補充問題選その2 基礎数学 B (旧課程: 数学序論 2, 数学序論 G など)

担当 石川 剛郎(いしかわ ごうお)(西暦2008年度後期)

以下の問題では、 \mathbf{R}^n , $n=1,2,3,\ldots$, には、特に断らない限り、通常の位相(Euclid 距離から定まる Euclid 位相)を入れる。

- **補13**. (X,d) を距離空間とするとき、次の間に答えよ.
- (1) X の部分集合 U が開集合であるという定義を述べよ.
- (2) X は第一可算公理を満たすことを示せ. (p.81)
- (3) X が稠密な可算部分集合をもつとき、X は第二可算公理を満たすことを示せ。(p.77, p.103 参照)
- (4) X は Hausdorff 空間であることを示せ、(異なる 2点 x, x' について、d(x, x') > 0 である...)
- **補14.** X を位相空間とし, $f: X \to \mathbf{R}$ を写像とする.f が点 $x_0 \in X$ で連続であるとは,任意の $\varepsilon > 0$ に対し, x_0 の開近傍 U が存在して, $x \in U$ ならば $|f(x) f(x_0)| < \varepsilon$ が成り立つときにいう.このとき,次の問いに答えよ.
- (1) 写像 $f: X \to \mathbf{R}$ について、次の2条件 (a) (b) が互いに同値であることを証明せよ.
 - (a) f は連続である. (つまり、 $\mathbf R$ の任意の開集合 V に対して、逆像 $f^{-1}(V)$ が X の開集合である.)
 - (b) f が(上の意味で)任意の $x_0 \in X$ で連続である.
- (2) $f,g:X\to \mathbf{R}$ を写像とする. f,g が $x_0\in X$ で連続ならば $f+g:X\to \mathbf{R}, (f+g)(x):=f(x)+g(x),$ も x_0 で連続であることを示せ. (p.84)
- **補15**. (X, \mathcal{U}) を位相空間とし、X 上に同値関係 \sim が与えられているとする.このとき商集合 X/\sim の上の商位相 $\mathcal{U}' \subset \mathcal{P}(X/\sim)$ を 「 $U \in \mathcal{U}' \iff \pi^{-1}(U) \in \mathcal{U}$ 」で定義する.ただし, $\pi: X \to X/\sim$ を自然は射影とする.このとき,次の問いに答えよ.
- (1) U' が X/\sim 上の位相となることを示せ.
- (2) $\pi: X \to X/\sim$ が連続であることを証明せよ。(pp.91-92)
- **補16.** $S^1=\{(x,y)\in\mathbf{R}^2\mid x^2+y^2=1\}$ に \mathbf{R}^2 から相対位相を入れる. 写像 $f:\mathbf{R}\to S^1$ を $f(x)=(\cos 2\pi x,\sin 2\pi x)$ で定める. このとき、次の問いに答えよ.
- (1) f が連続であることを証明せよ。(p.84, p.87)
- (2) f が開写像であることを証明せよ。(p.86)
- (3) $\mathbf R$ の同値関係 \sim を 「 $x\sim x' \iff x-x'\in \mathbf Z$ 」で定めるとき,f は同相写像 $\overline f:\mathbf R/\!\!\sim \to S^1$ を誘導することを示せ. (p.86, pp.91–92)
- 補**17**. \mathbf{R} に Euclid 位相を入れ、 $\{0,1\}$ に \mathbf{R} からの相対位相を入れるとき、次の問いに答えよ、
- (1) 位相空間 X から $\{0,1\}$ への連続写像 $f: X \to \{0,1\}$ で全射であるものが存在するならば,X は連結でないことを示せ.
- (2) 位相空間 X が連結でないならば、全射連続写像 $f: X \to \{0,1\}$ が存在することを示せ、
- **補18.** (X,d) を距離空間, $x \in X$ と $A(\neq \emptyset) \subset X$ に対し, $d(x,A) = \inf\{d(x,y) \mid y \in A\}$ と定める. このとき次の問いに答えよ.
- (1) 任意の $x, x' \in X$, $a \in A$ に対し $d(x, A) d(x, x') \le d(x', a)$ となることを示せ.
- (2) 写像 $f: X \to \mathbf{R}$ を $f(x) := d(x, A) \in \mathbf{R}, (x \in X)$, で定めるとき、f が連続であることを示せ。(p.84, p.143)
- 補19.位相空間Xの2つの稠密な開集合 U_1,U_2 の共通部分 $U_1 \cap U_2$ は稠密な開集合であることを示せ.(p.83)
- **補20.** X を位相空間, Y をハウスドルフ空間とする。次の問いに答えよ。
- (1) $\Delta = \{(y,y) \in Y \times Y \mid y \in Y\}$ は $Y \times Y$ の閉集合であることを示せ。(pp.96-97)
- (2) $f,g:X\to Y$ を連続写像とする。 $f\times g:X\times X\to Y\times Y$ を $(f\times g)(x,x'):=(f(x),g(x')),(x,x'\in X)$ で 定めるとき, $f\times g$ は連続写像であることを示せ。(pp.90-91 参照。 $Y\times Y$ の開集合のうち, $U\times V$ という形の ものの逆像を調べても連続性が証明できる。)
- (3) $f,g:X\to Y$ を連続写像とする. このとき、X の部分集合

