Mean iterations derived from transformation formulas for the hypergeometric function

Ryohei HATTORI, Takayuki KATO and Keiji MATSUMOTO

July 14, 2008

Abstract

From Goursat's transformation formulas for the hypergeometric function $F(\alpha, \beta, \gamma; z)$, we derive several double sequences given by mean iterations and express their common limits by the hypergeometric function. Our results are analogies of the fact that the arithmeticgeometric mean of 1 and $x \in (0, 1)$ can be expressed as the reciprocal of $F(\frac{1}{2}, \frac{1}{2}, 1; 1 - x^2)$.

Contents

1	Introduction	2
2	Mean iterations	4
3	The hypergeometric function and mean iterations	7
4	Compounds of means by quadratic transformation formulas	11
5	Compounds of means by cubic transformation formulas	16
6	Compounds of means by transformation formulas for $_3F_2$	20

¹MSC2000: primary 33A25; secondary 26A18.

²Keywords: hypergeometric function, mean iteration.

1 Introduction

Let m_1 and m_2 be the arithmetic mean and the geometric mean:

$$m_1(x,y) = \frac{x+y}{2}, \quad m_2(x,y) = \sqrt{xy}.$$

For 0 < b < a, we give a double sequence $\{a_n\}$ and $\{b_n\}$ by the iteration of two means m_1 and m_2 with initial (a, b):

$$(a_0, b_0) = (a, b), \quad (a_{n+1}, b_{n+1}) = (m_1(a_n, b_n), m_2(a_n, b_n)).$$

This double sequence converges and has a common limit, which is called the arithmetic-geometric mean of a and b, or the compound $m_1 \diamond m_2(a, b)$. It is known that the arithmetic-geometric mean can be expressed by the hypergeometric function, that is

$$m_1 \diamond m_2(a,b) = \frac{a}{F(\frac{1}{2},\frac{1}{2},1;1-(\frac{b}{a})^2)},$$

where

$$F(\alpha, \beta, \gamma; z) = \sum_{n=0}^{\infty} \frac{(\alpha)_n(\beta)_n}{(\gamma)_n(1)_n} z^n.$$

We remark that the Gauss quadratic transformation formula for the hypergeometric function implies this fact, refer to Section 3 for details.

In this paper, from Goursat's transformation formulas in [G] instead of Gaussian, we induce several double sequences given by mean iterations and express their common limits by the hypergeometric function $F(\alpha, \beta, \gamma; z)$. We list pairs of means and their common limits induced from quadratic transformations in Theorem 2 and those from cubic ones in Theorem 3. It turns out that the parameters (α, β, γ) of the hypergeometric function in Theorem 2 satisfy

$$\left\{\frac{1}{|1-\gamma|}, \frac{1}{|\gamma-\alpha-\beta|}, \frac{1}{|\alpha-\beta|}\right\} = \{2, 2, \infty\}, \ \{2, 4, 4\},$$

and that those in Theorem 3 satisfy

$$\left\{\frac{1}{|1-\gamma|}, \frac{1}{|\gamma-\alpha-\beta|}, \frac{1}{|\alpha-\beta|}\right\} = \{2, 3, 6\}.$$

B.C. Carlson considers in [C] the twelve double sequences given by the iteration of means m_i and m_j $(1 \le i, j \le 4, i \ne j)$, where

$$m_3(x,y) = \sqrt{x\frac{x+y}{2}}, \quad m_4(x,y) = \sqrt{\frac{x+y}{2}y}.$$

They converge and their common limits $m_i \diamond m_j(a, b)$ admit integral representations of Euler type. Theorem 2 can be obtain by these results together with some functional equations for the hypergeometric function in Lemma 2.

J.M. and P.B. Borwein study in [BB1] two double sequences given by the iteration of m_5 and m_6 and by that of m_7 and m_8 , where

$$m_5(x,y) = \frac{x+2y}{3}, \qquad m_6(x,y) = \sqrt[3]{y\frac{x^2+xy+y^2}{3}},$$
$$m_7(x,y) = \frac{x+3y}{4}, \qquad m_8(x,y) = \sqrt{y\frac{x+y}{2}}.$$

They converge and their common limits $m_5 \diamond m_6(a, b)$ and $m_7 \diamond m_8(a, b)$ can be expressed as

$$\frac{a}{F(\frac{1}{3},\frac{2}{3},1;1-(\frac{b}{a})^3)}, \quad \frac{a}{F(\frac{1}{4},\frac{3}{4},1;1-(\frac{b}{a})^2)^2},$$

respectively. We remark that Theorem 3 is independent of the results in [BB1] and [C].

The above expressions of common limits of double sequences in [BB1] are extended to those of multiple sequences by the hypergeometric function F_D of multi variables, refer to [KS], [KM] and [MO]. Similar extensions of some results in Theorem 2 are studied in [M].

A list of transformation formulas for the generalized hypergeometric function ${}_{3}F_{2}(\frac{\alpha_{0}, \alpha_{1}, \alpha_{2}}{\beta_{1}, \beta_{2}}; z)$ is given in [K]. We attempt to find double sequences whose common limits can be expressed by ${}_{3}F_{2}$. It turns out that we can not get proper expressions of common limits by ${}_{3}F_{2}$ because of the reduction and the Clausen formula for ${}_{3}F_{2}$, refer to Section 6.

Acknowledgment. The authors express their gratitude to Professor M. Kato for informing them of his results in [K].

2 Mean iterations

In this section, we formalize the notion of mean iterations, for which we refer to Section 8 in [BB2].

Let \mathbb{R}^*_+ be the multiplicative group of positive real numbers. A mean is a continuous function $m: \mathbb{R}^*_+ \times \mathbb{R}^*_+ \to \mathbb{R}^*_+$ satisfying

$$\min(x, y) \le m(x, y) \le \max(x, y),$$
$$m(tx, ty) = tm(x, y),$$

for any $x, y, t \in \mathbb{R}^*_+$. A mean m(x, y) is strict if

$$m(x,y) = x$$
 or $m(x,y) = y \Rightarrow x = y$.

For two means m_1 and m_2 and two positive real numbers a and b, we define a double sequence $\{a_n\}$ and $\{b_n\}$ with initial $(a_0, b_0) = (a, b)$ by

$$(a_{n+1}, b_{n+1}) = (m_1(a_n, b_n), m_2(a_n, b_n)).$$

This double sequence is called the (m_1, m_2) -sequence with initial (a, b). If (m_1, m_2) -sequence with initial (a, b) converges and has a common limit, this value is called the compound of m_1 and m_2 with initial (a, b) and denoted $m_1 \diamond m_2(a, b)$.

If $a \ge b$ and two means m_1 and m_2 satisfy

$$m_1(x,y) \ge m_2(x,y), \quad \text{for any } (x,y) \in \mathbb{R}^*_+ \times \mathbb{R}^*_+,$$
(1)

or

$$(x-y)(m_1(x,y) - m_2(x,y)) \ge 0$$
, for any $(x,y) \in \mathbb{R}^*_+ \times \mathbb{R}^*_+$, (2)

then the (m_1, m_2) -sequence with initial (a, b) satisfies

$$b_0 \le b_1 \le b_2 \le \dots \le b_n \le a_n \le \dots \le a_2 \le a_1 \le a_0.$$

If $a \ge b$ and two means m_1 and m_2 satisfy

$$(x-y)(m_1(x,y) - m_2(x,y)) \le 0$$
, for any $(x,y) \in \mathbb{R}^*_+ \times \mathbb{R}^*_+$, (3)

then the (m_1, m_2) -sequence with initial (a, b) satisfies

$$b_0 \le a_1 \le b_2 \le \dots \le b_{2n} \le a_{2n+1} \le b_{2n+1} \le a_{2n} \le \dots \le a_2 \le b_1 \le a_0.$$

Lemma 1 Suppose that two means m_1 and m_2 satisfy (1) or (2) or (3). If either m_1 or m_2 is strict, then the (m_1, m_2) -sequence with initial (a, b) converges and has a common limit, and the compound $m_1 \diamond m_2$ becomes a mean. Moreover, the convergence is uniform on any compact subset of $\mathbb{R}^*_+ \times \mathbb{R}^*_+$.

