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Abstract

We study a Heun differential equation derived from the Gauss hy-
pergeometric differential equation. We show that the periods for the
family of cubic curves of the Hesse normal form satisfy this differ-
ential equation for some parameters. We give a monodromy repre-
sentation of this differential equation; we find parameters such that
the monodromy group is isomorphic to the fundamental group of the
complement of the Borromean rings.
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1 Introduction

In this paper, we study the differential equation H(α, β) for the function
f(x3) under the condition γ = 2/3, where f(y) is a solution of the Gauss
hypergeometric differential equation

E(α, β, γ) : y(1− y)
d2

dy2
f(y) + {γ − (α + β + 1)y} d

dy
f(y)− αβf(y) = 0.

This differential equation H(α, β) has four regular singular points x = 1, ω, ω2

and∞, where ω is the third root of unity; this is a Heun differential equation.
We first show that the periods for the family {C(x) | x ∈ C−{1, ω, ω2}}

of cubic curves of the Hesse normal form in the projective plane P2 satisfy the
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differential equation H(1/3, 1/3). We next give a monodromy representation
of H(α, β). Finally, we find parameters α, β and a system of fundamental
solutions of H(α, β) such that the monodromy group of this system coincides
with the representation of the fundamental group of the Borromean-rings-
complement studied in [M] and [W].

2 The Heun differential equation derived from

the Gauss hypergeometric differential equa-

tion.

Let f be a solution of the Gauss hypergeometric differential equation E(α, β, γ)
and ı be the map C 3 x 7→ y = x3 ∈ C. We study the differential equation
for the function h(x) = f(x3) = ı∗(f). Since we have

d

dx
h(x) = 3x2 d

dy
f(y),

d2

dx2
h(x) = 6x

d

dy
f(y) + 9x4 d2

dy2
f(y),

d
dy

f(y) and d2

dy2 f(y) are expressed as

1

3x2

d

dx
h(x),

1

9x4

d2

dx2
h(x)− 2

9x5

d

dx
h(x),

respectively. Thus h(x) satisfies the differential equation

x3(1− x3)[
1

9x4

d2

dx2
h(x)− 2

9x5

d

dx
h(x)]

+{γ − (α + β + 1)x3}[ 1

3x2

d

dx
h(x)]− αβh(x) = 0,

which is equivalent to

x(1− x3)
d2

dx2
h(x) + {(3γ − 2)− (3α + 3β + 1)x3} d

dx
h(x)− 9αβx2h(x) = 0.

When γ = 2/3, this equation reduces to

H(α, β) : (1− x3)
d2

dx2
h(x)− (3α + 3β + 1)x2 d

dx
h(x)− 9αβxh(x) = 0,

which has four regular singular points x = 1, ω, ω2 and ∞. Hence, H(α, β)
is a Heun differential equation.
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3 Periods of cubic curves of the Hesse normal

form.

It is known that any non-singular cubic curve in the projective plane P2 can
be transformed into the Hesse normal form

C(x) = {[t0, t1, t2] ∈ P2 | t30 + t31 + t32 − 3xt0t1t2 = 0}, x ∈ C− {1, ω, ω2},

by a projective transformation. Since C(x) is a Riemann surface of genus 1,
there exists a nowhere vanishing holomorphic 1-from

ϕ =
t0dt1 − t1dt0
t22 − xt0t1

for any x ∈ C − {1, ω, ω2}. We take an element c of H1(C(0),Z) for x = 0;
we can make the continuation c(x) ∈ H1(C(x),Z) of the cycle c along a path
in C − {1, ω, ω2} by the local triviality of the family {C(x)}. The integral
p(x) =

∫
c(x)

ϕ is called a period of C(x).

Proposition 1 The period p(x) =
∫

c(x)
ϕ of C(x) satisfies the differential

equation H(1/3, 1/3).

Proof. Set (u, v) = (t1/t0, t2/t0) and q = q(x; u, v) = u3 + v3 + 1− 3xuv; the
curve C(x) is expressed as q(x; u, v) = 0. Since dq = qudu + qvdv = 0, we
have

dv = −qu

qv

du = −u2 − xv

v2 − xu
du.

Note that the period p(x) is expressed as

p(x) =

∫

c(x)

du

v2 − xu
.

By the local triviality of the family {C(x)}, we have

d

dx

∫

c(x)

ψ(x; u, v)du =

∫

c(x)

{ ∂

∂x
ψ +

∂

∂v
ψ

∂v(x, u)

∂x
}du,

where ψdu = ψ(x; u, v)du is a meromorphic 1-form on C(x), and we regard
the variable v as the implicit function of x and u by the equality q(x; u, v) = 0.
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Differentiating the equality q(x; u, v) = u3 + v(x, u)3 − 3xuv(x, u) = 0 with
respect to x, we have

3v(x, u)2∂v(x, u)

∂x
− 3uv(x, u)− 3xu

∂v(x, u)

∂x
= 0,

which is equivalent to

∂v(x, u)

∂x
=

uv(x, u)

v2(x, u)− xu
.

