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TOPOLOGY OF PLANE TRIGONOMETRIC
CURVES AND THE STRANGENESS OF PLANE
CURVES DERIVED FROM REAL PSEUDO-LINE

ARRANGEMENTS

Goo Ishikawa *

1. Introduction

A plane trigonometric curve f : S = C is a plane curve parametrized by
trigonometric polynomials: f(z) = X7, a;z%,|z| = 1,a; € C. In this note
we present an approach to the topological classification of generic trigonometric
curves of lower degree and observe its relation to the topology of plane curves
derived from a pseudo-line arrangement, namely the union of properly embed-
ded topological lines (strings) on the plane, intersecting transversely at exactly
one point to each other.

In particular, we show that a trigonometric curve with the maximal number
of self-intersection points among generic trigonometric curves of given degree
has no inflection points. It is given the topological classification of generic
trigonometric curves of degree 2. Moreover we observe that there exist 14
isotopy types of generic Fourier curves of degree 3 with 10 self-intersection
points, and there exists a duality for the strangeness St (in Arnold’s sense) on
these 14 types of generic plane curves. This fact is generalized to the isotopy
types of plane curves derived from simple pseudo-line arrangements with fixed

odd number of strings such that the sum of St is constant for each dual pair.
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strangeness, Gauss diagram, Pliicker-Klein’s formula
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In both academic and non-academic lives, we face a huge number of plane
curves, for instance, trajectories or contours of some objects. There are, of
course, a huge number of mathods to analyze plane curves from various view-
points. In the mathematical sense, a plane curve has two appearances: as a
level curve of a function on the plane, and an image of a parametrization. In
former case, Taylor expansion of the function offers effective information about
the level curve. In latter case, if the curve is closed, we have, say, a smooth
map from the circle to the plane. Then it is a very ordinary method, for the
analysis of the plane curve, to use Fourier expansion of the curve, besides of
Taylor expansion. Exactly, this is the essential idea of the present note, which
treats in particular the topology of plane curves.

Consider a C* parametric plane curve f : S* — R2. We identify S with
the unit circle in the complex plane C and R? with the whole C. Then, as well
known, Fourier expansion of f:

-

Tzr= j;w a;7, |z| =1, a; = %lﬁ s f(z)z7G0dz
converges with respect to C* topology of C*(S*,C). (For fundamental facts
about Fourier series, see [14] for instance. ) If f is generic, namely an im-
mersion with just transverse self-intersections, then f is topologically stable,
that is, stable topologically under small perturbations [10]. Remark that, in this
case, topologically stability is equivalent to C* stability. Therefore the plane
curve f has the same isotopy type with a curve defined by some leading terms
of Fourier expansion of f. Thus any isotopy type of generic plane curves is re-
alized as that of plane curve represented by trigonometric polynomials. Then,
for the topological classification problem of generic plane curves, it is natural
to classify the isotopy types realized by trigonometric plane curves of a given
degree from 1,2,3,... and so on.

Let f : S* — C be a plane curve defined by a trigonometric polynomial map
f(z) = T} _, a;2’ of degree < n, where z = cos(0) + v/—1sin(6) € S* C C,
and a; € C,—n < j < n. In what follows, we simply call f a trigonometric

curve of degree < n. Thus the space of trigonometric curves of degree < n
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is identified with C?n+1, Non-generic trigonometric curves of degree < n form
a semi-algebraic set ¥ in C?™*1, (See §2). Then our final goal is to classify
generic trigonometric curves f € C™*! — I up to isotopy.

The general classification theory of parametric plane curves goes back to
Gauss: Gauss words or Gauss diagrams [9], [4], [8]. Whitney [27] gave es-
sential results on a regular homotopy invariant, that is, an invariant under
deformations through immersions: Gauss index or Whitney index, namely,
the mapping degree of Gauss map of an immersed plane curve. Scott Carter
[4] showed that Gauss diagram is the complete invariant for the plane curves as
spherical curves. Arnold [1] [2] gave three kinds of basic isotopy invariants J*
and strangeness St of generic plane curves. These are first order invariants
of Vassiliev type [22]. Also there exist many works about plane curves related
to the knot theory. See the excellent survey [5]. We concern with this recent
theory of topological invariants of parametric plane curves, and intend to apply
it to the topology of trigonometric plane curves.