Proof. For a proof of the cases (1) and (2), refer to [BB2]. Suppose that (3) is satisfied. We may assume that $a \ge b$. Let $\{a_n\}$ and $\{b_n\}$ be the (m_1, m_2) -sequence with initial (a, b). Then both of four sequences $\{a_{2n}\}$, $\{a_{2n+1}\}$, $\{b_{2n}\}$ and $\{b_{2n+1}\}$ are monotonous and bounded. Thus they converge; we set

$$\lim_{n \to \infty} a_{2n} = \alpha_0, \ \lim_{n \to \infty} a_{2n+1} = \alpha_1, \ \lim_{n \to \infty} b_{2n} = \beta_0, \ \lim_{n \to \infty} b_{2n+1} = \beta_1.$$

Let $n \to \infty$ for the inequalities

$$a_{2n-1} \le b_{2n} \le a_{2n+1} \le b_{2n+1} \le a_{2n} \le b_{2n-1},$$

we have

 $\alpha_1 \leq \beta_0 \leq \alpha_1 \leq \beta_1 \leq \alpha_0 \leq \beta_1, \quad \text{ i.e., } \quad \beta_0 = \alpha_1, \quad \beta_1 = \alpha_0, \quad \alpha_1 \leq \alpha_0.$

Let $n \to \infty$ for the equalities

$$a_{2n+1} = m_1(a_{2n}, b_{2n}), \quad b_{2n+1} = m_2(a_{2n}, b_{2n}),$$

we have

$$\alpha_1 = m_1(\alpha_0, \beta_0) = m_1(\alpha_0, \alpha_1), \quad \alpha_0 = \beta_1 = m_2(\alpha_0, \beta_0) = m_2(\alpha_0, \alpha_1).$$

Since either m_1 or m_2 is strict, α_0 should be equal to α_1 .

Let us show that $\mu = m_1 \diamond m_2$ is a mean. In order to show that μ is continuous, take any $(a, b) \in \mathbb{R}^*_+ \times \mathbb{R}^*_+$, any $\varepsilon > 0$, and choose $N \in \mathbb{N}$ such that

$$|a_n(a,b) - \mu(a,b)| < \varepsilon$$

for any n > N. We fix a natural number n satisfying 2n > N. We can regard a_{2n} and a_{2n+1} as continuous functions of initial terms (a, b). Thus there exists $\delta > 0$ such that

$$\begin{aligned} |x-a| < \delta, \\ |y-b| < \delta, \end{aligned} \Rightarrow \begin{aligned} |a_{2n}(x,y) - a_{2n}(a,b)| < \varepsilon, \\ |a_{2n+1}(x,y) - a_{2n+1}(a,b)| < \varepsilon. \end{aligned}$$

If $|x - a| < \delta$, $|y - b| < \delta$ and $x \ge y$ then we have

$$\mu(x,y) \le a_{2n}(x,y) < a_{2n}(a,b) + \varepsilon < \mu(a,b) + 2\varepsilon,$$

$$\mu(x,y) \ge a_{2n+1}(x,y) > a_{2n+1}(a,b) - \varepsilon > \mu(a,b) - 2\varepsilon;$$

i.e.,

$$|\mu(x,y) - \mu(a,b)| < 2\varepsilon$$

If $|x - a| < \delta$, $|y - b| < \delta$ and $x \le y$ then we have

$$\mu(x,y) \le a_{2n+1}(x,y) < a_{2n+1}(a,b) + \varepsilon < \mu(a,b) + 2\varepsilon$$

$$\mu(x,y) \ge a_{2n}(x,y) > a_{2n}(a,b) - \varepsilon > \mu(a,b) - 2\varepsilon;$$

i.e.,

$$|\mu(x,y) - \mu(a,b)| < 2\varepsilon.$$

Hence μ is continuous at (a, b). It is clear that

$$\min(x, y) \le \mu(x, y) \le \max(x, y),$$
$$\mu(tx, ty) = t\mu(x, y),$$

for any $x, y, t \in \mathbb{R}^*_+$.

Let K be any compact subset of $\mathbb{R}^*_+ \times \mathbb{R}^*_+$, and K_+ and K_- be closed subsets of K given as $\{(x, y) \in K \mid \pm (x - y) \geq 0\}$, respectively. Since μ is continuous on $\mathbb{R}^*_+ \times \mathbb{R}^*_+$ and the sequences $\{a_{2n+1}\}$ and $\{a_{2n}\}$ are monotonous on K_+ (resp. K_-), they uniformly converge to μ on the compact subset K_+ (resp. K_-) by Dini's theorem. Thus $\{a_n\}$ uniformly converges to μ on the compact subset K.

The key observation about $m_1 \diamond m_2$ is the following fact in [BB2].

Fact 1 (Invariant principle) Suppose that the compound $m_1 \diamond m_2$ of two means m_1 and m_2 exists. Then $m_1 \diamond m_2$ is the unique mean μ satisfying

$$\mu(m_1(a,b), m_2(a,b)) = \mu(a,b)$$

for any $a, b \in \mathbb{R}^*_+$.

3 The hypergeometric function and mean iterations

The hypergeometric function $F(\alpha, \beta, \gamma; z)$ with parameters α, β, γ is defined as

$$F(\alpha, \beta, \gamma; z) = \sum_{n=0}^{\infty} \frac{(\alpha)_n(\beta)_n}{(\gamma)_n(1)_n} z^n,$$

where the variable z is in $\{z \in \mathbb{C} \mid |z| < 1\}, \gamma \neq 0, -1, -2, \ldots$, and $(\alpha)_n = \alpha(\alpha+1)\cdots(\alpha+n-1) = \Gamma(\alpha+n)/\Gamma(\alpha)$. This function admits an integral representation of Euler type

$$F(\alpha,\beta,\gamma;z) = \frac{\Gamma(\gamma)}{\Gamma(\alpha)\Gamma(\gamma-\alpha)} \int_0^1 t^{\alpha} (1-t)^{\gamma-\alpha} (1-zt)^{-\beta} \frac{dt}{t(1-t)},$$

and satisfies the hypergeometric differential equation

$$z(1-z)\frac{d^2F}{dz^2} + [\gamma - (\alpha + \beta + 1)z]\frac{dF}{dz} - \alpha\beta F = 0.$$

Theorem 1 Suppose that the compound $m_1 \diamond m_2$ of two means m_1 and m_2 exists. If m_1 and m_2 satisfy $m_2(a,b)^p < 2m_1(a,b)^p$ and

$$\frac{m_1(a,b)}{F\left(\alpha,\beta,\gamma;1-\left(\frac{m_2(a,b)}{m_1(a,b)}\right)^p\right)^q} = \frac{a}{F\left(\alpha,\beta,\gamma;1-\left(\frac{b}{a}\right)^p\right)^q} \tag{4}$$

for some $\alpha, \beta, \gamma, p, q \in \mathbb{R}$ and for any $a, b \in \mathbb{R}^*_+$ with $b^p < 2a^p$, then we have

$$m_1 \diamond m_2(a, b) = \frac{a}{F\left(\alpha, \beta, \gamma; 1 - \left(\frac{b}{a}\right)^p\right)^q}.$$
(5)

Proof. Let $\{a_n\}$ and $\{b_n\}$ be the (m_1, m_2) -sequence with initial (a, b). The equality (4) implies that

$$= \frac{a_0}{F\left(\alpha,\beta,\gamma;1-\left(\frac{b_0}{a_0}\right)^p\right)^q} = \frac{a_1}{F\left(\alpha,\beta,\gamma;1-\left(\frac{b_1}{a_1}\right)^p\right)^q}$$
$$= \frac{a_2}{F\left(\alpha,\beta,\gamma;1-\left(\frac{b_2}{a_2}\right)^p\right)^q} = \dots = \frac{a_n}{F\left(\alpha,\beta,\gamma;1-\left(\frac{b_n}{a_n}\right)^p\right)^q}.$$

Let $n \to \infty$, then we have

$$\frac{a}{F\left(\alpha,\beta,\gamma;1-\left(\frac{b}{a}\right)^{p}\right)^{q}} = \frac{\lim_{n\to\infty}a_{n}}{F\left(\alpha,\beta,\gamma;1-\lim_{n\to\infty}\left(\frac{b_{n}}{a_{n}}\right)^{p}\right)^{q}} = m_{1}\diamond m_{2}(a,b),$$

since $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = m_1 \diamond m_2(a, b)$ and $F(\alpha, \beta, \gamma; 0) = 1$.