Thus d
dx

∫
c(x)

ψ(x; u, v)du is given as

∫

c(x)

{( ∂

∂x
+

uv

v2 − xu

∂

∂v
)ψ}du.

Hence we have

d

dx
p(x) =

∫

c(x)

−u(v2 + xu)

(v2 − xu)3
du,

d2

dx2
p(x) =

∫

c(x)

2xu3(5v2 + xu)

(v2 − xu)5
du.

We show that the 1-from η(x; u, v)du is exact, where

[(1− x3)
d2

dx2
− 3x2 d

dx
− x]p(x) = x

∫

c(x)

η(x; u, v)du,

η(x; u, v) =
2xu4 − (9x3 − 10)u3v2 − 9x2u2v4 + 7xuv6 − v8

(v2 − xu)5
.

In fact, for a meromorphic function F = (u3−1)uv
(v2−xu)3

on C(x), dF is

∂

∂u
Fdu +

∂

∂v
Fdv = {( ∂

∂u
− u2 − xv

v2 − xu

∂

∂v
)F}du,

and η + dF is

xu4 + 5u3v2 + 3x2u2v + 4xuv3 − v5

(v2 − xu)5
q(x; u, v)du,

which vanishes on C(x). ¤
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4 Monodromy representation.

We use the monodromy representation of the Gauss hypergeometric differ-
ential equation given in [K].

Fact 1 (Theorem 6.1 in [K]) If none of α, β, γ−α and γ−β is an integer,

then there exists a fundamental system f(y) =

(
f0(y)
f1(y)

)
of E(α, β, γ) such

that the monodromy group with respect to this system is generated by

(
1 0

−(1− e−2πiβ) e−2πiγ

)
,

(
1 1− e−2πiα

0 e−2πi(α+β−γ)

)
.

These matrices are given by the continuation of f(y) along a loop encircling
the point x = 0 once in the positive sence and along a loop encircling the
point x = 1 once in the positive sence, respectively.

By putting γ = 2/3 for the matrices in Fact 1, we set

ρ0 =

(
1 0

−(1− e−2πiβ) ω

)
, ρ1 =

(
1 1− e−2πiα

0 ω2e−2πi(α+β)

)
.

Note that the eigenvalues of ρ0 are 1 and ω and that

ρ3
0 = I =

(
1 0
0 1

)
.

Proposition 2 If none of α, β, 2/3−α and 2/3−β is an integer, then there
exists a fundamental system of H(α, β) such that the monodromy group with
respect to this system is generated by

ρ1, ρ0ρ1ρ
−1
0 , ρ2

0ρ1ρ
−2
0 .

Proof. Under the condition for parameters in this proposition, h(x) =(
f0(x

3)
f1(x

3)

)
is a fundamental system of solutions of H(α, β). We take a base

point x0 as a small positive real number ε.
Let `1 be a loop starting at x0, going to x = 1 − ε along the real axis,

encircling the point x = 1 once in the positive sence and going back along
the real axis. When x varies along `1, y = x3 turns the point y = 1 once in
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the positive sence. Thus h(x) changes into g1h(x) by the continuation along
the loop `1.

Let `ω be the loop (rω
1 (ε)) · (ω`1) · (rω

1 (ε))−1, where rω
1 (ε) is the arc from

ε to ωε with center at 0, and ω`ω is the image of `1 under the map C 3 x 7→
ωx ∈ C. Since y = x3 turns the point y = 0 once in the positive sence when
x varies along the arc rω

1 (ε), h(x) changes into g0h(x) by the continuation
along rω

1 (ε). Thus h(x) changes into g0g1g
−1
0 h(x) by the continuation along

the loop `ω.
Similarly, h(x) changes into g2

0g1g
−2
0 h(x) by the continuation along a

certain loop `ω2 starting at x0 and turning the point x = ω2 .
Since the fundamental group of C − {1, ω, ω2} is generated by the three

loops `1, `ω and `ω2 , the monodromy group with respect to h(x) is generated
by ρ1, ρ0ρ1ρ

−1
0 and ρ2

0ρ1ρ
−2
0 . ¤

The monodromy group of the fundamental system h(x) of the differential
equation H(1/3, 1/3) is generated by m1+j = mj

0m1m
−j
0 (j = 0, 1, 2), where

m0 =

(
1 0

−1 + ω2 ω

)
, m1 =

(
1 1− ω2

0 1

)
.

For the matrix P =

(
0 ω2

−1 + ω2 −1

)
, PmjP

−1 (j = 0, 1, 2, 3) are

ω2

(−1 1
−1 0

)
,

(
1 0
3 1

)
,

(
1 −3
0 1

)
,

(
4 −3
3 −2

)
,

respectively. It is known that the group generated by PmjP
−1 (j = 1, 2, 3)

coincides with the level 3 principal congruence subgroup

Γ(3) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣a− 1, b, c, d− 1 ∈ 3Z
}

.

