数学概論 レポート問題

● 出題日: 1月20日(月)

● 提出期限: 2月3日(月) 10:30

提出先: レポートボックス No. 38

 $\boxed{1}$ \mathbb{R}^2 上の関数 f(x,y) を以下で定める:

$$f(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0), \\ xy \frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0). \end{cases}$$

- (1) \mathbb{R}^2 上で f(x,y) は x でも y でも偏微分可能であることを示し、その偏導関数 $f_x(x,y)$, $f_y(x,y)$ を求めよ.
- (2) $\frac{\partial}{\partial y}f_x(0,0)$ と $\frac{\partial}{\partial x}f_y(0,0)$ の値を求めよ.
- 2 自然数 n に対して、閉区間 [0,1] 上の関数 $f_n(x)$ を以下で定める:

$$f_n(x) = \begin{cases} n - |2n^2x - n| & \text{if } 0 \le x \le \frac{1}{n}, \\ 0 & \text{if } \frac{1}{n} < x \le 1. \end{cases}$$

- (1) $\lim_{n\to\infty}\int_0^1 f_n(x)dx$ を求めよ.
- (2) $x \in [0,1]$ に対して, $f(x) = \lim_{n \to \infty} f_n(x)$ を求めよ.
- (3) $\int_0^1 f(x)dx$ を求めよ. また, $f_n(x)$ が f(x) に [0,1] 上で一様収束するか 根拠を述べて判定せよ.
- ③ \mathbb{R}^2 内の集合 $D=[0,1] imes[0,1]-\{(0,0)\}$ 上の連続関数 f(x,y) を $f(x,y)=rac{x^2-y^2}{(x^2+y^2)^2}$ で定める.
- (1) 累次積分 $\int_0^1 \left(\int_0^1 f(x,y)dx\right)dy$ の値を求めよ.
- (2) 累次積分 $\int_0^1 \left(\int_0^1 f(x,y) dy \right) dx$ の値を求めよ.
- (3) f(x,y) は D 上で広義重積分可能か根拠を述べて判定せよ.

1