Corollary 1 Suppose that the compound $m_1 \diamond m_2$ of two means m_1 and m_2 exists and that it satisfies (5) for $a, b \in \mathbb{R}^*_+$ such that b/a is sufficiently near to 1. If

$$m_1'(x,y) = m_1(x^r, y^r)^{(s-t)/r} m_2(x^r, y^r)^{t/r} x^{1-s+t} y^{-t}, m_2'(x,y) = m_1(x^r, y^r)^{(s-t-1)/r} m_2(x^r, y^r)^{(t+1)/r} x^{1-s+t} y^{-t},$$

are means for given $r(\neq 0), s, t \in \mathbb{R}$, and the compound $m'_1 \diamond m'_2$ exists for such $a, b \in \mathbb{R}^*_+$, then we have

$$m_1' \diamond m_2'(a,b) = \frac{a^{t+1}}{b^t F(\alpha,\beta,\gamma;1-(\frac{b}{a})^{pr})^{qs/r}}.$$

Proof. By Fact 1, we have the equality (4). Since

$$\frac{m_2'(a,b)}{m_1'(a,b)} = \frac{m_2(a^r,b^r)^{1/r}}{m_1(a^r,b^r)^{1/r}},$$

we can easily obtain

$$\frac{m_1'(a,b)^{t+1}}{m_2'(a,b)^t F\left(\alpha,\beta,\gamma;1-\left(\frac{m_2'(a,b)}{m_1'(a,b)}\right)^{pr}\right)^{qs/r}} = \frac{a^{t+1}}{b^t F\left(\alpha,\beta,\gamma;1-\left(\frac{b}{a}\right)^{pr}\right)^{qs/r}}.$$

Fact 1 implies this theorem.

Remark 1 Though $m'_1(x, y)$ and $m'_2(x, y)$ do not satisfy the condition

$$\min(x, y) \le m'_i(x, y) \le \max(x, y) \quad (i = 1, 2)$$

for some r, s, t in Corollary 1, it occurs that the double sequence $\{a_n\}$ and $\{b_n\}$ obtained by $m'_1(x, y)$ and $m'_2(x, y)$ has a non-zero common limit expressed by the hypergeometric function.

Corollary 2 Suppose that the compound $m_1 \diamond m_2$ of two means m_1 and m_2 exists and that it satisfies (5) for $a, b \in \mathbb{R}^*_+$ such that b/a is sufficiently near to 1. If the compound $m'_1 \diamond m'_2$ of $m'_1(x, y) = m_2(y, x)$ and $m'_2(x, y) = m_1(y, x)$ exists for such $a, b \in \mathbb{R}^*_+$, then we have

$$m_1' \diamond m_2'(a, b) = \frac{a}{\left(\frac{b}{a}\right)^{pq\alpha-1} F(\gamma - \beta, \alpha, \gamma; 1 - (\frac{b}{a})^p)^q} = \frac{a}{\left(\frac{b}{a}\right)^{pq\beta-1} F(\gamma - \alpha, \beta, \gamma; 1 - (\frac{b}{a})^p)^q}.$$

Proof. It is shown in [IKSY], p.38 that

$$F(\alpha, \beta, \gamma; z) = (1-z)^{-\alpha} F(\gamma - \beta, \alpha, \gamma; \frac{z}{z-1})$$
$$= (1-z)^{-\beta} F(\gamma - \alpha, \beta, \gamma; \frac{z}{z-1})$$

for $z \in \mathbb{C}$ satisfying |z| < 1 and $\operatorname{Re}(z) < \frac{1}{2}$. By the first equality for $z = 1 - b^p/a^p$ and for $z = 1 - m_2(a, b)^p/m_1(a, b)^p$, we rewrite (4) as

$$= \frac{m_2(a,b)}{\left(\frac{m_2(a,b)}{m_1(a,b)}\right)^{1-pq\alpha} F\left(\gamma - \beta, \alpha, \gamma; 1 - \left(\frac{m_1(a,b)}{m_2(a,b)}\right)^p\right)^q}}{\frac{b}{\left(\frac{b}{a}\right)^{1-pq\alpha} F\left(\gamma - \beta, \alpha, \gamma; 1 - \left(\frac{a}{b}\right)^p\right)^q}}.$$

Recall that we give m'_1 and m'_2 by changing the role of x, y and that of m_1, m_2 . Fact 1 for m'_1 and m'_2 implies

$$m_1' \diamond m_2'(a,b) = \frac{a}{\left(\frac{b}{a}\right)^{pq\alpha-1} F(\gamma - \beta, \alpha, \gamma; 1 - \left(\frac{b}{a}\right)^p)^q}.$$

Similarly we can get the second expression of $m'_1 \diamond m'_2(a, b)$.

Let us explain how to utilize Theorem 1 and Corollary 1. The Gauss quadratic transformation formula is as follows:

$$(1+z)^{2\alpha}F(\alpha,\alpha-\beta+\frac{1}{2},\beta+\frac{1}{2};z^2) = F(\alpha,\beta,2\beta;\frac{4z}{(1+z)^2}),$$
 (6)

where z is in a small neighbourhood of 0, and the value of $(1 + z)^{2\alpha}$ is 1 at z = 0. By substituting

$$\frac{b}{a} = \frac{1-z}{1+z}, \quad \alpha = \beta = \frac{1}{2}$$

into the equality (6), we have

$$\frac{(a+b)/2}{F(\frac{1}{2},\frac{1}{2},1;1-(\frac{2\sqrt{ab}}{a+b})^2)} = \frac{a}{F(\frac{1}{2},\frac{1}{2},1;1-(\frac{b}{a})^2)}.$$

Let m_1 be the arithmetic mean and m_2 the geometric mean. It is easy to show that the double sequence $\{a_n\}$ and $\{b_n\}$ defined by $(a_0, b_0) = (a, b)$, and

$$(a_{n+1}, b_{n+1}) = (m_1(a_n, b_n), m_2(a_n, b_n)) = (\frac{a_n + b_n}{2}, \sqrt{a_n b_n})$$

has a common limit $\mu(a, b)$, which is called the arithmetic-geometric mean of a and b. Theorem 1 implies a well-known formula

$$\mu(a,b) = \frac{a}{F\left(\frac{1}{2},\frac{1}{2},1;1-\left(\frac{b}{a}\right)^2\right)}$$
(7)

for $0 < b \le a$. By applying Corollary 1 for (r, s, t) = (2, 1, 0) to (7), we have

$$m'_{1} \diamond m'_{2}(a, b) = \frac{a}{\sqrt{F\left(\frac{1}{2}, \frac{1}{2}, 1; 1 - \left(\frac{b}{a}\right)^{4}\right)}}$$

for $a \ge b > 0$ and two means

$$m'_1(x,y) = \sqrt{\frac{x^2 + y^2}{2}}, \quad m'_2(x,y) = \sqrt{xy}.$$

By applying Corollary 1 for $(r, s, t) = (1, \frac{1}{2}, 0)$ to (7), we have

$$m'_{1} \diamond m'_{2}(a, b) = \frac{a}{\sqrt{F\left(\frac{1}{2}, \frac{1}{2}, 1; 1 - \left(\frac{b}{a}\right)^{2}\right)}}$$

for $a \ge b > 0$ and two means

$$m'_1(x,y) = \sqrt{x\frac{x+y}{2}}, \quad m'_2(x,y) = \sqrt{x\frac{2xy}{x+y}}.$$

4 Compounds of means by quadratic transformation formulas

In 1881 Goursat gave a list of transformation formulas of the form

$$F(\alpha, \beta, \gamma; z) = \varphi(z)F(\alpha', \beta', \gamma'; \psi(z)),$$

in [G], where $\varphi(z)$ and $\psi(z)$ are algebraic functions with values 1 and 0 at z = 0, respectively. In this section, we give a list of the compound means expressed by the hypergeometric function derived from Theorem 1 and quadratic transformation formulas $G(25), \ldots, G(52)$ in [G].