$$C := \{ x \in X \mid f(x) = g(x) \}$$

- **補21**. 二つの位相空間 X,Y が同相であるならば、「X が連結 $\iff Y$ が連結」が成り立つことを示せ。 (p.86, p.117)
- **補23**. X を位相空間, $a \in X$ とする. 次の条件が同値であることを証明せよ. (pp.122–123)
- (1) X は弧状連結.
- (2) X の任意の点 x と点 a をつなぐ道が存在する.

補22. 次の問いに答えよ. (p.122)

- (1) \mathbf{R}^n が弧状連結であることを示せ.
- (2) $S^1 \subset \mathbf{R}^2$ が弧状連結であることを示せ.
- **補24.** 位相空間 $(X, \mathcal{P}(X))$ (離散位相) がコンパクトならば、X は有限集合であることを証明せよ。(p.130)

補25. 次の問いに答えよ. (p.87, pp.128-129)

- (1) 位相空間 X の部分集合 A について、次の条件 (a) (b) は互いに同値であることを証明せよ。
 - (a) A に X からの相対位相を入れたとき、A がコンパクト位相空間である。
 - (b) X の開集合族 $\{V_{\lambda}\}_{\lambda \in \Lambda}$ が $A \subset \bigcup_{\lambda \in \Lambda} V_{\lambda}$ を満たすとき、有限個の $V_{\lambda_1}, \ldots, V_{\lambda_k}$ を選んで、 $A \subset V_{\lambda_1} \cup \cdots \cup V_{\lambda_k}$ とできる. (A は X のコンパクト部分集合)
- (2) 位相空間 X の部分集合 A_1, A_2, \ldots, A_k がすべてコンパクトであるならば、その和集合 $\bigcup_{n=1}^k A_n$ もコンパクトとなることを証明せよ。

補26. 次の問いに答えよ.

- (1) R はコンパクトでないことを(定義から直接)証明せよ。(p.129)
- (2) **R** の部分集合 $A = \{1, 1/2, 1/3, \dots, 1/n, \dots\} \cup \{0\}$ がコンパクトであることを(定義から直接)証明せよ。 (A の任意の開被覆を考える)
- **補27.** R 上の Zariski 位相 U_Z について、 (\mathbf{R}, U_Z) がコンパクトとなることを証明せよ。(p.97, p.167 参照)

補28. 次の問いに答えよ. (p.130, p.135, p.136)

- (1) X をコンパクト位相空間とし、 $A \subset X$ を閉集合とするとき、A はコンパクトであることを示せ、
- (2) $A \subset X$ をコンパクト部分集合とし, $f: X \to Y$ を連続写像とするとき f(A) は Y のコンパクト部分集合であることを示せ.
- (3) Y を Hausdorff 空間とし, $B \subset Y$ をコンパクト部分集合とするとき,B は Y の閉集合であることを示せ. (4) X をコンパクト位相空間,Y を Hausdorff 位相空間とする. $f: X \to Y$ が全単射で連続とするとき,f は同相写像であることを証明せよ.
- **補29**. 空でない集合 X 上に, $U_1 \supset U_2$ を満たす開集合系 U_1, U_2 があるとする.位相空間 (X, U_1) がコンパクトであり, (X, U_2) が Hausdorff 空間であるならば, $U_1 = U_2$ となることを証明せよ.(補 28, p.86 例 2.9(3))
- 補**30**. \mathbb{R}^n の部分集合 A がコンパクトであるための必要十分条件は、A が有界閉集合であることである。(p.134)
- **補31.** X,Y を距離空間とし、X はコンパクトと仮定する。このとき、任意の連続写像 $f:X\to Y$ は一様連続であることを示せ。(p.167)

補32. 次の問いに答えよ.

- (1) 距離空間 (X,d) が完備であるという定義を述べよ. (p.152)
- (2) 距離空間 (X,d) の部分集合 A について、次の条件 (a) (b) は互いに同値であることを証明せよ。(p.146 参照) (a) A は X の閉集合である。 $(つまり、<math>X \setminus A$ が X の開集合である。)
 - (b) A の点列 $\{a_n\}_{n\in\mathbb{N}}$ の極限は A に属する.
- (3) 完備な距離空間 (X,d) の部分距離空間 A が完備であるための必要十分条件は A が X の閉集合であることである。このことを証明せよ。(p.160)