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Symplectic invariants of parametric singularities

Goo ISHIKAWA∗ and Stanis law JANECZKO

Abstract
We introduce the basic symplectic invariants of singular curves and surfaces:

symplectic codimension, symplectic-isotropic codimension, symplectic defect and
the number of isotropic double points. Their algebraic representations are con-
structed and relations between these invariants are derived. For isotropic multi-
germs of maps from C2 to C4 the number of open umbrellas as a new invariant is
introduced and its relation with Segre number of the image variety is found.

1 Introduction

We consider the classification problem for mappings to the symplectic space. The sym-
plectomorphism classification problem is motivated naturally from Hamilton dynamics,
the theory of differential equations, and differential geometry. For instance, the sym-
plectic classification of Hamilton-Jacobi equations V ⊂ T ∗Rn = R2n is of importance
in the theory of first order PDE. Even for second order PDE, our classification problem
appears in the study of singularities for generalized geometric solutions to symplectic
Monge-Ampère equations: Given an n-form Ω on T ∗Rn = R2n, f : (Rn, 0) → (T ∗Rn, 0)
is called a generalized geometric solution to the Monge-Ampère equation associated to Ω
if f ∗ω = 0, f ∗Ω = 0. For example, for the MA-equation Hessian = constant, we take
Ω = c ·dx1∧ · · ·∧dxn−dp1∧ · · ·∧dpn. Moreover, the investigation of singularities of spe-
cial Lagrangian varieties requires the basic symplectic singularity theory of parametrized
Lagrangian varieties (cf. [6]).

Let ω =
∑n

i=1 dpi ∧ dxi be the standard symplectic form on K2n = T ∗Kn, where
K = R or C. Mappings are assumed to be real analytic or C∞ for K = R and complex
analytic for K = C. Multi-germs f : (Km, S)→ (K2n, 0) and f ′ : (Km, S ′)→ (K2n, 0) to
the symplectic space are called symplectomorphic (resp. diffeomorphic) if the diagram

(Km, S)
f−→ (K2n, 0)

σ ↓ ↓ τ
(Km, S ′)

f ′−→ (K2n, 0)
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is commutative for some diffeomorphism-germ σ and some symplectomorphism-germ τ ,
τ ∗ω = ω (resp. a diffeomorphism-germ τ). Here S, S ′ are finite sets.

For a map-germ f : (Km, S) → (K2n, 0), the diffeomorphism class of the pull-back
form f ∗ω on (Km, S) of the symplectic form ω is an obvious symplectic invariant of
f : If f and f ′ are symplectomorphic, then f ∗ω and f ′∗ω are diffeomorphic, that is,
for a diffeomorphism σ : (Km, S) → (Km, S ′), we have σ∗(f ′∗ω) = f ∗ω. We call f ∗ω
the “geometric restriction”of ω by f . In this connection, we mention a theorem which
contains the classical Darboux theorem as the special case m = 0:

Theorem 1.1 (Darboux-Givental [4]) Two immersion-mono-germs f, f ′ : (Km, 0) →
(K2n, 0) are symplectomorphic if and only if the geometric restrictions f ∗ω and f ′∗ω′ are
diffeomorphic.

Thus in the non-singular case (the case of immersion-mono-germs), the classification
problem is reduced to that of the geometric restrictions of the symplectic form to the
sources. Note that the pull-backs of symplectic forms are not arbitrary. To explain this,
recall the standard notions: A submanifold M in the symplectic space (K2n, ω) is called
coisotropic (resp. isotropic, symplectic) if the skew-orthogonal in K2n to each tangent
space TpM , p ∈M , to M contains TpM (resp. the geometric restriction ω|M is zero, ω|M
is symplectic). By the classical Darboux theorem, for a coisotropic submanifold, the local
diffeomorphism class of the geometric restriction ω|M is determined by just the dimension
of M . Moreover, we know that a non-singular hypersurface is coisotropic. Then we have

Corollary 1.2 All non-singular hypersurface-germs in K2n are symplectomorphic. All
coisotropic (resp. isotropic, symplectic) submanifold-germs of fixed dimension in K2n are
symplectomorphic.

Note that all immersion-germs on a fixed dimensional source are diffeomorphic in
our sense. Therefore the symplectic classification is very different from the differential
classification.

In the singular case, however, even if f and f ′ are diffeomorphic and f ∗ω and f ′∗ω are
diffeomorphic, f and f ′ are not necessarily symplectomorphic.

In fact, in the case m = n = 1 for planar mono-curves (K, 0) → (K2, 0), we have
given both symplectic and differential exact classifications of differentially uni-modal plane
curve singularities, and clarified the difference between the differential and symplectic
classifications ([24][26]). For the classification of curves (m = 1, n ≥ 2), see [2][3][30][10][9].

A mapping f is called isotropic if f ∗ω = 0, that is, if
∑n

i=1 d(pi ◦ f)∧ d(xi ◦ f) = 0. If
m = 1, then any germ f : (K, S)→ (K2n, 0) is isotropic. Moreover if f : Kn → K2n,m =
n, then we often call isotropic f Lagrangian.