Extending the scope, we remark, for a trigonometric curve f of degree n,
there naturally corresponds a real rational curve f : RP' — RP? of degree
2n, if we set cos(8) = (1 —1%)/(1 +1%), sin(0) = 2t/(1 + ¢?), while t = tan(6/2).
This reflects the fact that the algebraic curve S* = {z?+y* =1} ¢ R? ¢ RP?is
rational of degree 2. Viro [25] studies the classification problem of real rational
curves from Vassiliev’s point of view, improving the theory of the strangeness
for real rational curves.

On the other hand this classification problem has analogous feature to the
16th problem of Hilbert, in particular, to the first half of it.

The first half of the 16th problem of Hilbert treats, in particular, the clas-
sification problem of non-singular real algebraic curves of fixed degree m up to
isotopy in the real projective plane RP?. See [23]. Up to present, this problem
is solved for m < 7. For the case m < 5 the classification is classically known;
Gudkov classified for m = 6 and Viro for m = 7.

We observe that, in the topological classification problem of real algebraic

curves, the strategy is first to find restrictions or estimates of topological in-
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variants and second to find realizations or constructions of given topological
types.

Then we are naturally led to the similar topological classification problem
of real rational curves and trigonometric curves.

For the theory of topology of real plane algebraic curves, the starting point
is Harnack’s inequality: Harnack showed that the number of connected compo-
nents of a real algebraic curve of degree m is at most (1/2)(m — 1)(m —2) + 1.
Then, a non-singular curve of degree m is called, after Petrovskii, an M-curve
if it has the maximal number of connected components.

Notice that, for the first non-trivial case, namely m = 6, the concrete topo-
logical classification shows clearly certain symmetry or duality. For instance,
there exist three isotopy types of M-curves of degree 6 as in Fig.1. However, as
far as the author know, the full explanation of this duality is not given yet. The
purpose of this note is to exhibit similar duality for the first non-trivial case of

the topological classification of trigonometric curves or real rational curves.
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Figure 1

A real rational curve f : RP' — RP? is called generic if f is an immersion
with only transverse self-intersections. For the basic topological restrictions on

the real rational curves, we have the following:
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Lemma 1.1. Let [ be a generic real rational curve of degree m. Then

(1) The number of self-intersection points £ < (1/2)(m — 1)(m — 2).

(2) The number of intersection points with a generic line is at most m and
it is congruent to m mod. 2.
Example 1.2. Consider the topological classification of generic real ratio-
nal curves of degree 4. Then, by Lemma 1.1(1), we have the number of self-
intersection points £ < 3. Moreover using Lemma 1.1(2), we have the list of
isotopy types given in Fig.2.

15 © A P
& OO

Figure 2

Now we turn to the classification problem of trigonometric curves. Then we

have:

Lemma 1.3. Let f : S* — C be a generic trigonometric curve of degree n.
Then we have:

(1) The number of self-intersection points £ < (2n — 1)(n — 1).

(2) The absolute value i of Gauss indez of f is less or equal to n and con-
gruent to £+ 1 mod. 2.

A generic trigonometric curve of degree n is called M-curve if £ = (2n —

1)(n—1). Similarly this definition is applied also to generic real rational curves.
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Then the first major result of this note is the following:

Proposition 1.4. Let f be a generic trigonometric curve of degree n. If f is
an M -curve, then f has no inflection points.

This gives a severe topological restriction on the isotopy types of M-curves.

Example 1.5. There does not exist a trigonometric curve of degree 2 with the
topological type as in Fig.3. In fact assume contrarily it does exist. Then it is
an M-curve, so it does not have any inflection points. However, on the other
hand, we see necessarily i = 0, so the number of inflection points is at least 2.
This leads a contradiction.

Figure 3

The list of isotopy types of generic trigonometric curves of degree 2 is the
same with the remaining types appeared in the list (Fig. 2) of isotopy types
of generic real rational curves of degree 4.