It turns out that parameters (α, β, γ) of the hypergeometric function satisfy

$$\left\{\frac{1}{|1-\gamma|}, \frac{1}{|\gamma-\alpha-\beta|}, \frac{1}{|\alpha-\beta|}\right\} = \{2, 2, \infty\}, \text{ or } \{2, 4, 4\}, \text{ or } \{\infty, \infty, \infty\},$$

for our consideration. We classify our results by these data. For the case $\{\infty, \infty, \infty\}$, we have the classical arithmetic-geometric mean explained in the previous section.

Theorem 2 We have the following table.

 $\{2, 2, \infty\}$

No.	$m_1(a,b)$	$m_2(a,b)$	type	$m_1 \diamond m_2(a,b)$
Q(1)	\sqrt{ab}	$\frac{\sqrt{b}(\sqrt{a}+\sqrt{b})}{2}$	(M)	$a/F\left(1,1,\frac{3}{2};1-\frac{b}{a}\right)$
Q(2)	$\frac{\sqrt{a}(\sqrt{a}+\sqrt{b})}{2}$	\sqrt{ab}	(M)	$a/F\left(1,\frac{1}{2},\frac{3}{2};1-\frac{b}{a}\right)$
Q(3)	$\sqrt{\frac{a(a+b)}{2}}$	$\frac{a+b}{2}$	(M)	$a/F\left(\frac{1}{2},\frac{1}{2},\frac{3}{2};1-\left(\frac{b}{a}\right)^{2}\right)$
Q(4)	$\sqrt[4]{\frac{2ab}{a+b}a^2b}$	$\sqrt[4]{\frac{a+b}{2}ab^2}$	(M)	$a/F\left(\frac{1}{2},\frac{1}{2},\frac{1}{2};1-\left(\frac{b}{a}\right)^{2}\right)^{\frac{1}{2}} = \sqrt{ab}$
Q(5)	$\frac{2ab}{a+b}$	$\frac{a+b}{2}$	(M)	$a/F\left(\frac{1}{2},1,1;1-\frac{b}{a}\right) = \sqrt{ab}$

{	[2,	4,	4	}

No.	$m_1(a,b)$	$m_2(a,b)$	type	$m_1 \diamond m_2(a,b)$
Q(6)	$\frac{\sqrt{b}(\sqrt{a}+\sqrt{b})}{2}$	\sqrt{ab}	(A)	$\frac{1}{a/F\left(1,\frac{3}{4},\frac{5}{4};1-\frac{b}{a}\right)}$
Q(7)	\sqrt{ab}	$\frac{\sqrt{a}(\sqrt{a}+\sqrt{b})}{2}$	(A)	$a/F\left(1,\frac{1}{2},\frac{5}{4};1-\frac{b}{a}\right)$
Q(8)	$\sqrt{\frac{b(a+b)}{2}}$	$\frac{a+b}{2}$	(A)	$a/F\left(\frac{1}{4},\frac{3}{4},\frac{5}{4};1-\left(\frac{b}{a}\right)^{2}\right)^{2}$
Q(9)	$\frac{a+b}{2}$	$\sqrt{\frac{a(a+b)}{2}}$	(A)	$a/F\left(\frac{1}{4},\frac{1}{2},\frac{5}{4};1-\left(\frac{b}{a}\right)^{2}\right)^{2}$
Q(10)	$\sqrt[4]{\frac{2ab}{a+b}ab^2}$	$\sqrt[4]{\frac{a+b}{2}a^2b}$	(A)	$a/F\left(\frac{1}{4},\frac{3}{4},\frac{3}{4};1-\left(\frac{b}{a}\right)^{2}\right) = \sqrt{ab}$
Q(11)	$\sqrt[4]{\frac{a+b}{2}ab^2}$	$\sqrt[4]{\frac{2ab}{a+b}a^2b}$	(A)	$a/F\left(\frac{1}{2},\frac{3}{4},\frac{3}{4};1-\left(\frac{b}{a}\right)^{2}\right)^{\frac{1}{2}} = \sqrt{ab}$

Here b/a is sufficiently near to 1, the type (M) means the (m_1, m_2) -sequence is monotonous, i.e., they satisfy

 $b_n \le b_{n+1} \le a_{n+1} \le a_n$ or $b_n \ge b_{n+1} \ge a_{n+1} \ge a_n;$

the type (A) means the (m_1, m_2) -sequence is alternative, i.e., they satisfy

$$b_0 \le a_1 \le b_2 \le \dots \le b_{2n} \le a_{2n+1} \le b_{2n+1} \le a_{2n} \le \dots \le a_2 \le b_1 \le a_0.$$

Proof. We show Q(3). The quadratic transformation formula G(41) in [G] is

$$F(\alpha, 1 - \alpha, \gamma; z) = (1 - z)^{\gamma - 1} F\left(\frac{\gamma - \alpha}{2}, \frac{\gamma + \alpha - 1}{2}, \gamma; 4z(1 - z)\right)$$

= $(1 - z)^{\gamma - 1} (1 - 2z) F\left(\frac{\gamma + \alpha}{2}, \frac{\gamma + 1 - \alpha}{2}, \gamma; 4z(1 - z)\right).$

Substitute

$$\alpha = \frac{1}{2}, \quad \gamma = \frac{3}{2}, \qquad \frac{b}{a} = 1 - 2z,$$

into the first row of this formula, then we have

$$\frac{m_1(a,b)}{F\left(\frac{1}{2},\frac{1}{2},\frac{3}{2};1-\left(\frac{m_2(a,b)}{m_1(a,b)}\right)^2\right)} = \frac{a}{F\left(\frac{1}{2},\frac{1}{2},\frac{3}{2};1-\left(\frac{b}{a}\right)^2\right)},$$

where

$$m_1(a,b) = \sqrt{\frac{a(a+b)}{2}}, \quad m_2(a,b) = \frac{a+b}{2}$$

We can easily show that the (m_1, m_2) -sequence converges and has a common limit by Lemma 1. Theorem 1 implies that

$$m_1 \diamond m_2(a,b) = \frac{a}{F\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2}; 1 - \left(\frac{b}{a}\right)^2\right)}.$$

We list used formulas in [G] and substitutions to prove this proposition:

