写像空間のトポロジーと幾何と特異点論

石川 剛郎 (北大・理)

0 「美しいものは皆,写像空間の特異点である」

この講義では,写像空間あるいはその商空間(写像商空間)にトポロジー(位相構造)をどう入れるか,微分構造をどう入れるか,ということを説明する.

0.1 講義の目的は何か?

N を n 次元 1 C^∞ 多様体 , M を m 次元 C^∞ 多様体とする .

$$C^{\infty}(N,M) := \{f : N \to M \ C^{\infty} \mathbf{5} \mathbf{6} \}$$

おく2.

X を $C^\infty(N,M)$ の部分集合 (写像空間, mapping space) , \sim を X 上の同値関係とし, X/\sim を商集合 (写像商空間, mapping space quotient) としたとき, X/\sim にどのように位相構造,微分構造を入れるか,ということ.

0.2 いくつかの漠然とした例、動機付けとして、

例 0.1 (結び目空間 3 , space of knots) $\operatorname{Enb}(S^1,\mathbf{R}^3)\subset C^\infty(S^1,\mathbf{R}^3)$ を円周 S^1 から \mathbf{R}^3 へのうめ込み (embedding) の全体の集合とする . $\operatorname{Enb}(S^1,\mathbf{R}^3)$ の連結成分を調べるのが結び目理論である . さらに , $\operatorname{Enb}(S^1,\mathbf{R}^3)$ 上にいろいる3 といるな幾何構造 (たとえばシンプレクティック構造や複素構造) が定まる (Brylinski) .

例 $\mathbf{0.2}\ \mathrm{Diff}(N):=\{\varphi:N\to N\ C^\infty$ 微分同相写像 $\}$ は,位相群,無限次元リー群の構造が入る.たとえば, $\mathrm{Diff}^+(S^2)\simeq SO(3)$ (3 次特殊直交群とホモトピー同値)などという定理 4 では,写像空間 $\mathrm{Diff}(N)$ の位相を定めておかなければいけない.

例 ${\bf 0.3}$ (リーマン構造のスーパー空間) N を C^∞ 多様体とする . ${\cal R}_N:=\{N$ 上の ${\rm Riemann}$ 計量 $\}$ とおくと,これは写像空間と考えられる.この空間に群 ${\rm Diff}(N)$ が自然に作用する.その軌道空間 (商空間) ${\cal S}_N:={\cal R}_N/{\rm Diff}(N)$ は,N 上のリーマン構造の同型類の全体の空間である.

例 ${f 0.4}$ (変分法) N,M を多様体とし, $\Phi:C^\infty(N,M)\to{f R}$ を写像空間上の関数とする: $\Phi=\Phi(f)$ で,変数 f が写像. $f\in C^\infty(N,M)$ が Φ の臨界点 (critical point) とは,f の任意の 1-parameter 変形 f_t について $\frac{d}{dt}\Phi(f_t)|_{t=0}=0$ となること.このアイディアをもとに,後で $C^\infty(N,M)$ に微分構造を入れる.

例 $\mathbf{0.5}$ (写像の安定性 , 特異点の分類問題) $C^\infty(N,M)$ に群 $\mathrm{Diff}(N) \times \mathrm{Diff}(M)$ が自然に作用する $.f \in C^\infty(N,M)$ が C^∞ -安定 $(C^\infty$ -stable) とは f の軌道が開集合であること . (つまり , f のある近傍内の任意の f' が $\mathrm{Diff}(N) \times \mathrm{Diff}(M)$ -作用で f と移りあうこと . 商空間 $\mathcal{M} := C^\infty(N,M)/\mathrm{Diff}(N) \times \mathrm{Diff}(M)$ の構造を調べることが , 写像

 $^{^1}$ この世の中は無限次元だ、3次元だとか4次元だとか言っているが,そんなはずはない.この複雑な世界を表すには無限のパラメータが必要だ.とはいえ,人間が理解できるのは,所詮有限次元だ.無限次元の中から,目的に応じて,有限個のパラメータに注目する.有限次元の情報に着目するのだ.しかも,それらのパラメータには制約が付く.というわけで,有限次元の多様体の研究をする.この段階で幾何が威力を発揮する.さて,有限次元の多様体の研究では,多様体の上の関数や多様体から多様体への写像を調べる.写像空間は無限次元だ.そこでまた,有限個のパラメータに注目する.このくり返しの中で研究が進んでいくわけである.

 $^{^2}$ この講義では, C^∞ のカテゴリーを扱うが,他の場合に同様に議論できる部分もある.

 $^{^3}S^1$ から ${f R}^3$ へのうめ込み,あるいはその像を結び目 $({
m knot})$ という.