Next let us turn to classify trigonometric M-curves of degree 3. By Lemma

1.3(2), and Proposition 1.4, we see the following.

Lemma 1.6. Let f be a trigonometric M-curve of degree 3 (£ = 10). Then f
has no inflection points and the absolute value of its Gauss indez i = 3.

For the construction of isotopy types, we observe the following result:
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Proposition 1.7. There ezists a set of 14 isotopy types I of generic trigono-
metric M-curves of degree 3 and an involution o : I — I such that, for any
i € I, St(i) + St(o(z)) = 2.

These 14 isotopy types are shown in Fig.4 with the adjacency and the val-
ues of Arnold’s strangeness St: The duality is represented by the rotation by =.
Notice that this result is obtained by the experiments using ParametricPlot
of Mathematica. (It is so easy to handle this and needs little time to draw plane
curves, therefore it is rather easy also to find new facts: Compare with an era

without such a tool.)

Adjacency. J'=2, J°=-8  —-—= :Mirror.

They are amphicheiral except for(3)(6)(9) (0.

Figure 4
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We observe that these 14 isotopy types can be obtained as perturbations of
the bouquet or blossom bs : f = 2z® — 2~% with five stalks or petals: Fig. 5.
In general we set by : f = 2" — z~("=1) which is a non-generic trigonomet-
ric curve of degree n, and is the bouquet with (2n — 1)-stalks or the blossom
with (2n — 1)-petals. This curve provides the unique topological type of real
algebraic curves in RP? of degree 2n with one real ordinary (2n — 1)-multiple
point. (This remark was found during a conversation with T. Fukui.) Then we
get necessarily an M-trigonometric curve of degree n if we perturb b, into
an generic trigonometric curve of degree n. The existence of the duality, in the
case n = 3, is clear from Fig.4. However we observe that this duality comes
from more general connection with the topology of trigonometric curves and

the topology of (pseudo-)line arrangements [13] on the real plane R?.

Figure 5

A pseudo-line arrangement A of s strings in R? is a proper C'*° immersion
F : [I,R — R? of s-copies of real lines with the following properties: If we
denote by F; the restriction of F' to the i-th R and by Ly,..., L, the images
Fi(R),...,F,(R), then each F; is an embedding, 1 < ¢ < s, and L; and Lj,
i # j, intersect transversely at exactly one point in R%. A point p € R? is
called an m-multiple point (with respect to F)) if F~'(p) consists of m-points
in [, R. A pseudo-line arrangement is called simple if there does not exist
m-multiple points with m > 3.

Two mappings F': M — N and G : M’ — N’ between topological spaces
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are called homeomorphic if there exist homeomorphisms o : M — M’ and
7: N — N’ such that Gog =70 F.

F and G are called isotopic if there exist a homeomorphism o : M — M’
and a one-parameter family of homeomorphisms 7, : N — N’ (X € [0, 1]) such
that 7 = 1y and that Goo =n o F.

F and G are called strictly isotropic if there exist one-parameter families
of homeomorphisms ox : M —+ M’ and 7, : N — N’ (A € [0,1]) such that
oo = 1p,70 = 1y and that Gogy =1 0 F.

Any pseudo-line arrangement F' of s strings is strictly isotopic to an arrange-
ment F’ with the following property: there exists a permutation p of {1,...,s}
such that each string F,,) coincides with the straight line ; : R -+ R* = C
defined by £(t) = teV~*(=1)%/s gutside of a compact subset of R.

We call an arrangement F” normarized if it has the above property.

Any pseudo-line arrangement F' of an odd number s = 2n — 1 of strings is
isotopic to an arrangement F' with the following properties: Fi, ..., F coincide

with the straight lines
gh "'821 fa, e vieiy _2211—2;£2n—1-

See Fig. 6. Here —/; is defined by (—£4)(t) = —£;(¢). In fact we need only a

permutation of the components of [], R and reversing some of R’s for a nor-

\\

malized representative.

Figure 6
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We call a pseudo-line arrangement F" of an odd number of strings admis-
sible if it has the above property.