Q(1) $\alpha = \beta = 1, b/a = (1 - 2z)^2,$
G(38): $F(\alpha, \beta, \frac{\alpha+\beta+1}{2}; z) = (1-2z)F(\frac{\alpha+1}{2}, \frac{\beta+1}{2}, \frac{\alpha+\beta+1}{2}; 4z(1-z))$
Q(2) $\alpha = 1/2, \ \gamma = 3/2, \ b/a = 1-z,$
$G(35): F(\alpha, \alpha + \frac{1}{2}, \gamma; z) = (\frac{1+\sqrt{1-z}}{2})^{-2\alpha} F(2\alpha, 2\alpha + 1 - \gamma, \gamma; \frac{1-\sqrt{1-z}}{1+\sqrt{1-z}})$
Q(3) $\alpha = 1/2, \ \gamma = 3/2, \ b/a = 1 - 2z,$
G(41): $F(\alpha, 1 - \alpha, \gamma; z) = (1 - z)^{\gamma - 1} F(\frac{\gamma - \alpha}{2}, \frac{\gamma + \alpha - 1}{2}, \gamma; 4z(1 - z))$
Q(4) $\alpha = 1/2, \ \gamma = 1/2, \ b/a = 1 - 2z,$
G(41): $F(\alpha, 1 - \alpha, \gamma; z) = \frac{1-2z}{(1-z)^{1-\gamma}} F(\frac{\gamma+\alpha}{2}, \frac{\gamma+1-\alpha}{2}, \gamma; 4z(1-z))$
Q(5) $\alpha = 1, \ \beta = 1/2, \ b/a = 1 - z,$
G(44): $F(\alpha, \beta, 2\beta; z) = \frac{1-\frac{z}{2}}{(1-z)^{(\alpha+1)/2}} F(\beta + \frac{1-\alpha}{2}, \frac{1+\alpha}{2}, \beta + \frac{1}{2}; \frac{z^2}{4(z-1)})$
Q(6) $\alpha = 1, \ \beta = 3/4, \ b/a = (1+z)^2/(1-z)^2,$
G(49): $F(\alpha, \beta, \alpha - \beta + 1; z) = \frac{1+z}{(1-z)^{\alpha+1}} F(\frac{\alpha+1}{2}, \frac{\alpha}{2} + 1 - \beta, \alpha - \beta + 1; \frac{-4z}{(1-z)^2})$
Q(7) $\alpha = 1, \ \beta = 1/2, \ b/a = 1/(1-2z)^2,$
G(39): $F(\alpha, \beta, \frac{\alpha+\beta+1}{2}; z) = (1-2z)^{-\alpha} F(\frac{\alpha}{2}, \frac{\alpha+1}{2}, \frac{\alpha+\beta+1}{2}; \frac{4z(z-1)}{(2z-1)^2})$
Q(8) $\alpha = 3/4, \ \gamma = 5/4, \ b/a = 1/(1-2z),$
G(42): $F(\alpha, 1 - \alpha, \gamma; z) = \frac{(1-z)^{\gamma-1}}{(1-2z)^{\gamma-\alpha}} F(\frac{\gamma-\alpha}{2}, \frac{\gamma+1-\alpha}{2}, \gamma; \frac{-4z(1-z)}{(1-2z)^2})$
Q(9) $\alpha = 1/2, \ \beta = 1/4, \ b/a = (1+z)/(1-z),$
G(48): $F(\alpha, \beta, \alpha - \beta + 1; z) = (1 - z)^{-\alpha} F(\frac{\alpha}{2}, \frac{\alpha + 1 - 2\beta}{2}, \alpha - \beta + 1; \frac{-4z}{(1 - z)^2})$
Q(10) $\alpha = 1/4, \ \gamma = 3/4, \ b/a = 1/(1-2z),$
G(42): $F(\alpha, 1 - \alpha, \gamma; z) = \frac{(1-z)^{\gamma-1}}{(1-2z)^{\gamma-\alpha}} F(\frac{\gamma-\alpha}{2}, \frac{\gamma+1-\alpha}{2}, \gamma; \frac{-4z(1-z)}{(1-2z)^2})$
Q(11) $\alpha = 1/2, \ \beta = 3/4, \ b/a = (1+z)/(1-z),$
G(49): $F(\alpha, \beta, \alpha - \beta + 1; z) = \frac{1+z}{(1-z)^{\alpha+1}} F(\frac{\alpha+1}{2}, \frac{\alpha}{2} + 1 - \beta, \alpha - \beta + 1; \frac{-4z}{(1-z)^2})$

Here we remark that the formulas (G38), (G41) and (G42) consist of some equalities. $\hfill \Box$

Lemma 2 We have

$$\begin{split} F\left(\frac{\gamma-\alpha}{2},\frac{\gamma+\alpha-1}{2},\gamma;1-t^2\right) &= tF\left(\frac{\gamma+\alpha}{2},\frac{\gamma+1-\alpha}{2},\gamma;1-t^2\right),\\ F\left(\frac{\alpha}{2},\frac{\alpha+1}{2},\beta+\frac{1}{2};1-t^2\right) &= t^{2(\beta-\alpha)}F\left(\beta-\frac{\alpha}{2},\beta+\frac{1-\alpha}{2},\beta+\frac{1}{2};1-t^2\right), \end{split}$$

for t in a small neighbourhood of 1. Especially,

$$F\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2}; 1 - t^{2}\right) = tF\left(1, 1, \frac{3}{2}; 1 - t^{2}\right),$$

$$F\left(\frac{1}{2}, \frac{1}{4}, \frac{5}{4}, 1 - t^{2}\right) = tF\left(\frac{3}{4}, 1, \frac{5}{4}, 1 - t^{2}\right),$$

$$F\left(\frac{1}{4}, \frac{3}{4}, \frac{5}{4}, 1 - t^{4}\right) = tF\left(\frac{1}{2}, 1, \frac{5}{4}, 1 - t^{4}\right).$$

Proof. By substituting t = 1-2z into the formula (G41), and $t = \frac{2\sqrt{1-z}}{2-z}$ into (G45), we obtain the first and second equalities in this lemma, respectively. In order to get the rest, put $(\alpha, \gamma) = (1/2, 3/2)$ and $(\alpha, \gamma) = (1/4, 5/4)$ in the first equality, and $(\alpha, \beta) = (1/2, 3/4)$, $\sqrt{t} = t'$ in the second.

Remark 2 Carlson studied in [C] compound means of two means taken from the following four means:

$$m_1(x,y) = \frac{x+y}{2}, \quad m_2(x,y) = \sqrt{xy},$$

 $m_3(x,y) = \sqrt{x\frac{x+y}{2}}, \quad m_4(x,y) = \sqrt{\frac{x+y}{2}y}.$

Refer also to §8.5 in [BB2] for these results. Note that the compound mean $m_1 \diamond m_2$ is the classical arithmetic-geometric mean. It is shown that the compound means $m_3 \diamond m_4(a, b)$ and $m_4 \diamond m_3(a, b)$ are expressed as

$$\sqrt{\frac{a^2 - b^2}{2\log(a/b)}},$$

which is called Carlson's log expression. The other compound means $m_i \diamond m_j$ can be expressed by the hypergeometric function by Theorem 2, Corollary 1 and Lemma 2.

For example, Q(3) in Theorem 2 coincides with the expression of $m_3 \diamond m_1$ shown in [BB2] and [C]. The compound mean $m_2 \diamond m_4$ is expressed as

$$\frac{a}{\sqrt{\frac{a}{b}}F\left(\frac{1}{2},\frac{1}{2},\frac{3}{2};1-\left(\frac{b}{a}\right)^{2}\right)^{1/2}}$$

by Exercises 1 of §8.5 in [BB2]. This result is obtained by Q(1) in Theorem 2, Corollary 1 for (r, s, t) = (2, 1, 0) and Lemma 2.

Carlson's log expression can be obtained by the following functional equation for the hypergeometric function.

Lemma 3 For $\alpha, n \in \mathbb{C}$ and x in a small neighbourhood of 1, we have

$$n(1-x)F(n(\alpha-1)+1,1,2;1-x) = (1-x^n)F(\alpha,1,2;1-x^n) = \frac{x^{(1-\alpha)n}-1}{\alpha-1},$$

where the value of x^n is 1 at x = 1. Especially, if $\alpha = 1$ and $n \in \mathbb{N}$ then it reduces

$$F(1,1,2;1-x) = \left(\frac{1+x+x^2+\dots+x^{n-1}}{n}\right)F(1,1,2;1-x^n) = \frac{\log x}{x-1}$$

Proof. It is easy to show that the functions $n(1-x)F(n(\alpha-1)+1, 1, 2; 1-x)$ and $(1-x^n)F(\alpha, 1, 2; 1-x^n)$ satisfy the differential equation

$$\frac{d^2\varphi}{dx^2} = -\frac{n(\alpha-1)+1}{x}\frac{d\varphi}{dx}$$

with initial conditions $\varphi(1) = 0$ and $\frac{d\varphi}{dx}(1) = -n$. Thus these functions coincide with $(x^{(1-\alpha)n} - 1)/(\alpha - 1)$. Note that this function converges to $-n \log x$ as $\alpha \to 1$.