In the case m = n = 2, we have

Theorem 1.3 ([21]) Let f : (K2, 0) → (K4, 0) be isotropic. Suppose f is diffeomorphic
to

fou(t, u) =

(
t2, u, ut,

2

3
t3
)

= (p1, p2, x1, x2).
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Then f is symplectomorphic to fou (Darboux-type theorem). Moreover for any n there
exists a class of open umbrellas characterised by the symplectic structural stability, and
for them the Darboux-type theorem holds.

A generalization of the Darboux-Givental theorem to the singular case is given in.

Theorem 1.4 (Domitrz, Janeczko, Zhitomirskii, [10], 2006) For any N,N ′ ⊂ K2n quasi-
homogeneous, N and N ′ are symplectomorphic if and only if the algebraic restrictions
[ω]N and [ω]N ′ are diffeomorphic.

The algebraic restriction [ω]N is defined as the residue class of ω modulo the differential
ideal generated by the functions vanishing on N . Though the direct calculation of the
algebraic restriction for the open umbrella is not straightforward, we have via Theorem
1.3 the following:

Corollary 1.5 The algebraic restrictions of two symplectic forms with zero geometric
restrictions to an open umbrella are diffeomorphic to each other.

Roughly classifying the classification problems in the presence of various geometric
structures, we observe that there are, at least, two types:
(V) Classification of mappings and varieties, and
(D) Classification of differential forms and dynamical systems.

For classifications of type (V), we have finite lists of simplest objects and finite dimen-
sional moduli for complicated objects. Moreover the finite determinacy holds, except for
an infinite codimensional set of objects.

On the other hand, for classifications of type (D), we have finite lists of simplest
objects, but functional moduli for complicated objects. The finite determinacy does not
hold for objects of finite codimension.

Therefore, we ask whether our symplectic classification problem falls into type (V) or
(D).

Actually, this depends on the class of mappings we treat: The classification of isotropic
(or Lagrangian) varieties (or mappings) under symplectomorphisms falls into type (V),
and, in fact, several finiteness theorems are proved for them [22][24][25][26]. These results
clarify the difference between geometric and algebraic restrictions.

For the classification problem of singularities, the notion of codimension is the most
basic one to measure the complexity or degeneracy of singularities. For instance, the
classification of a class of singularities of mappings proceeds from small codimension to
large. In general, for a map-germ f : (Kn, S) → (Kp, 0), the Ae-codimension of f is
defined by

Ae-cod(f) = dimK Vf/[f∗(VS) + (Vp) ◦ f ],

the dimension of the quotient of the infinitesimal deformations of f by those induced
from right-left equivalences [32][38]. We often write cod(f) = Ae-cod(f) briefly. The
codimension Ae-cod(f) is finite if and only if f is finitely A-determined. Moreover the
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codimension is estimated by other geometric invariants such as 0-stable invariants in terms
of “disentanglement” ([28][34][35]). For instance, the Ae-codimension of an A-finite germ
f : (C, S)→ (C2, 0) is estimated as

Ae-cod(f) ≤ δ(f)− r + 1, · · · · · · (∗)

where r = #S, and equality holds if and only if f is quasi-homogeneous ([36]). See also
[8][18].

Let f : (Kn, S) → (K2n, 0) be a multi-germ of isotropic mapping (or Lagrangian
immersion with singularities). Then we set

sp-cod(f) = dimK V If/[f∗(VS) + (V H2n) ◦ f ],

and call it the symplectic codimension (or the symplectic-isotropic codimension) of f :
(Kn, S)→ (K2n, 0). Here V If is the space of infinitesimal isotropic deformations of f :

V If = {v : (Km, S)→ TK2n | v∗ω̇ = 0, π ◦ v = f},

for the natural symplectic lifting ω̇ of ω on TK2n, ω̇ =
∑n

i=1 dϕi ∧ dxi + dpi ∧ dξi for the
coordinates (x, p; ξ, ϕ) of TK2n, and π : TK2n → K2n is the bundle projection. Moreover
we denote by V H2n the space of holomorphic Hamiltonian vector fields over (K2n, 0), and
by VS the space of holomorphic vector fields over (Kn, S). The symplectic codimension
sp-cod(f) is regarded as the minimal number of parameters for “the symplectically versal
isotropic unfolding”of f , if f is of corank one.

In the case n = 1, any planar curve f : (K, S) → (K2, 0) is isotropic and the notion
of the symplectic codimension of f is given by

sp-cod(f) = dimK Vf/[f∗(VS) + (V H2) ◦ f ].