Now we are going to construct two (isotopy types of) closed curves S* — R?
from an admissible pseudo-line arrangement F' of (2rn — 1) strings as follows:
Take a circle C,. on R? containing all multiple points of F' in the inside and
intersecting each string just twice. First start at the point Fj(0) and move
along F; until we hit C,. Then move along the arc counterclockwise till we
hit Ly = F3(R). Change to L, and draw along F, until we hit C.. Then
draw along the arc counterclockwise. Continuing this process, we get a (piece-
wise C*°) closed curve S — R?. By smoothing this, we have an immer-
sion ¢(F) : S* — R? of Gauss index n. If we move clockwise instead of
counterclockwis and in order Fy, F, F;_1,..., then we get another plane curve
d(F) : 8* = R? of Gauss index —n. We call ¢(F) and ¢/(F) closures of F.
See Fig. 7. If F is simple, then both ¢(F) and ¢/(F) are generic and have
(2n —1)(n — 1) double points.

14

Figure 7: Closures
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If F and F’ are admissible pseudo-line arrangements and they are isotopic,
then the set of isotopy classes {¢(F), ¢/( F')} coincides with that of {c(F"), ¢(F"}.
Thus, to an isotopy class A of pseudo-line arrangement of odd strings, there
corresponds a set {c(A),c(A)} of isotopy classes of closed curves S! — R? as
{c(F), ¢(F")} for a admissible representative F of A. Then we call {c(.A), ¢(A)}
the closures of A. Remark that there is no preference to choose one of the
closures {c(.A),c/(A)} of an isotopy class .A.

The main result of this note is the following:

Theorem 1.8. Let A, A’ be isotopy types of simple pseudo-line arrangements of
(2n — 1) strings and {c(.A),c/(A)}, {c(A"), (A"} closures of A, A’ respectively.
Then we have

(1) If c(A) or ¢(A) is isotopic (resp. homeomorphic) to c(A') or &(A'),
then A and A’ are isotopic (resp. homeomorphic).

(2) St(c(A)) + St(d(A)) =n —1.

(3) J*H(c(A)) = JH(A) = (n = 1)(n — 2).

(4) I (c(A)) = J7((A)) = =(n = 1)(n +1).

It is natural to define the isotopy invariant strangeness of a pseudo-line

arrangement A of (2n — 1) strings as the non-ordered pair
{k, £} = {St(c(A)), St(c'(A))}

of integers, so that k+¢=n—1.

Let I be the set of isotopy types of generic plane curves S! — C obtained
as closures of simple pseudo-line arrangements of (2n — 1) strings. By Theorem
1.8, we have a well-defined involution o : I — I by o(c(A)) = ¢(A), s0 that,
for any i € I, Si(i) + St(o(i)) =n—1.

From (the proof of) Theorem 1.8, we have the following:

Proposition 1.9. Ifn is even, then ¢(A) and ¢/(A) are not isotopic (even after
the reversing the parameter S'). In general, if ¢(A) and ¢/(A) are isotopic,

then, for any admissible representative F' of A and the admissible arrangement
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G obtained from F by reversing all orientations of [[,,_; R and rotating by 7 /s,
F and G are strictly isotopic.

The essential ingredients of the proof of Theorem 1.8 are Carter’s classifica-
tion theorem of curves by Gauss words [4] and the explicit formulae of J* due
to Viro [25] and of strangeness due to Shumakovitch [21].

Here is a collection of the known facts in the theory of (pseudo-)line arrange-
ments, related to our problem.

A pseudo-line arrangement corresponds to two embedded graphs on the disk,
which are dual to each other in the obvious sense. From Proposition 1.9, we are
led to ask on the existence of a self-dual graph.

The line arrangements are of course important examples of pseudo-line
arrangements. In particular, by Theorem 1.8, there exists a duality on the set
of isotopy types of plane curves S — R? obtained as a closure from a line
arrangement. Remark that this set of isotopy types is contained in the set of
isotopy types of curves S* — R? without inflection points.