By Lemma 3 for $\alpha = 1$, n = 2 and b/a = x, we have

$$\frac{a}{\sqrt{F\left(1,1,2;1-\left(\frac{b}{a}\right)^{2}\right)}} = \frac{m_{3}(a,b)}{\sqrt{F\left(1,1,2;1-\left(\frac{m_{4}(a,b)}{m_{3}(a,b)}\right)^{2}\right)}}$$
$$= \frac{m_{4}(a,b)}{\sqrt{F\left(1,1,2;1-\left(\frac{m_{3}(a,b)}{m_{4}(a,b)}\right)^{2}\right)}}.$$

Theorem 1 implies Carlson's log expression.

5 Compounds of means by cubic transformation formulas

We give a list of the compound means expressed by the hypergeometric function derived from cubic transformation formulas $(G78), \ldots, (G125)$ in [G], Theorem 1 and Corollary 2.

No.	$m_1(a,b)$	$m_2(a,b)$	type	$m_1 \diamond m_2(a, b)$
C(1)	$b^{\frac{2}{3}}X_{1}$	$b^{\frac{2}{3}}X_{2}$	(A)	$a/F\left(\frac{1}{2},1,\frac{7}{6};1-\left(\frac{b}{a}\right)^2\right)$
C(2)	$X_1 X_2^2$	X_{2}^{3}	(A)	$a/F\left(\frac{1}{6},\frac{2}{3},\frac{7}{6};1-\left(\frac{b}{a}\right)^{2}\right)^{3}$
C(3)	$X_1 X_2^2$	$X_{2}^{2}X_{3}$	(A)	$a/F\left(\frac{1}{2},\frac{2}{3},\frac{3}{2};1-\left(\frac{b}{a}\right)^2\right)$
C(4)	$b^{\frac{1}{3}}X_1X_2$	$b^{\frac{1}{3}}X_{2}X_{3}$	(A)	$a/F\left(\frac{5}{6}, 1, \frac{3}{2}; 1-\left(\frac{b}{a}\right)^2\right)^{\frac{1}{2}}$
C(5)	$b^{\frac{2}{3}}X_{1}$	$b^{\frac{2}{3}}X_{3}$	(A)	$a/F\left(\frac{1}{3},\frac{1}{2},\frac{1}{2};1-\left(\frac{b}{a}\right)^{2}\right) = \sqrt[3]{ab^{2}}$
C(6)	$a^{\frac{2}{3}}Y_{2}$	$a^{\frac{2}{3}}Y_1$	(A)	$a/F\left(\frac{1}{6},\frac{1}{2},\frac{7}{6};1-\left(\frac{b}{a}\right)^2\right)$
C(7)	Y_{2}^{3}	$Y_1 Y_2^2$	(A)	$a / \left[\frac{b}{a} F\left(\frac{2}{3}, 1, \frac{7}{6}; 1 - \left(\frac{b}{a}\right)^2 \right) \right]^3$
C(8)	$Y_{2}^{2}Y_{3}$	$Y_1 Y_2^2$	(A)	$a/F\left(\frac{1}{2},\frac{5}{6},\frac{3}{2};1-\left(\frac{b}{a}\right)^2\right)$
C(9)	$a^{\frac{1}{3}}Y_2Y_3$	$a^{\frac{1}{3}}Y_1Y_2$	(A)	$a/F\left(\frac{2}{3},1,\frac{3}{2};1-\left(\frac{b}{a}\right)^{2}\right)^{\frac{1}{2}}$
C(10)	$a^{\frac{2}{3}}Y_{3}$	$a^{\frac{2}{3}}Y_1$	(A)	$a/F\left(\frac{1}{6},\frac{1}{2},\frac{1}{2};1-\left(\frac{b}{a}\right)^2\right) = \sqrt[3]{a^2b}$

Theorem 3 We have the following table:

where b/a is sufficiently near to 1,

$$X_1 = \frac{\xi_1^{\frac{1}{3}} + \xi_2^{\frac{1}{3}}}{2}, \quad X_2 = \sqrt{\frac{\xi_1^{\frac{2}{3}} + \xi_1^{\frac{1}{3}}\xi_2^{\frac{1}{3}} + \xi_2^{\frac{2}{3}}}{3}}, \quad X_3 = \sqrt{\xi_1^{\frac{2}{3}} - \xi_1^{\frac{1}{3}}\xi_2^{\frac{1}{3}} + \xi_2^{\frac{2}{3}}},$$

 (ξ_1,ξ_2) is the preimage of (a,b) under the arithmetic and geometric means:

$$\frac{\xi_1 + \xi_2}{2} = a, \quad \sqrt{\xi_1 \xi_2} = b, \qquad \{\xi_1, \xi_2\} = \{a \pm \sqrt{a^2 - b^2}\},\$$

 $\begin{aligned} and \ -\frac{\pi}{6} < \arg(\xi_i^{\frac{1}{3}}) < \frac{\pi}{6} \ (i = 1, 2), \ \xi_1^{\frac{1}{3}} \xi_2^{\frac{1}{3}} = b^{\frac{2}{3}} \in \mathbb{R}^*_+ \ ; \\ Y_1 = \frac{\eta_1^{\frac{1}{3}} + \eta_2^{\frac{1}{3}}}{2}, \quad Y_2 = \sqrt{\frac{\eta_1^{\frac{2}{3}} + \eta_1^{\frac{1}{3}} \eta_2^{\frac{1}{3}} + \eta_2^{\frac{2}{3}}}{3}}, \quad Y_3 = \sqrt{\eta_1^{\frac{2}{3}} - \eta_1^{\frac{1}{3}} \eta_2^{\frac{1}{3}} + \eta_2^{\frac{2}{3}}}, \end{aligned}$

 (η_1, η_2) is the preimage of (a, b) under the geometric and arithmetic means:

$$\sqrt{\eta_1\eta_2} = a, \quad \frac{\eta_1 + \eta_2}{2} = b, \qquad \{\eta_1, \eta_2\} = \{b \pm \sqrt{b^2 - a^2}\},\$$

and $-\frac{\pi}{6} < \arg(\eta_i^{\frac{1}{3}}) < \frac{\pi}{6} \ (i=1,2), \ \eta_1^{\frac{1}{3}} \eta_2^{\frac{1}{3}} = a^{\frac{2}{3}} \in \mathbb{R}_+^*.$

Remark 3 Parameters (α, β, γ) of the hypergeometric function in Theorem 3 satisfy

$$\left\{\frac{1}{|1-\gamma|}, \frac{1}{|\gamma-\alpha-\beta|}, \frac{1}{|\alpha-\beta|}\right\} = \{2, 3, 6\}$$

We prepare two lemmas.