It is introduced in [24] and shown to be equal to δ(f) = dimKO1/f
∗O2, the number of

double points, in the case of mono-germs, r = 1. Here On denotes the K-algebra of C∞

or holomorphic function-germs on (Cn, 0). The result is easily generalized to multi-germs,
for general r, and in fact we have

sp-cod(f) = δ(f)− r + 1,

for a multi-germ f : (K, S)→ (K2, 0). Therefore Mond’s formula (*) is rewritten as

Ae-cod(f) ≤ sp-cod(f),

and the difference sd(f) = sp-cod(f)−Ae-cod(f) was called the symplectic defect, which
measures the difference of symplectomorphism and diffeomorphism classifications, i.e. the
dimension of the symplectic moduli space. It is also called the symplectic multiplicity in
[11].
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For n ≥ 2, there is no such simple relation between the Ae-codimension and the sym-
plectic codimension, because the symplectic-isotropic codimension indicates the codimen-
sion in a subspace of map-germs of an orbit of a subgroup of A. To measure the difference
between symplectomorphism equivalence and diffeomorphism equivalence for isotropic
map-germs we introduce another symplectic invariant diff-cod(f) = diff-codI(f), the
differential-isotropic codimension instead of the symplectic-isotropic codimension sp-cod(f) =
sp-codI(f) of f . Then we set

sd(f) = sp-cod(f)− diff-cod(f).

We give an algebraic description of sd(f) and show that both sp-cod(f) and diff-cod(f)
are A-invariant, hence so is sd(f). Moreover, we show an example of quasi-homogeneous
isotropic map-germs f : (C2, 0)→ (C4, 0) with sd(f) > 0.

In this paper, we also consider new geometric symplectic invariants of isotropic map-
pings for K = C. If a multi-germ of isotropic mapping f : (Cn, S)→ (C2n, 0) is of corank
≤ 1, and sp-cod(f) < ∞, then f can be perturbed to a symplectically stable isotropic
mapping f̃ whose singularities consist of open umbrellas and transverse self-intersection
points (double points). See §4. The number of transverse self-intersection points of the
perturbation f̃ does not depend on the perturbation. It is called the number of isotropic
double points of f and denoted by δI = δI(f).

Note that, for n = 1, δI(f) = δ(f).
We give a relation between the two symplectic invariants sp-cod(f) = sp-codI(f) and

δI(f) for isotropic map-germs f : (Cn, S) → (C2n, 0). Moreover, we introduce another
invariant uI(f), the number of open umbrellas, for isotropic map-germs f : (C2, S) →
(C4, 0) and provide a relation of δI(f) and uI(f) with the Segre number of the image
variety of f using Gaffney’s result ([14]).

2 Symplectic invariants of curves

First we consider symplectic classification of planar curves. Let f : (K, S) → (K2, 0) be
a multi-germ of planar curve. We assume that the base point set S consists of r points.

Theorem 2.1 Let f : (K, S) → (K2, 0) be an A-finite plane curve with r components.
Then sp-cod(f) and δ(f) are both finite and we have

sp-cod(f) = δ(f)− r + 1,

where r = #S and δ(f) = dimCOS/f ∗O2, the number of double points of a stable pertur-
bation of f .

Proof : We denote by JS ⊂ OS the ideal of OS consisting of the functions which vanish
on S, the Jacobson radical of OS. If S = {x0}, r = 1, then JS = mx0 ⊂ Ox0 , the unique

maximal ideal. For each v = v1

(
∂
∂x
◦ f
)

+ v2

(
∂
∂p
◦ f
)
∈ Vf , we take the unique function

h ∈ JS (“generating function”) such that

dh = v2d(x ◦ f)− v1d(p ◦ f) (= v∗θ̇),
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the pull-back of the Louville 1-form on TK2 by v : (K, S) → TK2 ∼= T ∗K2. Then the
generating function h belongs to

Rf = {h ∈ OS | dh ∈ 〈d(x ◦ f), d(p ◦ f)〉OS}.

Thus we have a linear mapping e : Vf → Rf ∩ JS. Clearly the mapping e is surjective.
Moreover we have e|f∗(VS) = 0 and e(XH ◦f) = (H−H(0))◦f , for the Hamiltonian vector
field XH with the Hamiltonian H ∈ O2. Then we have an exact sequence of vector spaces

0→
V ′f

f∗(VS)
→ Vf

f∗(VS) + (V H2) ◦ f
→ Rf ∩ JS

f ∗m2

→ 0,

where V ′f is the space of vector fields along f having zero generating functions.
Let S = {s1, . . . , sr}. Denote by fi the germ of f at si. Assume that the order of

fi at si is equal to ki. Then we have V ′f/f∗(VS) ∼= ⊕ri=1V
′
fi
/fi∗(Vsi) and it has dimension∑r

i=1(ki − 1) over K. On the other hand OS/(Rf ∩ JS) ∼= ⊕ri=1Osi/mki
si

and it has
dimension

∑r
i=1 ki over K. Thus we have

sp-cod(f) = dimK
Vf

f∗(VS) + (V H2) ◦ f

= dimK

V ′f
f∗(VS)

+ dimK
Rf ∩ JS
f ∗m2

= dimK
OS

Rf ∩ JS
− r + dimK

Rf ∩ JS
f ∗m2

= dimK
OS
f ∗m2

− r = dimK
OS
f ∗O2

− r + 1 = δ(f)− r + 1.

2

Remark 2.2 If we set

Gf = {h ∈ OS | dh ∈ 〈d(x ◦ f), d(p ◦ f)〉f∗O2},

then we have

Ae-cod(f) = dimK
OS
Gf

.

Moreover

sd(f) = dimK
Gf
f ∗O2

− r + 1.

