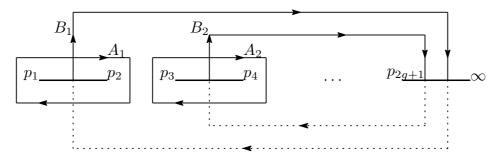


FIGURE 1. Symplectic basis

We define integrals $T_i^{(j)}$ by

$$T_i^{(j)} = \int_{p_i}^{p_{i+1}} \frac{x^{j-1} dx}{\sqrt{\prod_{k=1}^{i} (x - p_k) \prod_{k=i+1}^{2g+1} (p_k - x)}}$$

for $1 \leq i \leq 2g$ and $1 \leq j \leq g$. Then the integrals $T_i^{(j)}$ are positive real numbers. Using these integrals, we express the period integrals of C:

$$\int_{A_i} \omega_j = (-1)^i 2T_{2i-1}^{(j)}, \quad \int_{B_i} \omega_j = 2\sqrt{-1} (\sum_{k=i}^g (-1)^{k+1} T_{2k}^{(j)}).$$

We set

(2.1)
$$A = (\int_{A_i} \omega_j)_{ij}, \quad B = (\int_{B_i} \omega_j)_{ij}$$

and consider the normalized period matrix τ by A-period:

By Riemann's bilinear relations, det(A) is a non-zero real number and τ is a symmetric matrix whose imaginary part is positive definite. Note also that τ is purely imaginary.

Remark 2.1. Since the Vandermonde matrix $\det(x_i^{j-1})_{1 \leq i,j \leq g}$ is positive on $p_{2i-1} \leq x_i \leq p_{2i}$, $(-1)^{g(g+1)/2} \det(A)$ is positive.

For $I = (i_1, \ldots, i_g) \in \mathbf{F}_2^g$, we define theta constants as

$$\theta_I(\tau) = \sum_{n \in \mathbf{Z}^g} \exp(\pi \sqrt{-1} \cdot n\tau^t n + \pi \sqrt{-1} \cdot n \cdot I).$$

Proposition 2.2. Let M be a positive definite symmetric $g \times g$ real matrix. Then $\theta_I(\sqrt{-1}M)$ is positive for each $I \in \mathbf{F}_2^g$.

Proof. By the inversion formula of the theta function in [5] p.195, we have

$$\sqrt{\det(M)} \cdot \theta_I(\sqrt{-1}M) = \sum_{n \in \mathbf{Z}^g} \exp\left(\sqrt{-1}\pi(n + \frac{I}{2})(\sqrt{-1}M^{-1})^t(n + \frac{I}{2})\right),$$

where $\sqrt{\det(M)}$ takes a positive value. Since each term of the right hand side is positive, the left hand side is positive.

We consider variable $u = (u_I)_{I \in \mathbf{F}_2^g}$ whose coordinates are indexed by \mathbf{F}_2^g . The pair $(\theta_I(\tau))_I$ is denoted by $\theta(\tau)$. For $I \in \mathbf{F}_2^g$, we define quadratic polynomials $F_I(u)$ of 2^g variables $u = (u_I)_{I \in \mathbf{F}_2^g}$ by

$$F_I(u) = \frac{1}{2^g} \sum_{P \in \mathbf{F}_2^g} u_{I+P} u_P.$$

We remark that the coefficients of $2^g F_I(u)$ are in $\mathbb{Z}_{\geq 0}$. By Theorem 2 in [3] p.139, we have 2τ -formulas of theta constants

(2.3)
$$\theta_I(2\tau)^2 = F_I(\theta(\tau))$$

for $I \in \mathbf{F}_2^g$.

Now prepare some combinatorial notations for the statement of Thomae's formula. For an index $I \in \mathbf{F}_2^g$, we define a subset S_I of $R = \{1, \dots, 2g+1, \infty\}$ as follows. Let η_i be elements of $M(2, g, \mathbf{F}_2)$ defined as

$$\eta_{2i-1} = \begin{pmatrix} 0 & \cdots & 0 & \stackrel{i\text{-th}}{1} & 0 & \cdots & 0 \\ 1 & \cdots & 1 & 0 & 0 & \cdots & 0 \end{pmatrix},
\eta_{2i} = \begin{pmatrix} 0 & \cdots & 0 & \stackrel{i\text{-th}}{1} & 0 & \cdots & 0 \\ 1 & \cdots & 1 & 1 & 0 & \cdots & 0 \end{pmatrix},$$

for i = 1, ..., 2g + 1. Then a subset T_I of $R - \{2g + 1, \infty\} = \{1, 2, ..., 2g\}$ is characterized by the equality

$$\begin{pmatrix} 0 \\ I \end{pmatrix} = \sum_{j \in T_I} \eta_j.$$

We set

$$S_I = \begin{cases} T_I & \text{if } \#T_I \text{ is even,} \\ T_I \cup \{2g+1\} & \text{if } \#T_I \text{ is odd.} \end{cases}$$

Let U be the set $\{1, 3, 5, \dots, 2g+1\}$ and $R_1 \circ R_2$ be the symmetric difference of sets R_1 and R_2 .