A pseudo-line arrangement is called stretchable if it is isotopic to a line
arrangement [13]. The pseudo-line arrangement shown in Fig.8 is an example
of non-stretchable simple pseudo-line arrangement of 9 strings due to Ringel
and Griinbaum. As stated in [13], R.J. Canham and E. Halsey showed in
1971 that all simple pseudo-line arrangements of s strings, s < 7, are stretch-
able. Griinbaum [13] conjectured that all pseudo-line arrangements of s strings,
s < 8, are stretchable. Then Goodman and Pollack [11] showed Griinbaum’s
conjecture affirmatively, using the method of periodic sequences of permuta-
tions.

The numbers n, of homeomorphism types of simple (pseudo-)line arrange-
ments of s-strings (s < 7) are given, for instance in [20]: n, = 1, for s < 4,
ns = 6,ng = 43,n7 = 922.
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~ Figure 8

The number of isotopy types of line arrangements of 5 lines is equal

to7 (Fig.9). The adjacency of these isotopy types is represented by

FK K
p S

\\// *\//
sl o

Figure 9: (Pseudo-)line arrangements with s = 5.
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the graph of Fig.10. By Theorem [1.8], we have 14 isotopy types of plane curves
with £ = 10,7 = 3, and a duality among these isotopy types, which coincides
with the duality found in Proposition [1.7]. Moreover we remark that the graph
of adjacency (Fig.11) is folded onto the graph of adjacency for line arrange-
ments of 5 lines (Fig.10).

9

Figure 10

=

Figure 11

A pseudo-line arrangement F : [[,R — R? is convex (resp. concave) if
there exists a closed disk D, C R? containing all multiple points of F' such that
on F~!(D,) the determinant |F'(t)F"(t)| > 0 (resp. <0.)

If F is convex, then the closure a(F) : S' — R? is a convex curve. If F
is concave, then a'(F') is concave. The isotopy type of a simple line arrange-
ment are realized by a simple convex (resp. concave) pseudo-line arrangement.
This fact causes the duality on a class of isotopy types of plane curves without
inflection points.

Related to the existence of non-stretchable pseudo-line arrangements we

observe the following result from the singularity theory:

Proposition 1.10. The deformation F : {[Is(R,0)} x RN — R? by all line
arrangements of the parametrization F : [[o(R,0) — R?,0 of straight 9-lines
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(Fig.12) is not topologically versal.

Figure 12

A deformation of a map-(multi-)germ is topologically versal if it contains
all topological types appearing as perturbations of the original germ. See, for
instance, [19] [6] [7] for the general study on smooth or topological versality of
smooth map-germs.

The proof of Proposition 1.10 is a easy consequence of Pappus’ theorem
(Fig.13). By an infinitely flat perturbation of F', we get a non-stretchable
pseudo-line arrangement as a perturbation of F. Originally this example was
found by Levi [16]. See also [13].

Figure 13
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Based on Goodman-Pollack’s theorem [11], we conjecture that the defor-
mation by all line arrangements of straight s-lines is topologically versal for
s <8.

Two important questions remain open to make closer the connection be-
tween the topology of trigonometric curves and the topology of pseudo-line
arrangements: (1) Set f = 2* —z~(®1 : §1 —y C. Then is the unfolding
F: §' x G 5 C x C**! of f defined by F(z,a) = f(2) + Ti-_pa;2’, a =
(a;)™_,, topologically versal? (2) Is any closure of a pseudo-line arrangement
of (2n—1)-strings realizable as a perturbation of f = g in=an @=(SY, G

We remark that the example (Fig.8) of simple non-stretchable pseudo-line
arrangement is realized by a convex pseudo-line arrangement. If the above
question (2) is affirmative, then we see, as a corollary, that any isotopy type of
simple pseudo-line arrangement of odd number of strings is realized by a convex
(or concave) pseudo-line arrangement.

We will treat these fundamental questions in a forthcoming paper.

For the concrete topological classification of real rational curves of degree 6
in RP?, it seems that few results are known besides trivial observations. Here
we just mention that, using Petrovsii-Marin’s inequality [18], we see the left pic-
ture of Fig.14 is not realized as an isotopy type of real rational curve of degree
6. However this method can not be applied to the right picture of Fig.14. The

author does not know whether it is realizable or not.