Note that OS,Rf and Gf are defined via the exterior derivative and any locally constant
functions belong to them, which is not the case for f ∗O2.

Considering the symplectomorphism equivalence, we have given the classification of
uni-modal planar curve-germs and we observe that there exists the difference (or “quo-
tient”) between differential and symplectic classifications:
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Theorem 2.3 [26] For planar curves f : (K, 0) → (K2, 0), symplectic moduli appear
from diff-codim = 5 on (E12); while differential moduli appear from diff-codim = 8 on
(N20).

We can say that symplectic moduli appear earlier than differential moduli.
In general, for each homeomorphism class of planar curves, the symplectic moduli

space is mapped canonically onto the differential moduli space. The dimension of the
fiber over a diffeomorphism class [f ] equals sd(f). It is known that sd(f) = µ(f)− τ(f),
where µ(f) = 2δ(f) is the Milnor number of f and τ(f) is the Tyurina number of f
([37][31][10]). Let s(f) be the symplectic modality, that is, the number of parameters in
the symplectic normal form of f . Moreover let c(f) be the codimension of the locus in the
parameter space corresponding to germs diffeomorphic to f . Then s(f) − c(f) = sd(f).
Thus we have the formula, even for multi-germs, for the Tyurina number (by means of
Varchenko-Lando’s formula):

τ(f) = 2δ(f) + c(f)− s(f).

For a detailed symplectic classification of planar-mono-germs see [26].

3 Symplectic-isotropic codimension

Let κ be a germ of 2-form on (Km, S), S being finite. Then we denote by Oκm,2n the set
of map-germs f : (Km, S)→ (K2n, 0) with the geometric restriction f ∗ω = κ.

A deformation ft of f0 = f ∈ Oκm,2n is called isotropic if ft ∈ Oκm,2n, i.e. f ∗t ω = f ∗ω (=
κ). Then we set

sp-cod(f) = dimC V If/[f∗(VS,κ) + (V H2n) ◦ f ],

and call it the symplectic codimension (or the symplectic-isotropic codimension) of f :
(Cm, S)→ (C2n, 0). Here we set

VS,κ = {ξ ∈ VS | Lξκ = 0},

the space of vector fields which leave κ invariant. Note that VS,κ = VS if κ = 0.

Example 3.1 A map-germ f : (Km, S) → (K2n, 0) to the symplectic space (K2n, ω) is
called coisotropic if m ≥ n and f lifts to an isotropic mapping f̃ : (Km, S) → (K2n ×
K2k, 0) = (K2m, 0), with k = m− n. Here we regard K2m as a symplectic space with the
symplectic form ω 	 η = π∗1ω − π∗2η for the canonical symplectic form η of K2k = T ∗Kk

and projections π1 : K2n ×K2k → K2n, π2 : K2n ×K2k → K2k. A germ f is coisotropic
if and only if f ∗ω = g∗η for some g : (Km, S) → (K2k, 0). A coisotropic map-germ
f : (Km, S)→ (K2n, 0) is a coisotropic map-germ with regular reduction if g can be taken
to be a submersion. Then κ = g∗η is of constant rank and the coisotropic deformation of
f is investigated by studying the space Oκm,2n. The characteristic foliation Ff is generated
by the kernel field defined by f ∗ω = g∗η. Then any vector field in VS,κ preserves Ff .
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Now, for an isotropic f : (Kn, S)→ (K2n, 0), we define

diff-cod(f) = dimK
V If

f∗(VS) + (V2n ◦ f) ∩ V If
,

while

sp-cod(f) = dimC
V If

f∗(VS) + V H2n ◦ f
,

and

Ae-cod(f) = dimC
Vf

f∗(VS) + V2n ◦ f
.

Moreover we set
sd(f) = sp-cod(f)− diff-cod(f) (≥ 0),

the symplectic defect or symplectic multiplicity of f .
Note that, for n = 1, we have V If = Vf : any infinitesimal deformation is isotropic.

We define subspaces OS ⊇ Rf ⊇ Gf ⊇ f ∗O2n by

Rf = {e ∈ OS | de ∈ OS · f ∗(Ω1
2n)},

Gf = {e ∈ OS | de ∈ f ∗(Ω1
2n)},

where de is the exterior differential of the function e, Ω1
2n is the space of holomorphic

1-forms on (C2n, 0). Then we have algebraic formulae for symplectic invariants.

Theorem 3.2 ([25], r = 1). Let n ≥ 2. Let f : (Cn, S) → (C2n, 0) be isotropic. If f is
a normalization of its image and the codimension of non-immersive locus codCΣ(f) ≥ 2,
then

sp-cod(f) = dimK
Rf

f ∗O2n

− r + 1,

diff-cod(f) = dimK
Rf

Gf
,

sd(f) = dimK
Gf

f ∗O2n

− r + 1,

where r = #S.