Proposition 2.3 ([6] p.120, [2]). Let A be the period matrix of C in (2.1). Then we have

(2.4)
$$\frac{(2\pi)^{2g}\theta_I(\tau)^4}{\det(A)^2} = \prod_{i < j, i, j \in S_I \circ U} (p_j - p_i) \prod_{i < j, i, j \notin S_I \circ U} (p_j - p_i).$$

Here we used the fact that $\theta_I(\tau)$ is a real number to determine the sign of Thomae's formula in [6].

3. Statement and proof of the main theorem

Definition 3.1 (AGM sequences).

- (1) For an element $u = (u_I)_I \in \mathbf{R}_+^{2^g}$, we define the termwise root \sqrt{u} of u by $(\sqrt{u_I})_I$.
- (2) Let $a = (a_I)_I$ be an element in $(\mathbf{R}_+)^{2^g}$. We define $a_k = (a_{k,I})_I$ inductively by the relation

$$a_{0,I} = a_I, \quad a_{k+1,I} = F_I(\sqrt{a_k}).$$

A proof of the following proposition will be left to readers.

Proposition-Definition 3.2 (Generalized arithmetic-geometric mean). For an element $a = (a_I)_I$ in $(\mathbf{R}_+)^{2^g}$, the limits $\lim_{k\to\infty} a_{k,I}$ exist and are independent of indexes I. This common limit is called the generalized arithmetic-geometric mean of $(a_I)_I$ and denoted by $\mu_g(a_I)$.

Problem 3.3. Is it possible to express the generalized arithmetic-geometric mean $\mu_g(a_I)$ of $a=(a_I)_I \in (\mathbf{R}_+)^{2^g}$ in terms of period integrals of a family of varieties parametrized by a ?

Theorem 3.4. Let $p_1 < \cdots < p_{2g+1}$ be real numbers. We define a_I by

(3.1)
$$a_I = \sqrt{\prod_{i < j, i, j \in S_I \circ U} (p_j - p_i) \prod_{i < j, i, j \notin S_I \circ U} (p_j - p_i)}.$$

Then we have

$$\mu_g(a_I) = \frac{(2\pi)^g}{|\det(A)|},$$

where A is the period matrix of C in (2.1).

Proof. By the initial condition, we have

$$a_{0,I} = \frac{(2\pi)^g \theta_I(\tau)^2}{|\det(A)|}.$$

We show that

$$a_{n,I} = \frac{(2\pi)^g \theta_I (2^n \tau)^2}{|\det(A)|},$$

by induction on n. Since $\theta_I(2^n\tau)$ is a positive real number by Proposition 2.2 for each I, we have

$$a_{n+1,I} = F(\sqrt{a_n})$$

$$= \frac{(2\pi)^g \cdot F(\theta(2^n \tau))}{|\det(A)|}$$
 (by the induction hypothesis)
$$= \frac{(2\pi)^g \cdot \theta_I(2^{n+1}\tau)^2}{|\det(A)|}$$
 (by the formula (2.3))

Therefore we have

$$\lim_{n \to \infty} a_{n,I} = \frac{(2\pi)^g}{|\det(A)|}.$$

4. Period of Calabi-Yau variety of certain type

We study a relation between the generalized arithmetic-geometric mean of the last section and a period of a Gorenstein Calabi-Yau variety of a certain type.

Definition 4.1 (Calabi-Yau varieties). A variety X only with Gorenstein singularities is called a Calabi-Yau variety if the dualizing sheaf of X is trivial and X has a global crepant resolution.

Let $\mathbf{P} = \mathbf{P}^g$ be the g dimensional projective space and $H_1 \cdots H_{2g+2}$ be hyperplanes of \mathbf{P} . There is a unique line bundle \mathcal{L} on \mathbf{P} and a unique isomorphism $\varphi : \mathcal{L}^{\otimes 2} \simeq O_X(-\sum_{i=1}^{2g+2} H_i)$ up to a non-zero constant. Using the isomorphism φ , we define a double covering $X = Spec(\mathcal{O}_X \oplus \mathcal{L})$, where the multiplication on $\mathcal{L} \otimes \mathcal{L} \to \mathcal{O}_X$ is given by the isomorphism φ .

