超楕円並進曲面の曲線グラフについて

四之宮 佳彦 (焼津)

March 25, 2025

第30回沼津改め静岡研究会

↑天神屋さんHPより

- 1. Introduction
- 2. Simple Cylinders and Main Theorem
- 3. Proof : Geometry of Flat Surface of Genus 0

 $+ \alpha$

1. Introduction

Translation Surface

A translation surface (X, ω) is a pair of a Riemann surface X and holomorphic 1-form $\omega \neq 0$ on X. If $p_0 \in X$ is not a zero of ω , there is a neighborhood U s.t.

$$z=\int_{p_0}^p\omega:U\to\mathbb{C}$$

is a chart of X. Let (U, z), (V, w) be such charts with $U \cap V \neq \emptyset$, the transition function is

$$w = z + (\text{const.}).$$

We may use terminologies of Euclidean geometry on (X, ω) . ex.) lengths and slopes of segments and area.

Flat Surface

A flat surface (X, q) is a pair of a Riemann surface X and mero. quad. diff. $q \neq 0$ on X.

If $p_0 \in X$ is not a zero or pole of q, there is a neighborhood U s.t.

$$z=\int_{p_0}^p \sqrt{q}: U\to \mathbb{C}$$

is a chart of X. Let (U, z), (V, w) be such charts with $U \cap V \neq \emptyset$, the transition function is

$$w = \pm z + (\text{const.}).$$

We may use terminologies of Euclidean geometry on (X, ω) . ex.) lengths and slopes of segments and area.

Charts around Zeros and Poles

If $p_0 \in X$ is a zero of q of order n, n + 2 half planes are glued around p_0 .

Gluing edges by the same labels of the following polygon, the resulting surface X is of genus 3. We give a complex structure on X so that the differential dz on this polygon induces a holo. 1-form ω . Then, $\operatorname{St}_5 = (X, \omega)$ is a translation surface with only one zero.

 \bigcirc : angle = 10 π , zero of order 4

Hyperelliptic Involution and $\mathcal{H}^{\mathrm{hyp}}(2g-2)$

Definition

Let X be a compact Riemann surface of genus $g \ge 2$.

The hyperelliptic involution τ of X is an order 2 automorphism which has 2g + 2 fixed points.

By Riemann-Hurwitz formula, $X/\langle \tau \rangle \cong \hat{\mathbb{C}}$.

• $\mathcal{H}^{\mathrm{hyp}}(2g-2) := \{(X, \omega) : X \text{ is hyperelliptic}, \omega \text{ has a unique zero}, \tau^* \omega = -\omega\}$

• $\mathcal{H}^{\mathrm{hyp}}(g-1,g-1) := \{(X,\omega) : X \text{ is hyperelliptic}, \ \omega \text{ has two zeros permuted by} \tau, \tau^* \omega = -\omega \}$ $\mathcal{H}^{\mathrm{hyp}}_{g} := \mathcal{H}^{\mathrm{hyp}}(2g-2) \cup \mathcal{H}^{\mathrm{hyp}}(g-1,g-1)$

10/29

Example : $St_5 \in \mathcal{H}^{hyp}(4)$

Example : $\operatorname{St}_5 \in \mathcal{H}^{\operatorname{hyp}}(4)$

Geodesics on (X, ω)

Definition

Let (X, ω) be a translation surface.

- A simple closed geodesic on (X, ω) is called regular if it does not pass through singular points.
- A saddle connection on (X, ω) is a segment which connects singular points and does not contain singular points in its interior.

Regular geodesics are not unique in a homotopy class.

$$[\gamma] := \bigcup \{ \delta : \delta \text{ is a regular geodesic}, \delta \sim \gamma \}$$

is an open Euclidean cylinder each of whose boundary components is a concentration of saddle connections which are parallel to γ . We call [γ] the maximal cylinder for γ .

$$[\gamma] := \bigcup \{ \delta : \delta \text{ is a regular geodesic}, \delta \sim \gamma \}$$

is an open Euclidean cylinder each of whose boundary components is a concentration of saddle connections which are parallel to γ . We call [γ] the maximal cylinder for γ .

$$[\gamma] := \bigcup \{ \delta : \delta \text{ is a regular geodesic}, \delta \sim \gamma \}$$

is an open Euclidean cylinder each of whose boundary components is a concentration of saddle connections which are parallel to γ . We call [γ] the maximal cylinder for γ .

$$[\gamma] := \bigcup \{ \delta : \delta \text{ is a regular geodesic}, \delta \sim \gamma \}$$

is an open Euclidean cylinder each of whose boundary components is a concentration of saddle connections which are parallel to γ . We call [γ] the maximal cylinder for γ .