Proof : We refer to the proof of Theorem 2.1 in the case n = 1. Each isotropic vector field
v ∈ V If has the unique generating function h ∈ Rf ∩JS such that dh = v∗θ̇. If we denote
by V I ′f is the space of isotropic vector fields with zero generating function, we have the
exact sequence

0→ V I ′f → V If → Rf ∩ JS → 0,

which induces the exact sequence

0→
V I ′f
f∗(VS)

→ V If
f∗(VS) + (V H2n) ◦ f

→ Rf ∩ JS
f ∗m2n

→ 0.
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Since the singular locus of f is of codimension ≥ 2, we have V I ′f = f∗(VS). Thus we see
that

V If
f∗(VS) + (V H2n) ◦ f

∼=
Rf ∩ JS
f ∗m2n

.

We claim that

dimK
Rf ∩ JS
f ∗m2n

= dimK
Rf

f ∗O2n

− r + 1.

In fact, we consider the linear map Rf → Kr = {S → K} defined by h 7→ h|S, and the
induced exact sequence

0→ Rf ∩ JS → Rf → Kr → 0.

The last sequence induces the exact sequence

0→ Rf ∩ JS
f ∗m2n

→ Rf

f ∗O2n

→ Kr/K ∼= Kr−1 → 0,

where Kr/K is the quotient by the diagonal translations.
An isotropic vector field v along f belongs to (V2n◦f)∩V If if and only if its generating

function belongs to Gf ∩ JS. Furthermore any element of Gf ∩ JS is a generating function
of (V2n ◦ f) ∩ V If . Therefore we have

V If
f∗(VS) + (V2n ◦ f) ∩ V If

∼=
Rf ∩ JS
Gf ∩ JS

.

Moreover we see that the inclusion Rf ∩ JS → Rf induces an isomorphism

Rf ∩ JS
Gf ∩ JS

∼=
Rf

Gf
.

Thus we have the remaining equalities. 2

Since Rf ,Gf are defined independently of the symplectic structure, we have:

Corollary 3.3 For isotropic map-germs f : (Kn, S)→ (K2n, 0), sp-cod(f) and diff-cod(f)
are differential invariants. Namely, if f, f ′ are diffeomorphic, then sp-cod(f) = sp-cod(f ′)
and diff-cod(f) = diff-cod(f ′).

4 Symplectic codimension and double points

We recall the Artin-Nagata formula (Mumford’s formula) [5]: For an A-finite map-germ
f : X = (Cn, S)→ Y = (C2n, 0), the number of double points is given by δ(f) = 1

2
dimC ε,

where ε = Ker(OX×YX → OX) is the kernel of the induced morphism from the diagonal
map X → X ×Y X to the fiber product of f . For a map-germ f : (Cn, 0)→ (C2n, 0), we
have as in [14]:

δ(f) = dimC
〈x1 − x̃1, . . . , xn − x̃n〉O2n

〈f1(x)− f1(x̃), . . . , f2n(x)− f2n(x̃)〉O2n

.
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Also we have δ(f) = 1
2

dimC OX ⊗f∗OY (OX/f ∗OY ) .

For n ≥ 2, the inequality Ae-cod(f) ≤ δ(f)− r + 1 does not hold in general.

Example 4.1 ([5]): Let f : (C2, S) → (C4, 0) be an immersion whose image consists
of three planes intersecting transversely to each other at 0 ∈ C4. Then Ae-cod(f) = 2,
δ(f) = 3, #S = r = 3,

Originally, the above Mumford example is for δ(f) 6= dimCOn/f ∗(O2n). In fact,
dimCOn/f ∗(O2n) = 4 for that example.

On the other hand, Gaffney [14] showed the following: For an A-finite map-germ
f : (Cn, 0)→ (C2n, 0),

δ(f) =
1

2
[ Segre2n〈f1(x)− f1(x̃), . . . , f2n(x)− f2n(x̃)〉O2n

−Whitney(π ◦ f : (Cn, 0)→ (C2n−1, 0)) ] ,

half of [the Segre number of the ideal defining the double points in O2n = OCn×Cn minus
the number of Whitney umbrellas of a generic projection π : Cn → C2n−1 composed with
f ].

Now we consider symplectic-isotropic singularities: If an isotropic map-germ f :
(Cn, S) → (C2n, 0) is of corank one and is stable among isotropic perturbations un-
der symplectomorphisms, then f is symplectomorphic to an open umbrella, which can be
explicitly represented as a polynomial normal form, and projects to the Whitney umbrella
[21]. Note that, though the result was stated in the real C∞ case, even in the holomorphic
and local case, similar results follow.

If an isotropic map-germ f : (Cn, S)→ (C2n, 0) is of corank ≤ 1 and sp-cod(f) <∞,
then f can be perturbed to a symplectically stable isotropic mapping f̃ whose singu-
larities consist of “open umbrellas”(singularities of codimension 2) and transverse self-
intersection points (double points). The number of transverse self-intersection points of
the perturbation f̃ does not depend on symplectically stable perturbations. It is called
the number of isotropic double points of f and denoted by δI = δI(f).

We set
Bε = {x ∈ C2n | |x| < ε}.

Then we have

Proposition 4.2 Let f : (Cn, S)→ (C2n, 0) be a multi-germ of an isotropic mapping of
corank ≤ 1 and sp-cod(f) < ∞. Then a representative f : f−1(Bε) → C2n can be per-
turbed to a symplectically stable isotropic mapping f̃ : f̃−1(Bε)→ C2n whose singularities
consist of open umbrellas and transverse double points. The number of double points is
independent of the perturbation, provided ε > 0 is sufficiently small.