Lemma 4 If b < a then

$$\begin{split} b &< b^{\frac{2}{3}} X_1 < b^{\frac{2}{3}} X_2 < b^{\frac{2}{3}} X_3 < X_2^2 X_3 < a, \\ b &< Y_2^2 Y_3 < a^{\frac{2}{3}} Y_3 < a^{\frac{2}{3}} Y_2 < a^{\frac{2}{3}} Y_1 < a; \end{split}$$

if a < b then

$$\begin{aligned} a &< X_2^2 X_3 < b^{\frac{2}{3}} X_3 < b^{\frac{2}{3}} X_2 < b^{\frac{2}{3}} X_1 < b, \\ a &< a^{\frac{2}{3}} Y_1 < a^{\frac{2}{3}} Y_2 < a^{\frac{2}{3}} Y_3 < Y_2^2 Y_3 < b. \end{aligned}$$

Proof. Suppose that b < a. Since ξ_1, ξ_2 are real and $a = \frac{(\xi_1^{\frac{1}{3}})^3 + (\xi_2^{\frac{1}{3}})^3}{2}$, it is easy to show that

$$b < b^{\frac{2}{3}}X_1 < b^{\frac{2}{3}}X_2 < b^{\frac{2}{3}}X_3 < X_2^2 X_3$$

and

$$a^{2} - X_{2}^{4}X_{3}^{2} = \frac{1}{36}(5\xi_{1}^{\frac{2}{3}} + 11\xi_{1}^{\frac{1}{3}}\xi_{2}^{\frac{1}{3}} + 5\xi_{2}^{\frac{2}{3}})(\xi_{1}^{\frac{2}{3}} - \xi_{1}^{\frac{1}{3}}\xi_{2}^{\frac{1}{3}} + \xi_{2}^{\frac{2}{3}})(\xi_{1}^{\frac{1}{3}} - \xi_{2}^{\frac{1}{3}})^{2} > 0.$$

In order to show the other inequalities, we assume that a = 1 by the homogeneity. Note that η_i do not belong to \mathbb{R} and that

$$|\eta_i| = 1$$
, $\operatorname{Re}(\eta_i) = b$, $-\frac{\pi}{2} < \arg(\eta_i) < \frac{\pi}{2}$

If we take branches of $\eta_i^{\frac{1}{3}}$ so that $-\frac{\pi}{6} < \arg(\eta_i^{\frac{1}{3}}) < \frac{\pi}{6}$, then we have

$$\eta_1^{\frac{1}{3}}\eta_2^{\frac{1}{3}} = 1, \quad \frac{\sqrt{3}}{2} < \frac{\eta_1^{\frac{1}{3}} + \eta_2^{\frac{1}{3}}}{2} = Y_1 < 1.$$

Since

$$b = 4Y_1^3 - 3Y_1, \quad Y_2 = \sqrt{\frac{4Y_1^2 - 1}{3}}, \quad Y_3 = \sqrt{4Y_1^2 - 3},$$

we have

$$\begin{split} Y_1^2 - Y_2^2 &= \frac{1}{3}(1 - Y_1^2) > 0, \\ Y_2^2 - Y_3^2 &= \frac{8}{3}(1 - Y_1^2) > 0, \\ Y_3 - Y_2^2 Y_3 &= Y_3(1 - Y_2^2) > Y_3(Y_1^2 - Y_2^2) > 0, \\ Y_2^4 Y_3^2 - b^2 &= \frac{1}{9}(1 - Y_1^2)(1 + 20Y_1^2)(4Y_1^2 - 3) > 0, \end{split}$$

for $\frac{\sqrt{3}}{2} < Y_1 < 1$. We can similarly show the inequalities when a < b. \Box

Lemma 5 For any $a, b \in \mathbb{R}^*_+$, we have

$$\frac{2\sqrt{2}}{3} < \frac{X_2}{X_1} < \frac{2\sqrt{3}}{3}, \quad 0 < \frac{X_3}{X_1} < 2, \quad \frac{\sqrt{3}}{2} < \frac{Y_1}{Y_2} < \frac{3\sqrt{2}}{4}, \quad \frac{1}{2} < \frac{Y_1}{Y_3} < \infty.$$

Proof. By the homogeneity of X_i , we normalize b = 1. Note that

$$\frac{\sqrt{3}}{2} < X_1 < \infty,$$

and that

$$\frac{X_2}{X_1} = \sqrt{\frac{4X_1^2 - 1}{3X_1^2}}, \quad \frac{X_3}{X_1} = \sqrt{\frac{4X_1^2 - 3}{X_1^2}}$$

are monotonous as functions of X_1 . Consider their limits as $X_1 \to \frac{\sqrt{3}}{2}$ and as $X_1 \to \infty$. Normalize a = 1 to show the inequalities for Y_1/Y_i .

Proof of Theorem 3. Lemmas 1 and 4 imply that the (m_1, m_2) -sequence alternatively converges for (m_1, m_2) in Theorem 3 and for any $a, b \in \mathbb{R}^*_+$. We show C(1). Substitute $\alpha = 1/6$ into the formula G(112):

$$F\left(\alpha, \alpha + \frac{1}{2}, 2\alpha + \frac{5}{6}; z\right) = (1-z)^{\frac{1}{3}} F\left(\alpha + \frac{1}{3}, \alpha + \frac{5}{6}, 2\alpha + \frac{5}{6}; z\right)$$
$$= (1-9t)^{2\alpha} F\left(3\alpha, 3\alpha + \frac{1}{2}, 2\alpha + \frac{5}{6}; t\right),$$

where $27t(1-t)^2 + (1-9t)^2z = 0$. We have

$$F\left(\frac{1}{2},1,\frac{7}{6};t\right) = \frac{3t+1}{1-9t}F\left(\frac{1}{2},1,\frac{7}{6};1-\frac{(3t+1)^3}{(1-9t)^2}\right).$$

Put u = (3t+1)/(1-9t), then t = (u-1)/(3(1+3u)) and

$$F\left(\frac{1}{2}, 1, \frac{7}{6}; 1 - \frac{4(1+2u)}{3(1+3u)}\right) = uF\left(\frac{1}{2}, 1, \frac{7}{6}; 1 - \frac{4u^3}{1+3u}\right).$$

Solve the equation

$$\left(\frac{b}{a}\right)^2 = \frac{4u^3}{1+3u}$$

with variable u for given a, b > 0. Then we have

$$u = \frac{1}{a}b^{\frac{2}{3}}X_1, \quad \frac{1}{X_1} = \frac{X_3^2}{a},$$
$$\frac{4}{1+3u}\frac{1+2u}{3} = \left(\frac{b}{a}\right)^2\frac{1}{u^2}\frac{1/u+2}{3} = \frac{1}{X_1^2}\frac{X_3^2+2b^{\frac{2}{3}}}{3} = \frac{X_2^2}{X_1^2},$$

and

$$\frac{m_1(a,b)}{F\left(\frac{1}{2},1,\frac{7}{6};1-\left(\frac{m_2(a,b)}{m_1(a,b)}\right)^2\right)} = \frac{a}{F\left(\frac{1}{2},1,\frac{7}{6};1-\left(\frac{b}{a}\right)^2\right)}$$

for

$$m_1(a,b) = b^{\frac{2}{3}}X_1, \quad m_2(a,b) = b^{\frac{2}{3}}X_2.$$

Theorem 1 implies

$$m_1 \diamond m_2(a,b) = \frac{a}{F(\frac{1}{2},1,\frac{7}{6};1-(\frac{b}{a})^2)}.$$

In order to get $(C2), \ldots, (C5)$, we use the following.

C(2)	$\alpha = 1/6, u = 2(1+3z)/(1-9z), \ (b/a)^2 = u^3/(3u+2)$
G(119):	$(1-z)^{\frac{1}{3}-4\alpha}F(\frac{1}{3}-\alpha,\frac{5}{6}-\alpha,2\alpha+\frac{5}{6};z)$
	$= (1 - 9z)^{-2\alpha} F(\alpha, \alpha + \frac{1}{2}, 2\alpha + \frac{5}{6}; \frac{-27z(1-z)^2}{(1-9z)^2})$
C(3)	$\alpha = 0, t = 1 - 4/(1 + 3u), \ (b/a)^2 = 4u^3/(1 + 3u),$
G(87):	$F(\alpha + \frac{1}{2}, \frac{2}{3} - \alpha, \frac{3}{2}; z) = \frac{9(1-t)^{2\alpha+1}}{9-t}F(3\alpha + \frac{1}{2}, \alpha + \frac{2}{3}, \frac{3}{2}; t)$
	$(t-9)^2t + 27(1-t)^2z = 0$
C(4)	$\alpha = 1/6, t = 1 - 4/(1 + 3u), \ (b/a)^2 = 4u^3/(1 + 3u),$
G(87):	$(1-z)^{\frac{1}{3}}F(1-\alpha,\alpha+\frac{5}{6},\frac{3}{2};z) = \frac{9(1-t)^{2\alpha+1}}{9-t}F(3\alpha+\frac{1}{2},\alpha+\frac{2}{3},\frac{3}{2};t)$
	$(t-9)^2t + 27(1-t)^2z = 0$
C(5)	$\alpha = 1/6, t = 1 - 4/(1 + 3u), \ (b/a)^2 = 4u^3/(1 + 3u),$
G(86):	$(1-z)^{\frac{1}{3}}F(\frac{1}{2}-\alpha,\alpha+\frac{1}{3},\frac{1}{2};z) = (1-t)^{2\alpha}F(3\alpha,\alpha+\frac{1}{6},\frac{1}{2};t)$
	$(t-9)^2 t + 27(1-t)^2 z = 0$