By the following Proposition 4.2, X becomes a Calabi-Yau variety, since it admits a global crepant resolution.

Proposition 4.2.

- (1) If $\bigcup_{i=1}^{2g+2} H_i$ is normal crossing, then the variety X has only Gorenstein singularities. Also it admits a global crepant resolution.
- (2) Under the above hypotheses, the dualizing sheaf is isomorphic to the structure sheaf.

Proof. (1) Locally on **P**, the variety X is defined by the equation $\eta^2 = \xi_1 \cdots \xi_g$, where ξ_1, \ldots, ξ_g are local coordinates. Therefore this variety U is an affine toric variety defined by $Spec(\check{\sigma} \cap M^*)$, where

$$M^* = \mathbf{Z}^g + (\frac{1}{2}, \dots, \frac{1}{2})\mathbf{Z} \subset \mathbf{Q}^g, \quad \check{\sigma} = (\mathbf{R}_+)^g.$$

Let σ be the dual simplex of $\check{\sigma}$ and M be the dual lattice of M. Since σ is generated by elements contained primitive hyperplanes, X is Gorenstein. We can construct a global crepant resolution as follows. We make a refinement of the simplex σ into a regular fan $\bigcup_{\mathbf{w} \in \rho_g} \sigma_{\mathbf{w}}$ indexed by the set ρ_g of "unfair tournament" of $\{1, \ldots, g\}$. A sequence $\mathbf{w} = (w_1, \ldots, w_{g-1})$ is an element of the set ρ_g if it satisfies the following properties:

- (i) w_1 is equal to 1 or 2 and
- (ii) w_i is equal to w_{i-1} or i+1 for $2 \le i \le g-1$.

For an element **w** of ρ_q , we define $\sigma_{\mathbf{w}}$ as a cone generated by

$$B_{\mathbf{w}} = \{ u_1 = e_1 + e_2, u_2 = e_{w_1} + e_3, u_3 = e_{w_2} + e_4 \dots, u_{g-1} = e_{w_{g-2}} + e_g, u_g = 2e_{w_{g-1}} \},$$

where e_i is the standard basis of $\mathbf{Z}^g \supset M$. Since the set $B_{\mathbf{w}}$ is a free base of M, the fan $\bigcup_{\mathbf{w} \in \rho_g} \sigma_{\mathbf{w}}$ is regular and it defines a smooth toric variety \tilde{X} . The coordinates associated to $\mathbf{Z}^g \subset M^*$ are written as ξ_1, \ldots, ξ_g . (η corresponds to $\frac{1}{2}(1,\ldots,1)$.) Let z_1,\ldots,z_g be the coordinates associated to the dual base $B_{\mathbf{w}}$ of M. Then we have

$$z_1^{u_1} \cdots z_g^{u_g} = \xi_1^{e_1} \cdots \xi_g^{e_g}.$$

Thus $\xi_1^{\frac{1}{2}} \cdots \xi_g^{\frac{1}{2}} = z_1 \cdots z_g$. Therefore the pull back of the rational differential form ω_X to the affine toric variety associated to $\sigma_{\mathbf{w}}$ is a non-zero constant multiple of $dz_1 \wedge \cdots \wedge dz_g$, which shows that the map $\tilde{X} \to X$ is a crepant resolution. Since the local crepant resolutions depend only on the choice of order of the components of the branching divisor, they are patched together into a global crepant resolution.

(2) Let ξ_1, \ldots, ξ_g be inhomogeneous coordinates of **P** with the infinite hyperplane H_{g+2} and $l_i = l_i(\xi)$ be inhomogeneous linear forms defining the hyperplane H_i for $i = 1, \ldots, 2g + 1$. Then defining equation of the double covering X can be written as

$$\eta^2 = \prod_{i=1}^{2g+1} l_i(\xi).$$

As is shown in the proof of (1),

(4.1)
$$\omega_X = \frac{1}{n} d\xi_1 \wedge \dots \wedge d\xi_g$$

is a global generator of the dualizing sheaf of X.

For real numbers $p_1 < \cdots < p_{2g+1}$, we define linear forms l_i by

$$l_i = \xi_1 - p_i \xi_2 + p_i^2 \xi_3 + \dots + (-1)^{g-1} p_i^{g-1} \xi_g + (-1)^g p_i^g$$

and set $H_i = \{l_i = 0\}$. By using the Vandermonde matrix, we see that $\bigcup_{i=1}^{2g+2} H_i$ is a normal crossing divisor.