We need to show the following to get an algebraic formula for the number of double
points after isotropic stable perturbations.
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Lemma 4.3 Let f : (Cn, S)→ (C2n, 0) be a multi-germ of an isotropic mapping. If f is
of corank ≤ 1 and the isotropic codimension sp-cod(f) <∞, then f is a finite mapping,
and the sheaf f∗Rf/O2n is a coherent O2n-module.

Proof : Suppose f is isotropic and sp-cod(f) = dimC V If/[f∗(VS) +V H2n ◦ f ] <∞. Then

dimCRf/f
∗O2n = dimC(Rf ∩ JS)/(f ∗m2n)− r + 1

is finite dimensional over C. Note that the above equality was used in the proof of
Theorem 3.2, but it holds under the assumption that f is isotropic. Thus we deduce
that Rf is a finite O2n-module. Moreover suppose that f is of corank ≤ 1. Then we
see that f is a finite mapping (see the proof of Proposition 2.3 of [21] and Remark 2.3
of [19]). Now consider the de Rham complex (Ω, d) of holomorphic differential forms on
(Cn, S) defined by the exterior differential d, and the differential ideal I generated by the
exterior differentials of components of f . Then the induced complex (Ω/I, d) is a coherent
On-module. Then, by the finite coherence theorem (see for instance [17]), (f∗(Ω/I), d) is
a coherent O2n-module. Thus the 0-th cohomology f∗Rf is also a coherent O2n-module.
(see Proposition 1.1 of [20]). Therefore f∗Rf/O2n is a coherent O2n-module as required.
2

Example 4.4 Let f : (Kn, S)→ (K2n, 0), S be a set of transverse double points, #S =
r = 2. Then dimKRf/f

∗O2n = 1.

Example 4.5 (open umbrella): An isotropic map-germ f : (K2, 0) → (K4, 0) is called
an open umbrella if f is symplectomorphic to fou := (x1, x2, p1, p2) = (t2, u, ut, 2

3
t3) :

(K2, 0)→ (K4, 0). It is of corank one, its singular locus is of codimension 2. Moreover we
have Ae-cod(f) = 1, δ(f) = 1. The open umbrella is symplectically stable under isotropic
deformations. Therefore we have diff-cod(f) = sp-cod(f) = 0 and δI(f) = 0.

Theorem 4.6 For an isotropic map-germ f : (Cn, S)→ (C2n, 0) of corank one and with
sp-cod(f) <∞, we have

dimC
Rf

f ∗O2n

≥ δI(f).

Therefore we have

diff-cod(f) ≤ sp-cod(f) ≥ δI(f)− r + 1.

Proof : For a stable isotropic perturbation f̃ of f , the support of the sheaf f̃∗Rf̃/O2n is

the set of double points of f̃(f̃−1Bε) = Ṽ . Therefore δI(f) is obtained as the sum of the
dimensions of f̃∗Rf̃/O2n at the double points. Let F : (Cn×C, (S, 0))→ (C2n×C, (0, 0)),
F (x, t) = (ft(x), t), f0 = f , be an isotropic unfolding of f which induces a stable isotropic
perturbation. We denote by DF the closure of the locus of double points of F . Denote
by π : DF → C the projection to the parameter space C. Then π is a finite mapping.
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Moreover the stalk F∗RF/O2n+1 at a point (y, t) ∈ C2n+1 is C-isomorphic to (ft)∗Rft/O2n

at y ∈ C2n. Therefore δI(f) is obtained as the sum of the dimensions of F∗RF/O2n+1 on
π−1(t) ⊂ DF for t 6= 0. Thus we have

dimCRf/f
∗O2n = dimC π∗ (F∗RF/O2n+1)0

≥ dimC π∗ (F∗RF/O2n+1)t
=

∑
y∈π−1(t) dimC (F∗RF/O2n+1) = δI(f).

2

Again we remark that, in the inequality sp-cod(f) ≥ δI(f) − r + 1, equality holds in
the case n = 1, but not in general for n ≥ 2. Therefore, setting

i(f) = sp-cod(f)− (δI(f)− r + 1),

it is natural to ask for the interpretation of i(f) in symplectic terms. We remark that the
numbers δ(f)− r + 1 and δI(f)− r + 1 have a clear topological meaning.

Proposition 4.7 For A-finite f : (Cn, S)→ (C2n, 0), the disentanglement (the image of
a stable perturbation) is homotopically equivalent to the bouquet of δ(f)−r+1 circles. For
an isotropic f : (Cn, S)→ (C2n, 0) of corank ≤ 1 with sp-cod(f) <∞ the isotropic disen-
tanglement (the image of an isotropically stable perturbation) is homotopically equivalent
to the bouquet of δI(f)− r + 1 circles.