We remark that formulas G(86), G(87) and G(119) consist of some equalities. The equality C(5+k) is obtained by Corollary 2 for C(k) (k = 1, ..., 5). \Box

6 Compounds of means by transformation formulas for $_{3}F_{2}$

The generalized hypergeometric function $_{3}F_{2}$ is defined as

$${}_{3}F_{2}\left(\begin{array}{c}\alpha_{0},\alpha_{1},\alpha_{2}\\\beta_{1},\beta_{2}\end{array};z\right)=\sum_{n=0}^{\infty}\frac{(\alpha_{0})_{n}(\alpha_{1})_{n}(\alpha_{2})_{n}}{(1)_{n}(\beta_{1})_{n}(\beta_{2})_{n}}z^{n},$$

where $\beta_1, \beta_2 \neq 0, -1, -2, \ldots$, and |z| < 1. Note that this function reduces to the hypergeometric function $F(\alpha_0, \alpha_1, \beta_1; z)$ when $\alpha_2 = \beta_2$. In this section, we attempt to find pairs of means whose compounds can be expressed by $_3F_2$ by using transformation formulas for $_3F_2$ in [K].

Proposition 1 We have functional equations of the form

$${}_{3}F_{2}\left(\begin{array}{c}\alpha_{0},\alpha_{1},\alpha_{2}\\\beta_{1},\beta_{2}\end{array};z\right) = \varphi(z) {}_{3}F_{2}\left(\begin{array}{c}\alpha_{0},\alpha_{1},\alpha_{2}\\\beta_{1},\beta_{2}\end{aligned};\psi(z)\right),\tag{8}$$

No.	$\{\alpha_0, \alpha_1, \alpha_2\}$	$\{\beta_1,\beta_2\}$	$\varphi(z)$	$\psi(z)$
K(1)	$\{\frac{1}{2}, \frac{3}{4}, 1\}$	$\{\frac{5}{4}, \frac{3}{2}\}$	$\frac{1}{1-z}$	$1 - \left(\frac{1+z}{1-z}\right)^2$
K(2)	$\left\{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\right\}$	$\left\{\frac{3}{4},\frac{5}{4}\right\}$	$\frac{1}{\sqrt{1-z}}$	$1 - \left(\frac{1+z}{1-z}\right)^2$
K(3)	$\left\{\frac{1}{3}, \frac{2}{3}, 1\right\}$	$\{\frac{7}{6},\frac{4}{3}\}$	$\frac{1}{1-4z}$	$1 - \frac{(1-z)(1+8z)^2}{(1-4z)^3}$
K(4)	$\left\{\frac{1}{6}, \frac{1}{2}, \frac{5}{6}\right\}$	$\{\frac{5}{6}, \frac{7}{6}\}$	$\frac{1}{\sqrt{1-4z}}$	$1 - \frac{(1-z)(1+8z)^2}{(1-4z)^3}$

where $\{\alpha_0, \alpha_1, \alpha_2\}$, $\{\beta_1, \beta_2\}$, $\varphi(z)$ and $\psi(z)$ are given as

Proof. We can easily show these functional equations by the formulas (2.1) and (2.2) in [K].

Remark 4 Non-trivial functional equations of the form (8) can not directly obtained any more by the formulas $(2.1), \ldots, (2.5)$ in [K].

Note that each $_{3}F_{2}$ in the functional equations K(2) and K(4) has a common parameter in the sets $\{\alpha_{0}, \alpha_{1}, \alpha_{2}\}$ and $\{\beta_{1}, \beta_{2}\}$. Thus these functional equations reduce to

$$F(\frac{1}{4}, \frac{1}{2}, \frac{5}{4}; z) = \frac{1}{\sqrt{1-z}} F\left(\frac{1}{4}, \frac{1}{2}, \frac{5}{4}; 1 - \left(\frac{1+z}{1-z}\right)^2\right), \tag{9}$$

$$F(\frac{1}{6}, \frac{1}{2}, \frac{7}{6}; z) = \frac{1}{\sqrt{1-4z}} F\left(\frac{1}{6}, \frac{1}{2}, \frac{7}{6}; 1 - \frac{(1-z)(1+8z)}{(1-4z)^3}\right), \quad (10)$$

which appear when we study Q(9) and C(6), respectively.

By the Clausen formula

$${}_{3}F_{2}\left(\frac{2\alpha,2\beta,\alpha+\beta}{2\alpha+2\beta,\alpha+\beta+1/2};z\right) = F(\alpha,\beta,\alpha+\beta+1/2;z)^{2},$$

we have

$${}_{3}F_{2}\left(\begin{array}{c}1/2,3/4,1\\5/4,3/2\end{array};z\right) = F(\frac{1}{4},\frac{1}{2},\frac{5}{4};z)^{2},$$

$${}_{3}F_{2}\left(\begin{array}{c}1/3,2/3,1\\7/6,4/3\end{array};z\right) = F(\frac{1}{6},\frac{1}{2},\frac{7}{6};z)^{2}.$$

Thus the functional equations K(1) and K(3) reduce to (9) and (10), respectively.

Hence we conclude that proper expressions of compounds of means by ${}_{3}F_{2}$ can not directly obtained by transformation formulas for ${}_{3}F_{2}$ in [K].

References

- [BB1] J.M. Borwein and P.B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc. 323(2) (1991), 691–701.
- [BB2] J.M. Borwein and P.B. Borwein, *Pi and the AGM*, volume 4, A Wiley-Interscience Publ., New York, 1998.
- [C] B.C. Carlson, Algorithms involving arithmetic and geometric means, MAA Monthly, 78(5) (1971), 496-505.
- [E] A. Erdélyi, Higher Transcendental Functions, volume I, Robert E. Krieger Publishing Co., Inc., Melbourne, Florida, 1981.
- [G] E.M. Goursat, Sur l'Équation Différentielle Linéaire qui Admet pour Intégrale la Série Hypergéométrique, Ann. Sci. l'Ecole Normale Sup. (2) 10 (1881), 3–142.
- [IKSY] K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé, Vieweg, Braunschweig, Wiesbaden, 1991.
- [K] M. Kato, Algebraic transformations of $_{3}F_{2}$, to appear in Funkcialaj Ekvacioj.
- [KM] T. Kato and K. Matsumoto, The common limit of a quadruple sequence and the hypergeometric function F_D of three variables, preprint 2007.
- [KS] K. Koike and H. Shiga, Isogeny formulas for the Picard modular form and a three terms arithmetic geometric mean, J. Number Theory 124 (2007), 123–141.
- [M] K. Matsumoto, Transformation formulas for Appell's hypergeometric function F_1 and triple sequences, in preparation.
- [MO] K. Matsumoto and K. Ohara, Some transformation formulas for Lauricella's hypergeometric functions F_D , preprint, 2008.

Ryohei HATTORI Department of Mathematics Hokkaido University Sapporo 060-0810, Japan e-mail: hattori@math.sci.hokudai.ac.jp

Takayuki KATO MEC INC. Isogamidori 4-1-8, Chuo-ku Kobe 651-0086, Japan e-mail: katou-t@mec-inc.co.jp

Keiji MATSUMOTO Department of Mathematics Hokkaido University Sapporo 060-0810, Japan e-mail: matsu@math.sci.hokudai.ac.jp