Figure 14
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Recéntly there appeared an important paper [3] related, at least in title and
in principle, to the present paper. In that paper Arnold classifies holomorphic
mappings CP! — CP? with exactly two preimages of some point in the target.
Therefore he treats the topology of the complexifications (and the projectifica-
tions) of real trigonometric polynomial functions R — R, while we are treating
the topology of pairs of real trigonometric polynomial functions. See also [12].

In the next section we give proofs of all results, except for the experimental

result Proposition 1.7.

2. Proofs of Results

First we prove the fact that the set L of non-generic trigonometric curves is
semi-algebraic in the space C*"*! 2 R+ of trigonometric curves of degree
< n. For the proof, recall that a trigonometric curve f(z) = ©%._, 4,z (z=

cos(8) + +/—1sin(f)), is identified with (a;)?__, € C**1, Set

i=—n

X ={(f,5) €C™ xC| L) =0, |s| =1},

Then X is a real algebraic set of C*"*! x C. Moreover set

Y= {(fizw)eC"' xCxC|z#uw, f(z) = f(w),

i

2) ()| =0, |2l = lw| =1},

Then Y is a semi-algebraic set of C*"*! x C x C. Consider projections 7 :
C¥tl x € — C¥*! and 7’ : Gt x C x C — C?*!. Then, we see that
L = n(X)U'(Y), and by the Tarski-Seidenberg’s theorem [17] that £ is a
semi-algebraic set of C?"*1,

O
Proof of Lemma 1.1: (1) (1) follows from the well known genus formula. (2)
follows from the theorem of Bezéut.

a
Proof of Lemma 1.3: (1) follows from Lemma 1.1(1). For (2), we observe

the following formula and apply Lemma 1.1(2) to a line through the origin:
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df /df = =—nV—1ja;2’. (The differential defines on C?"+! just a diagonal
linear action with eigenvalues —y/=1n,...,1/=1In.) Then we have 2i < 2n,
hence ¢ < n. The latter congruence follows from Whitney’s formula [27].

a
Proof of Proposition 1.4: Let C C P? be a generic algebraic front, that is,
algebraic curve with ordinary double points and ordinary cusps as singularities,
of degree m. Recall Pliicker-Klein’s formula [15] [24] [26]:
= m(m—1)—2d — 3r,
k(k —1) — 2t — 3w,
= 3m(m —2) — 6d — 8r,
= 3k(k —2) — 6t — 8uw.

Tg3 >
Il

(Here we need the first equality.) And if C is defined over R,
m+w +2t" =k +1r' +2d".

Here k is the degree of the dual CV in the dual projective plane P?*, d is the
number of double points, r that of cusps, ¢ double tangents and w inflection
points of C. The genericity condition demands that all appearing numbers are
finite. We denote by w’ (resp. r’) the number of real inflection points (resp. real
cusp points). For real curves, remark that there are two kinds of real double
points (resp. real double tangents): t” designates the number of isolated double
tangents, that is, real tangent lines to imaginary points of C, and d” the number
of isolated double points of C.

Remark that, if there is a trigonometric M-curve with an inflection point,
then there is a trigonometric M-curve with the same degree satisfying the gener-
icity conditions of Plicker-Klein formula for the image in P2,

Now, for a generic trigonometric curve of degree n, consider the corre-
sponding real rational curve and its image in P2. Then m = 2n,d = £ =
(2n = 1)(n —1),r = 0. So k = 2(2n — 1). Since r' = 0,d" = 0, we have
2n +w' + 2t” = 2(2n — 1), therefore w’' + 2¢" = 2n — 2.

Besides, for a trigonometric curve f : S* — C of degree n, the line at infinity

is perturbed to (n — 1) real isolated double tangents. In fact, first we perturbe
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f to a trigonometric curve f; of degree n such that (f;)c : P! — P2 is non-
singular on the whole P* (in particular at [1,4+/=1]). Remark that (f;)c is of
a form

fille,9)) = [(=* +¥°)", a(z,y), b(z,y)),
a and b being homogeneous polynomials of degree 2n. Then we perturb f; to a
real rational curve f; of degree 2n such that f, has (n — 1) real isolated double

tangents near the line at infinity, using, for instance, the real deformation
(xa i yﬂ)n & El(zi i yz)ﬂ—lz + sg(zz 3 yz}n-zxa el (—1)"6,,::",

(0 <ej <<1, 1 £j <n),of (224"

Thus t” > n—1. Therefore we see w’ = 0. (Using a generalized version [26],
we can see this without perturbations.)