 $^{^4}$ ちなみに Diff^+ は向きを保つ微分同相写像の全体を表す.

の微分トポロジーの目的である.点 $x_0\in N$ について,点 x_0 での芽 (germ) を考えることにより, $C^\infty(N,M)$ に同値関係 \sim_{x_0} が入る.商空間 $C^\infty(N,M)/\sim_{x_0}$ は, C^∞ 写像芽 $(\mathsf{U}$ やぞうが) $f:(N,x_0)\to M$ の全体の空間である.この空間にトポロジーや微分構造を入れる.さらに,種々の同値関係による商空間の構造を調べるのが,写像の特異点論の目的となる.

1 「数学はすべて集合と写像の言葉で表される」

1.1 写像

X を集合, \sim を X 上の同値関係, 商空間 X/\sim は, X の \sim に関する同値類の全体の集合.

X,Y を集合 , $f:X\to Y$ を写像とする.つまり,X の各要素 x に対して,Y の要素 f(x) を対応させる規則.このとき, $\Gamma(f):=\{(x,f(x))\in X\times Y\mid x\in X\}\subseteq X\times Y$ を f のグラフ (graph) という. $\pi_X:X\times Y\to X$ を $\pi_X(x,y)=x$ で定義するとき, $\pi_X|_{\Gamma(f)}:\Gamma(f)\to X$ は全単射.

例 1.1 たとえば , $m\times n$ 型行列とは写像 $\{1,2,\ldots,m\} imes\{1,2,\ldots,n\} o\mathbf{R}$ のこと , 数列とは写像 $\mathbf{N} o\mathbf{R}$ のこと .

例 1.2 $X=\mathbf{R}^n,Y=\mathbf{R}^m$ をデカルト空間 (Cartesian space) とする.写像 $f:\mathbf{R}^n\to\mathbf{R}^m$ は,n 変数関数の組 $f=(f_1,f_2,\ldots,f_m),(f_i=f_i(x_1,x_2,\ldots,x_n))$ のことである.

f が C^r 級写像とは , 各 $i,(i=1,2,\ldots,m)$ について , f_i が C^r 級関数 (r 階までの偏導関数がすべて存在し連続)ということ 5 .

 C^0 級とは連続ということ. C^1,C^2,\ldots,C^∞ および C^ω (実解析的).以後,とくに C^∞ 級のものを主に扱う.

1.2 位相 (topology)

状況設定:X を集合, \mathcal{O} を X 部分集合族とする.

条件6

- $(1) \emptyset, X \in \mathcal{O}$
- (2) $U, V \in \mathcal{O}$ ならば $U \cap V \in \mathcal{O}$
- (3) $U_{\lambda} \in \mathcal{O}(\lambda \in \Lambda)$ $\lambda \in \Lambda \cup_{\lambda \in \Lambda} U_{\lambda} \in \mathcal{O}$

をすべて満たすとき, \mathcal{O} を X の開集合系あるいは X の位相 (位相構造) などという.位相が指定された集合 $X=(X,\mathcal{O})$ を位相空間 7 という.集合に与えうる位相はいろいろある.

 $X=(X,\mathcal{O})$ を位相空間とするとき, $U\in\mathcal{O}$ を X の開集合という.このとき, $A\subseteq X$ が閉集合であるとは,その補集合 $X\setminus A$ が X の開集合であること.

部分集合族で生成される位相

状況設定:X を集合, $\mathcal{W}=\{W_{\mu}\}$ を X のある部分集合族とする.

 \mathcal{W} が生成する位相とは, $\mathcal{W}\subseteq\mathcal{O}$ となる「開集合系の条件」をみたすような最小の \mathcal{O} のこと.

相対位相

状況設定: $X=(X,\mathcal{O}_X)$ を位相空間, $Y\subseteq X$ を部分集合とする.

このとき,Y に位相を次のように入れる: $U\subseteq Y$ が開集合ということを,X のある開集合 $V\subseteq X$ があって, $U=Y\cap V$ と表されること.つまり,

$$\mathcal{O}_Y := \{ Y \cap V \mid V \in \mathcal{O}_X \}$$

とする.この \mathcal{O}_Y は Y 上の開集合系の条件をみたす.

商位相

状況設定: $X = (X, \mathcal{O}_X)$ を位相空間, \sim を X 上の同値関係とする.

このとき , 商集合 X/\sim に位相を次のように入れる .

 $^{^{5}}f$ の定義域が \mathbf{R}^{n} の領域 (開集合) の場合も定義は同様

⁶開集合系の条件

 $^{^7}$ 位相という構造が入った途端に,集合は空間とよばれる.文明社会になったということか.