Proof : The image of each 2n-ball of f̃−1Bε has, as a deformation retract, a finite tree
with vertices which are double points of f̃ . Thus the perturbed image is homotopically
equivalent to a compact 1-dimensional complex. Therefore f̃(f̃−1Bε) is homotopically
equivalent to

∨m S1 for some m. Moreover we have

χ(f̃(f̃−1Bε)) = rχ(D2n)− δ = r − δ.

Hence χ = 1−m. Thus we have m = δ − r + 1. 2

5 Symplectic invariants of surfaces

First we observe

Lemma 5.1 For an isotropic map-germ f : (C2, S) → (C4, 0), sp-cod(f) < ∞ if and
only if Ae-cod(f) <∞.

For an isotropic f : (C2, S)→ (C4, 0), we can define “the number of open umbrellas”
uI = uI(f), in addition to δI = δI(f). Then the sum of the number of open umbrellas
uI(f) and the number of isotropic double points δI(f) is equal to the number of double
points δ(f):

δI(f) + uI(f) = δ(f),

because δ = 1 for each open umbrella. Moreover, by the isotropic nature of f , we have
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Lemma 5.2 Let f : (C2, S) → (C4, 0) be an isotropic map-germ of corank ≤ 1. Here
corank(f) = maxs∈S coranks(f). Then,

uI(f) = Whitney(π ◦ f),

the number of Whitney umbrellas of a generic projection π : C4 → C3 composed with f .

Proof : Suppose f is of corank 1 at s1, . . . , sr′ and is immersive at sr′+1, . . . , sr. Let `i =
f∗(TsiC

2) ⊂ T0C
4, 1 ≤ i ≤ r′. Take the skew-orthogonal `⊥i = {v ∈ T0C

4 | ω(v, `i) = 0}
to `i, which is of dimension 3. Then take any line ` ⊂ T0C

4 such that

(`⊥1 ∪ · · · ∪ `⊥r′ ∪ Πr′+1 ∪ · · · ∪ Πr) ∩ ` = {0},

where Πj = f∗(TsjC
2), and take the projection along ` as a generic projection. Then, for

any isotropic perturbation f̃ , the tangent space f̃∗(TpC
2), p ∈ (C2, S). does not contain

`. In fact, f̃∗(TpC
2) contains a line `′ (6= `) near `1, . . . , `r′ ,Πr′+1, . . . ,Πr. Moreover

` 6⊂ (`′)⊥. If ` ⊂ f̃∗(TpC
2), then ω(`, `′) 6= 0. This leads to a contradiction, since f̃ is

isotropic. Therefore any singular point of π ◦ f̃ comes from a singular point of f̃ . Thus
the number of Whitney umbrellas of π ◦ f̃ is equal to the number of open umbrellas of f̃ .
2

Therefore we have, by Gaffney’s formula,

Proposition 5.3 For an isotropic map-germ f : (C2, 0)→ (C4, 0) with sp-cod(f) <∞,
we have

Segre4 = 2δI + 3uI .

Proof : By Gaffney’s formula 2δ = Segre4−Whitney(π◦f). We have shown that δ = δI+uI
and uI = Whitney(π ◦ f). Therefore we have

Segre4 = 2δ + Whitney(π ◦ f) = 2(δI + uI) + uI = 2δI + 3uI .

2

Example 5.4 (open umbrella): For the isotropic map-germ

fou := (x1, x2, p1, p2) =

(
t2, u, ut,

2

3
t3
)

: (C2, 0)→ (C4, 0)

Rf = Gf = f ∗O4; sp-cod(fou) = 0, sd(fou) = 0, δI = 0, uI = 1, δ = 1, Segre4 = 3.

Example 5.5 (multiple open umbrella): For the isotropic map-germ
f±mou(t, u) := (t2, u, t3 ± u2t, 4

3
ut3) : (C2, 0)→ (C4, 0). Rf ) Gf = f ∗O2n; sp-cod(f±mou) =

1, sd(f±mou) = 0, δI = 1, uI = 2, δ = 3, Segre4 = 8. There is no difference between “diff”
and “symp”.
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Example 5.6 Consider the family fλ : (C2, 0)→ (C4, 0)

fλ(u, t) :=

(
t2, u, t5 + ut3 + λu2t,

2

5
t5 +

4

3
λut3

)
= (x1, x2, p1, p2).

Then fλ is isotropic. The mapping fλ has an isolated singularity at 0 if and only if λ 6= 0,
and then sp-cod(fλ) = 2. Suppose moreover λ 6= 0, 21

100
. Then we have sp-cod(fλ) =

2, diff-cod(fλ) = 1 and dimC Gfλ ) fλ
∗O4 = 1 = sd(fλ) = 1. We see that fλ is

trivial under diffeomorphisms and not trivial under symplectomorphisms: λ gives the
“symplectic moduli” Rfλ ) Gfλ ) fλ

∗O4. Thus, in symplectic codimension 2, a difference
between “diff” and “symp” appears. Note that fλ is quasi-homogeneous and we have
δI = 2, uI = 2, δ = 4, Segre4 = 10.

An algebraic formula for the number uI of open umbrellas is known:

Lemma 5.7 [23] For f : (C2, S)→ (C4, 0), we have

uI = dimC
O2

Jf
,

where Jf is the ideal generated by the 2-minors of the Jacobi matrix of f .
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homogeneity and vector fields tangent to a singular variety, Illinois J. Math. 48–3 (2004), 803–835.