O
Proof of Lemma 1.6: By Lemma 1.3(2), we have i = 1 or 3. Moreover, by
Proposition 1.4, we see there are no inflection points. Therefore, if i = 1, then
J must be a simple closed curve, which contradicts to £ # 0. Thus we have
1=

O

To prove Theorem 1.8(1), we use Carter’s theorem [4] [5]. We need to recall
the notion of Gauss diagram of a generic immersion, and introduce that of a
pseudo-line arrangement.

Let N be an oriented one-dimensional manifold and F : N — R? a generic
immersion. Take, on N, the pairs of inverse images of intersection points de-
termined by F. Connect each pair by an oriented chord according to Gauss
rule: Let p,q € N with F(p) = F(q),p # q. Take positively oriented non-zero
vectors u € T,N,v € T,N respectively. We connect from p to g if two vectors
F.(u), F,(v) form a negative basis of T(,)R? with respect to the orientation of
R2.

The obtained diagram consisting of N and oriented chords is called Gauss
diagram of F' and denoted by D(F). For instance Fig.15 indicates Gauss di-
agrams of curves No.14 and No.l in Fig.4. In Gauss diagram D(F), we call a
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compact component of N a circle, and a non-compact component a string.

Figure 15

For an admissible representative F' of a pseudo-line arrangement A of (2n —
1)-strings, we define Gauss diagram D(F') as Gauss diagram of F as a generic
immersion, endowed with the cyclic order of (2n — 1)-strings. Then, by Carter’s

construction in [4], we have

Lemma 2.1. Gauss diagram D(F) (resp. D(F) up to total reversing of cyclic

order of strings) determines the isotopy type (resp. homeomorphism type) of
A.

Proof of Lemma 2.1: Remark that Carter’s method works in our non-compact
situation or relative situation as well.

Add to D(F) an extra oriented circle 9D according to the given cyclic order
of strings, such that @D intersects to each strings at exactly two points suffi-
ciently far to each other and @D does not intersect to any chords. After deleting

two ends of each strings, and attaching 2-cells as in [4], we have a 2-complex D
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and an orientation preserving homeomorphism from D to the unit closed disk
in R%. Then attach the trivial ends. Thus we obtain a pseudo-line arrangement
that recovers the isotopy type of A.

0O

To prove Theorem 1.8 (2), (3), (4), we recall the explicit formulae of J* by
Viro [27] and of strangeness by Shumakovitch [21]. See [5].

Let C be an oriented generic immersed closed curve in the plane. Assign an
integer indg(Y') to each component Y of the complement R? — C as follows:
Assign 0 to the outer component. If we move from Y to neighboring Y’, while C
moves from left to right (resp. from right to left), then ind¢(Y’) = inde(Y) +1
(resp. indo(Y’) = inde(Y)—1). Further, for the smoothing C of C with respect
to the orientation of C, we can assign inds(X) to each component of R? — ¢

compatibly. The Viro’s formula says
JHC)=1+2- indi(X)x(X), J(C)=1-3 ind4(X)x(X),
X X

where £ is the Gauss index of C as before, and x(X) denotes the Euler char-
acteristic of X. For a vertex v of C, denote by ind¢(v) the arithmetic mean of
neighboring four indg(Y'). Take the starting point on an outer edge on C. If
C passes through v at first time, while another branch of C' passes through v
from left to right, we set s(v) = 1; otherwise s(v) = —1. Then Shumakovitch’s

formula says

St(C) =Y s(v)indc(v).

v

We use also the following non-trivial result:

Lemma 2.2. Two simple admissible pseudo-line arrangements of (2n — 1)
strings are connected by a one-parameter family of admissible pseudo-line ar-
rangements with only bifurcations of triple points (without tangent points).