We define a subset Δ of \mathbf{R}^g as

$$\Delta = \{(x_1, \dots, x_g) \mid (-1)^{i-1} l_{2i-1}(x_1, \dots, x_g) \ge 0 \text{ for } i = 1, \dots, g+1, \text{ and}$$
$$(-1)^i l_{2i}(x_1, \dots, x_g) > 0 \text{ for } i = 1, \dots, g\}.$$

We set

$$\omega_X = \frac{1}{\eta} d\xi_1 \wedge \dots \wedge d\xi_g$$
, and $\gamma_{\pm} = \{(\xi, \eta) \in X \mid \xi \in \Delta, \pm \eta \ge 0\}.$

Then $\gamma = \gamma_+ - \gamma_-$ defines a g-chain in X. We have the following relation between the generalized arithmetic-geometric mean and a period of the Calabi-Yau variety X. The following theorem is obtained by Theorem 2 in [7].

Theorem 4.3. Let $(a_I)_I$ be an element of \mathbf{R}^g_+ defined in (3.1). Under the above notation, we have

$$\mu(a_I) = \frac{2\pi^g}{\int_{\gamma} \omega_X}.$$

Proof. Let C_j be a copy of the curve C given by $y_j = \prod_{i=1}^{2g-1} (x_j - p_i)$. We define a map $\pi: C_1 \times \cdots \times C_g \to X$ by sending $((x_1, y_1), \dots, (x_g, y_g))$ to the point whose ξ_k -coordinate and η -coordinate are the (g+1-k)-th elementary symmetric function of x_1, \dots, x_g and $\prod_{i=1}^g y_i$, respectively. Then we have

$$\pi^* \omega_X = \sum_{\sigma \in \mathcal{S}_q} \operatorname{sgn}(\sigma) \boxtimes_{i=1}^g \omega_{\sigma(i)}.$$

Since $\pi_*(A_1 \times \cdots \times A_g) = (-1)^{g(g+1)/2} 2^{g-1} \gamma$, we have

$$2^{g-1} \int_{\gamma} \omega_X = |\det(A)|.$$

By Theorem 3.4, we have the theorem.

5. Genus two case

In this section, we will give a detailed study for the case of g=2. Refer to [1] and [4] for the original results by Borchardt and recent related works by Mestre, respectively. We begin with $(a_{00}, a_{01}, a_{10}, a_{11})$ as initial data for AGM sequences. The recursive relations for $a_{k,I}$ $(I \in \mathbf{F}_2^2, k = 0, 1, \cdots)$ are given as $a_{0,I} = a_I$ and $a_{k+1,I} = F_I(\sqrt{a_{k,00}}, \cdots, \sqrt{a_{k,11}})$, where

$$F_{00}(u_{00}, u_{01}, u_{10}, u_{11}) = \frac{1}{4}(u_{00}^2 + u_{01}^2 + u_{10}^2 + u_{11}^2),$$

$$F_{01}(u_{00}, u_{01}, u_{10}, u_{11}) = \frac{1}{2}(u_{00}u_{01} + u_{11}u_{10}),$$

$$F_{10}(u_{00}, u_{01}, u_{10}, u_{11}) = \frac{1}{2}(u_{00}u_{10} + u_{11}u_{01}),$$

$$F_{11}(u_{00}, u_{01}, u_{10}, u_{11}) = \frac{1}{2}(u_{00}u_{11} + u_{10}u_{01}).$$

In the following, we assume that $a_{00} > a_{10} > a_{11} > a_{01}$ and $a_{00}a_{01} > a_{10}a_{11}$. First we define positive real numbers $k_1 > k_2$ and $0 < l_2 < l_1 < 1$ such that

$$(a_{00} + a_{01})^2 - (a_{10} + a_{11})^2 = k_1^2, \quad (a_{00} - a_{01})^2 - (a_{10} - a_{11})^2 = k_2^2,$$

$$a_{00} + a_{01} = \frac{1 + l_1^2}{1 - l_1^2} k_1, \quad a_{10} + a_{11} = \frac{2l_1}{1 - l_1^2} k_1,$$

$$a_{00} - a_{01} = \frac{1 + l_2^2}{1 - l_2^2} k_2, \quad a_{10} - a_{11} = \frac{2l_2}{1 - l_2^2} k_2,$$