[11] W. Domitrz, S. Janeczko, M. Zhitomirskii, Symplectic singularities of varieties: the method of alge-
braic restrictions, J. für die Reine und Angewandte Mathematik, 618 (2008),197-235.

14



[12] W. Domitrz, J.H. Rieger, Volume-preserving diffeomorphisms on varieties and AΩ-equivalence of
maps, Preprint (2006).

[13] W. Fulton, Intersection Theory, Erbegnisse der Mathematik und ihrer Grenzgebiete 3.Folge, Band
2, Springer-Verlag Berlin Heidelberg (1984).

[14] T. Gaffney, L0-equivalence of maps, Math. Proc. Camb. Phil. Soc., 128 (2000), 479–496.

[15] M.D. Garay, An isochore versal deformation theorem, Topology, 43 (2004), 1081–1088.

[16] A.B. Givental, Singular Lagrangian manifolds and their Lagrangian mappings, Itogi Nauki Tekh.,
Ser. Sovrem. Prob. Mat., (Contemporary Problems of Mathematics) 33, VINITI, 1988, pp. 55–112.
English transl., J. Soviet Math. 52 (1990), no. 4, 3246–3278.

[17] G.-M. Greuel, C. Lossen, E. Shustin, Introduction to Singularities and Deformations, Springer-
Verlag, (2007).

[18] M.E. Hernandes, M.E. Rodrigues Hernandes, M.A.S. Ruas, Ae-codimension of germs of analytic
curves, manuscripta math., 124 (2007), 237–246.

[19] G. Ishikawa, Families of functions dominated by distributions of C-classes of mappings, Ann. Inst.
Fourier 33–2 (1983), 199–217.

[20] G. Ishikawa, Parametrized Legendre and Lagrange varieties, Kodai Math. J. 17–3 (1994), 442–451.

[21] G. Ishikawa, Symplectic and Lagrange stabilities of open Whitney umbrellas, Invent. math., 126-2
(1996), 215–234.

[22] G. Ishikawa, Determinacy, transversality and Lagrange stability, Banach Center Publ. 50 (1999),
123–135.

[23] G. Ishikawa, Perturbations of Caustics and Fronts, in ”Geometry and Topology of Caustics —
Caustics ’02”, Banach Center Publ. 62 (2004), 101–116.

[24] G. Ishikawa, S. Janeczko, Symplectic bifurcations of plane curves and isotropic liftings, Quarterly
J. Math., 54 (2003), 73–102.

[25] G. Ishikawa, S. Janeczko, Symplectic singularities of isotropic mappings, Geometric Singularity
Theory, Banach Center Publications 65, (2004), 85-106.

[26] G. Ishikawa, S. Janeczko, The complex symplectic moduli spaces of uni-modal parametric plane curve
singularities, Preprint, Institute of Mathematics, Polish Academy of Sciences, 664 (January 2006).

[27] G. Ishikawa, S. Janeczko, Bifurcations in symplectic space, Banach Center Publ. 82 (2008),111 - 124

[28] T. de Jong, D. van Straten, Disentanglement, in Singularity Theory and its Applications, Lecture
Notes in Math., 1462 (1991), Springer-Verlag, pp. 199–211.

[29] C. Klotz, O. Pop, J.H. Rieger, Real double points of deformations of A-simple map-germs from Rn

to R2n, Math. Proc. Camb. Phil. Soc., 142 (2007), 341–363.

[30] P.A. Kolgushkin, Classification of simple multigerms of curves in a space endowed with a symplectic
structure, St. Petersburg Math. J., 15–1 (2004), 103–126.

[31] S.K. Lando, Normal forms of the degrees of a volume form, Funct. Anal. Appl. 19–2 (1984),
146–148.

[32] J.N. Mather, Stability of C∞ mappings III: Finitely determined map-germs, Publ. Math. I.H.E.S.,
35 (1968), 127–156.

[33] J. Milnor, Singular Points of Complex Hypersurfaces, Annals of Math. Studies, 61, Princeton Univ.
Press, 1986.

[34] D. Mond, Some remarks on the geometry and classification of germs of maps from surfaces to 3-
space, Topology, 26 (1987), 361–383.

15



[35] D. Mond, Vanishing cycles for analytic maps, Singularities Theory and Applications, Warwick 1989.
Lecture Notes in Math., 1462, Springer, Heidelberg (1991), pp. 221–234.

[36] D. Mond, Looking at bend wires, Ae-codimension and the vanishing topology of parametrized curve
singularities, Math. Proc. Camb. Phil. Soc., 117 (1995), 213–222.

[37] A.N. Varchenko, Local classification of volume forms in the presence of a hypersurface, Funct. Anal.
Appl. 19–4 (1984), 269–276.

[38] C.T.C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981), 481–
539.

[39] C.T.C. Wall, Singular Points of Plane Curves, Cambridge Univ. Press (2004).

[40] O. Zariski, Le problème des modules pour les branches planes, Cours donné au Centre de
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