In the case of line arrangements, Ringel [20] showed the corresponding result
to Lemma 2.2.
Proof of Lemma 2.2: First we connect a pseudo-line arrangement F' to F'

such that on the left side of L{ = FJ(R) there are no intersection points of
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F'. To do this we remark that, if there is an intersection point of F' on the
left side of Ly = Fi(R), then there is at least one triangle having a side on L,
(see Page 50 (*x)(i) of [13]). Then we deform L,, fixing other strings, through
pseudo-line arrangement, along this triangle, so that the number of intersection

points on the left side of the string decreases by one.

Next we connect F’, fixing F{(R), to " having no intersection points on the
right side of F'(R) except for the intersection points on F{'(R) = FJ(R). Iter-
ating this procedure, we connect F' to the “standard” arrangement, consisting

of tangent lines to a semi-circle with appropriate orientations.
O

Proof of Theorem 1.8: Let F' be an admissible representative of A. We are
going to show that the Gauss diagram D(¢(F')) of the closure of F' determines
the Gauss diagram D(F') endowed with cyclic order of strings.

In general, the circle of Gauss diagram of a closure of a pseudo-line arrange-
ment of (2n — 1)-strings is naturally divided into (2n — 1)-arcs. On each arc,
there are (2n — 2) intersection points, that is, end points of chords. Moreover

each pair of arcs has exactly one pair of intersection points, which are connected
by a chord.

If we fix arbitrary division point, which is not an intersection point, then
we get a possibly different decomposition of the circle into (2n — 1)-arcs, each
of which possesses (2n — 2) intersection points on it. We are going to show
that the decomposition is uniquely determined, if we impose the condition that
each pair of arcs is connected by exactly one chord. Remark that the condition
implies that any pair of intersection points on a same arc is not connected by

any chord.

Assume that a division point P (possibly for another pseudo-line arrange-
ment) lies on the string L; of F' and there are r,0 < r < 2n — 2, intersection
points next to P on L;. Consider the end point @) of L,;, the start point R of
L, and the next division point S on L,. See Fig.16. Let T be the (image of)
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intersection point of I; and L,.

Figure 16

Assume first that T lies before P on L,. Then we have the cycle TPQRT.
Consider the r strings intersecting to L, along PQ. They must intersect to L,
along RT. Since PS is a string for another arrangement, 7' must come after
S. Besides of Ly, the r strings intersect to L, on T'S. Moreover there are
(2n — 2 —r) intersection points on RS, among (2n — 2) intersection points on
PQRS. Thus we have (2n —2—r)+(r+1) = 2n — 1 intersection points on L;.
This leads to a contradiction.

So T must lie after P on L;. Then S must lie before T on L,. However, then,
considering (2n — 2 — r) strings through RS, we have again a contradiction.

(1): If ¢(F) and ¢(F”) are isotopic (resp. homeomorphic), then there exists
an orientation preserving (resp. not necessarily orientation preserving) isomor-
phisms of diagrams D(c(F)) and D(c(F')). Then the isomorphism induces that
of D(F) and D(F") compatible with cyclic order of strings (resp. up to total
reversing of cyclic order of strings). By Lemma 2.1, F and F” are isotopic (resp.
homeomorphic).

(2), (3) & (4): Under the passage of a triple point, the value St(c(F)) +
St(c(F)) (resp. J*(c(F))) remains constant: If St(c(F)) varies by &1 then
St(c/(F}] varies by F1. By concrete computations based on the results of Viro
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[25] and Shumakovitch [21], the constant is equal to n —1 (resp. (n—1)(n—2),
—(n — 1)(n 4+ 1)). For instance, for a line arrangement F' derived from an

equilateral (2n — 1)-gon, we have

(SHeF)), SUCPN} = {32520 +1-43), (1= 5)(2n +1 - 43)},
therefore St(c(F))+ St'(c(F')) =i (2n+1—4j) =n—1.

(]
Proof of Proposition 1.10: In the deformation F of F (Fig. 12) by all
line arrangements, arbitrarily near F', we have line arrangements of nine lines
appearing in Pappus’ theorem as in Fig.13. By an infinitely flat perturbations
of F, we deform the ninth line slightly to make a non-stretchable arrangement,
for each line arrangement. This shows F' is never topologically versal.

O
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