The group generated by

(−1 1
−1 0

)
and

(
1 0
3 1

)
is conjugate to the congru-

ence subgroup

Γ0(3) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣a− 1, c, d− 1 ∈ 3Z
}

,
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since Γ(3) is a normal subgroup of GL2(Z), Γ0(3)/Γ(3) ' Z/(3Z), and

(QP )m0(QP )−1 =

(
1 −1
3 −2

)
belongs to Γ0(3), where Q =

(
1 0
2 −1

)
∈

GL2(Z). We have the commutative diagram:

C− {0, 1, ω, ω2} h̃−→ H/Γ(3)

ı ↓ pr ↓

C− {0, 1} f̃−→ H/Γ0(3),

where H is the upper half space, the map ı is x 7→ y = x3, the map pr
is the natural projection, the maps h̃ and f̃ are given by the ratio of the
fundamental solutions of (QP )h(x) and (QP )f(y), respectively.

5 A representation of the fundamental group

of the Borromean-rings-complement

It is shown in [W] that the fundamental group of the Borromean-rings-
complement is isomorphic to the subgroup B of SL2(Z[i]) generated by three
elements

g1 =

(
1 0
−1 1

)
, g2 =

(
1 2i
0 1

)
, g3 =

(
2 + i 2i
−1 −i

)
.

Lemma 1 We have

g3
0 = I, g2 = g0g1g

−1
0 , g3 = g2

0g1g
−2
0 ,

where

g0 =

(−1 −1− i
1−i
2

0

)
∈ SL2(C).

Proof. We can easily show this lemma by direct computations. We here
explain how to find the matrix g0. The matrices g1, g2 and g3 can be expressed
as

gj = I − vj
tvjJ (j = 1, 2, 3),
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where

J =

(
0 −1
1 0

)
, v1 =

(
0
1

)
, v2 =

(
1 + i

0

)
, v3 =

(
1 + i
−1

)
.

Since any element g ∈ SL2(C) satisfies tgJg = J , we have

ggjg
−1 = I − g(vj

tvjJ)g−1 = I − (gvj)
t(gvj)J.

Thus if the matrix g satisfies g(v1, v2) = (v2, v3) then g2 = gg1g
−1, g3 =

g2g1g
−2. We put g0 = −(v2, v3)(v1, v2)

−1 so that g3
0 = I. ¤

Theorem 1 The monodromy group of H(α, β) for α and β satisfying

e2πiα = iωζ, e2πiβ = iωζ ′

is conjugate to the group B, where ζ = 1±√5
2

and ζ ′ = 1∓√5
2

.

Proof. In fact, for parameters in Theorem 1 and the matrix

P =

(
0 1 + i

ω − iζ ω

)
,

we have
Pρ0P

−1 = g0, Pρ1P
−1 = g1.

Proposition 2 and Lemma 1 imply this theorem.
We explain our method to find these parameters and the matrix P . If g1

is conjugate to ρ1 then the Jordan normal form

(
1 1
0 1

)
of g1 must coincide

with that of ρ1. Thus we have the condition ω2e−2πi(α+β) = 1. We eliminate
α in ρ1 by this condition, and put b = e−2πiβ; ρ1 becomes

(
1 1− ω/b
0 1

)
= I − v tvJ, v =

(√
1− ω/b

0

)
.

Since

P−1
1 g0P1 = ωP−1

2 ρ0P2 =

(
ω

ω2

)
,
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we have ωP (z)ρ0P (z)−1 = g0, where z is a variable in C− {0} and

P (z) =
1√

(1 + i)z
P1ZP−1

2 ∈ SL2(C),

P1 =

(
1 + i 1 + i
ω2 ω

)
, P2 =

( √
3i 0

ω(b− 1) 1

)
, Z =

(
z

1

)
.

By the equality P (z)v = v1, which implies P (z)ρ1P (z)−1 = g1, we have two
algebraic equations with variables b and z. The first equation reduces to

(b− ω)(z − ω(b− 1)) = 0.

If b = ω then ρ1 becomes I; thus z should be ω(b−1). By eliminating z from
the second equation by this identity, we have the quadratic equation

b2 − iω2b + ω = 0,

of which solutions are iω2 1±
√

5
2

. Note that their inverses are iω 1∓√5
2

. The

matrix P is given by
√

(1 + i)zP (z) for b = exp(−2πiβ) = iω2ζ and z =
ω(iω2ζ − 1). ¤

Remark 1 The monodromy group of the fundamental system Ph(x) of the
differential equation H(α, β) for parameters satisfying the condition in The-
orem 1 coincides with the group B.
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