We set

$$p_{1} = 0, \quad p_{2} = \frac{1}{(1 - l_{2}^{2})(1 - l_{1}^{2})},$$

$$p_{3} = \frac{2(l_{1}l_{2} + 1)a_{00}}{(1 - l_{1}^{2})(1 - l_{2}^{2})(k_{1} + k_{2})(1 - l_{1}l_{2})},$$

$$p_{4} = \frac{2(l_{1}l_{2} + 1)a_{01}}{(1 - l_{1}^{2})(1 - l_{2}^{2})(k_{1} - k_{2})(1 - l_{1}l_{2})},$$

$$p_{5} = \frac{4a_{00}a_{01}}{(k_{1} - k_{2})(k_{1} + k_{2})(1 - l_{2}^{2})(1 - l_{1}^{2})}.$$

Then we have

$$(5.1) (a_{00}^2: a_{01}^2: a_{10}^2: a_{11}^2) = ((p_3 - p_1)(p_5 - p_1)(p_5 - p_3)(p_4 - p_2): (p_4 - p_1)(p_5 - p_1)(p_5 - p_4)(p_3 - p_2): (p_3 - p_2)(p_5 - p_2)(p_5 - p_3)(p_4 - p_1): (p_4 - p_2)(p_5 - p_2)(p_5 - p_4)(p_3 - p_1)).$$

Therefore by Theorem 3.4, we have

$$\lim_{n \to \infty} a_{n,00} = \frac{4\pi^2 a_{00}}{|\det(A)| \sqrt{(p_3 - p_1)(p_5 - p_1)(p_5 - p_3)(p_4 - p_2)}}$$

$$= \frac{8\pi^2}{|\det(A)|} \cdot (1 - l_1^2)^2 (1 - l_2^2)^2 \sqrt{\frac{(a_{00}a_{01} - a_{10}a_{11})^3 (1 - l_1l_2)^3}{a_{00}a_{01}a_{10}a_{11}(l_1^2 - l_2^2)(1 + l_1l_2)}}.$$

where A is the period matrix of C in (2.1).

Using the result of §4, we have

$$|\det(A)| = 4 \cdot \int_{\Delta} \frac{d\xi_1 \wedge d\xi_2}{\sqrt{\prod_{i=1}^5 (\xi_1 - p_i \xi_2 + p_i^2)}},$$

where Δ is a domain in \mathbf{R}^2 defined by $l_1 \geq 0, -l_2 \geq 0, -l_3 \geq 0, l_4 \geq 0$ and $l_5 \geq 0$. This is a period integral of the covering X of \mathbf{P}^2 defined by

$$\eta^2 = \prod_{i=1}^{5} (\xi_1 - p_i \xi_2 + p_i^2).$$

We notice that the variety X is the (nodal) Kummer surface of the Jacobian of C.

Remark 5.1. When

$$a_{00} > a_{01} = a_{10} > a_{11}, \quad a_{00}a_{11} > a_{01}a_{10},$$

 $\mu_2(a)$ can be expressed in terms of the arithmetic-geometric mean μ_1 and expressions p_2, \ldots, p_5 by a (see [4]).

References

- [1] Borchardt, C.W.: Über das arithmetisch-geometrische Mittel aus vier Elementen, Berl. Monatsber, 53 (1876), 611-621.
- [2] Fay, J.: Theta functions on Riemann surfaces, Lecture note in Math 352. Springer, Berlin-New York, 1973.
- [3] Igusa, J.: Theta functions, Die Grundlehren der mathematischen Wissenshaften in Einzeldarstellungen 194, Springer-Berlin-Heidelberg, New York, 1972.
- [4] Mestre, J.: Moyenne de Borchardt et integrales elliptiques, C. R. Acad. Sci. Paris Ser. I Math. 313 (1991), no. 5, 273–276.
- [5] Mumford, D.: Tata lectures on Theta I, progress in Math 28. Birkhäuser, Boston-Basel-Berlin, 1983.
- [6] Mumford, D.: Tata lectures on Theta II, progress in Math 43. Birkhäuser, Boston-Basel-Berlin, 1984.
- [7] Terasoma, T.: Exponential Kummer coverings and determinants of hypergeometric functions. *Tokyo J. Math.* 16 (1993), no. 2, 497–508.

Keiji Matsumoto Department of Mathematics Hokkaido University Sapporo, 060-0810, Japan e-mail: matsu@math.sci.hokudai.ac.jp

Tomohide TERASOMA Graduate School of Mathematical Sciences The University of Tokyo Komaba, Meguro, Tokyo, 153-8914, Japan e-mail: terasoma@ms.u-tokyo.ac.jp