自然な射影 $\pi:X\to X/\sim,\ \pi(x)=[x]$ に関して, $U\subseteq X/\sim$ が開集合というのを逆像 $\pi^{-1}(U)\subseteq X$ が X の開集合であること,と定める:

$$\mathcal{O}_{X/\sim} := \{ U \subseteq X/\sim \mid \pi^{-1}(U) \in \mathcal{O}_X \}$$

は X/\sim 上の開集合系の条件をみたす.

連続写像,同相写像

X,Y を位相空間とする.写像 $f:X\to Y$ が連続写像 $({
m continuous})$ とは,Y の任意の開集合 U に対して,その逆像 $f^{-1}(U)$ が X の開集合であること.

写像 $\varphi:X\to Y$ が同相写像 (homeomorphism) とは,全単射で,連続で,逆写像 φ^{-1} も連続なこと.同相写像が 1 つでもあれば X と Y は同相である (homeomorphic) という.

例 1.3 (1) R 上の同値関係を $x\sim x'\Leftrightarrow x'=x$ または x'=-x で定義する.R の位相から \mathbf{R}/\sim に商位相を入れる.一方,半直線 $\mathbf{R}_{\geq 0}=\{x\in\mathbf{R}\mid x\geq 0\}$ に R の位相からの相対位相を入れる.このとき, \mathbf{R}/\sim と $\mathbf{R}_{\geq 0}$ は同相である.

(2) R 上の別の同値関係を $x \approx x' \Leftrightarrow (x = x' = 0$ または $xx' \neq 0)$ で定める. \mathbf{R}/\approx は 2 つの同値類からなる集合である. $\mathbf{R}/\approx = \{[0],[1]\}$ の商位相は $\{\emptyset,\{[1]\},\{[0],[1]\}\}$ である.この位相空間はダイヤグラム

ullet

で表される.

距離空間と位相

位相が「ものごとのつながり具合」を表す概念とすると,距離は「ものごとの遠近」を表す概念である 8 . 状況設定:X を集合, $d: X \times X \to \mathbf{R}$ を直積集合 $X \times X$ 上の関数とする.

 $d: X \times X \to \mathbf{R}, (d=d(x,x'))$ が X 上の距離 あるいは 距離関数 であるとは , 条件 (距離の条件)

- $(1) d(x, x') \ge 0, (x, x' \in X),$
- $(2) d(x, x') = 0 \Leftrightarrow x = x', (x, x' \in X),$
- (3) $d(x, x') = d(x', x), (x, x' \in X),$
- $(4) d(x,x') + d(x',x'') \ge d(x,x''), (x,x',x'' \in X).$

をみたすこと . このとき , (X,d) を距離空間 (metric space) とよぶ . $x \in X$, $\varepsilon > 0$ に対して ,

$$U_{\varepsilon}(x) := \{ x' \in X \mid d(x, x') < \varepsilon \}$$

を , 点 x の ε-近傍とよぶ .

(X,d) が距離空間のとき,X に位相を次のように入れることができる 9 .

$$U \subseteq X$$
 が開集合 $\Leftrightarrow \forall x \in U, \exists \varepsilon > 0, U_{\varepsilon}(x) \subseteq U$

つまり,

$$\mathcal{O}_X := \{ U \subseteq X \mid \forall x \in U, \exists \varepsilon > 0, U_{\varepsilon}(x) \subseteq U \}$$

とおくと,X の部分集合族 \mathcal{O}_X は開集合系の条件をみたす.

演習問題 $\mathbf{1.4}$ $(X,d_X),(Y,d_Y)$ を距離空間とする.このとき,写像 $f:X\to Y$ が連続であるということが,「 $\forall x\in X, \forall \varepsilon>0, \exists \delta>0$ such that $f(U_\delta(x))\subseteq U_\varepsilon(f(x))$ 」ということで定義される.一方,上の構成により,位相空間 (X,\mathcal{O}_X) と (Y,\mathcal{O}_Y) が定まるので, $f:X\to Y$ が連続というのを「Y 開集合の逆像が X の開集合」ということで定義することができた.さて,この 2 つの定義が合致することを確かめて安心せよ.

 $^{^8}$ 距離が「遠近」なら,位相は「連断」か.また,距離を決めれば ε -近傍が定まり,位相を決めれば,近傍系がきまる,と理解すればよい.ただし,ある点の近傍とは,その点が属する,ある開集合を含むもののこと

 $^{^9}$ 遠近感がわかれば,つながり具合は自ずからわかる,というものだ.