A maximal cylinder is called simple if each boundary component is a saddle connection. $Example : [\delta]$ The curve graph $C(X, \omega)$ for a translation surface (X, ω) :

- the vertices are the cylinders $[\gamma]$ of regular closed geodesics γ of (X, ω) ,
- two vertices $[\gamma], [\delta]$ are connected by an edge if $[\gamma]$ and $[\delta]$ are disjoint i.e. $i(\gamma, \delta) = 0$ (geometric intersection number).

Theorem (Nguyen:g = 2, S: $g \ge 3$)

- If $(x, \omega) \in \mathcal{H}^{hyp}(2g 2)$, then $\mathcal{C}(X, \omega)$ contains K_g but not K_{g+1} .
- If $(x, \omega) \in \mathcal{H}^{hyp}(g 1, g 1)$, then $\mathcal{C}(X, \omega)$ contains K_{g+1} but not K_{g+2} .

Remark

The curve graph $\mathcal{C}(X, \omega)$ is not always connected.

Example The case where $X = [\gamma]$.

Remark

The curve graph $C(X, \omega)$ is not always connected.

Example The case where $X = [\gamma]$.

The cylinder $[\gamma]$ intersects with any closed geodesics on (X, ω) . Thus, $[\gamma]$ is an isolated vertex of $\mathcal{C}(X, \omega)$.

Degenerate cylinder

Definition (Degenerate cylinder)

A degenerate cylinder on $(X, \omega) \in \mathcal{H}_g^{hyp}$ is the union of two saddle connections $[\gamma] := s_1 \cup s_2$ s.t.

- s_i is invariant under the hyperelliptic involution τ (i = 1, 2),
- $[\gamma]$ satisfies the following angle condition;

Degenerate cylinder

Definition (Extended curve graph)

The extended curve graph $\hat{C}(X, \omega)$:

- the vertices are the cylinders $[\gamma]$ or degenerate cylinders of (X, ω) ,
- two vertices $[\gamma], [\delta]$ are connected an edge if they are disjoint. Let $d(\cdot, \cdot)$ be the graph distance for $\hat{C}(X, \omega)$ and $i(\cdot, \cdot)$ the geometric intersection number function for closed curves.

Main Theorem (Nguyen:g = 2, S: $g \ge 3$)

Let $[\gamma], [\delta]$ be vertices of $\hat{\mathcal{C}}(X, \omega)$. Then,

 $d([\gamma], [\delta]) \leq 3i([\gamma], [\delta]) + 6.$

Here, $i([\gamma], [\delta]) = i(\gamma, \delta)$.

Corollary

For $(X, \omega) \in \mathcal{H}_g^{\text{hyp}}$, the curve graph $\hat{\mathcal{C}}(X, \omega)$ is connected.

3. Proof: Geometry of Flat Surface of Genus 0

Flat Surface (Y, q) of genus 0

Let $(X, \omega) \in \mathcal{H}_g^{\text{hyp}}$ with the hyperelliptic involution τ . $(Y, q) = (X, \omega) / \langle \tau \rangle$: a flat surface of genus 0. Here, q is the mero. quadratic differential induced by ω^2 on Y. The flat surface (Y, q) has a unique singular point \circ and some poles \bullet .

Proposition

For any regular geodesic γ on (X, ω) , the maximal cylinder $[\gamma]$ is invariant under τ . Especially, the "mid" core curve of $[\gamma]$ passes through two fixed points of τ other than \circ .

Proposition

Let s be a saddle connection on (Y, q) and $\mathbf{v} \in \mathbb{R}^2$ with $\mathbf{v} \not| \langle s$. There exists a triangle Δ satisfying the following:

- one of the edges is *s*,
- there are no singularities in its interior,
- \bullet only the vertices are \circ and

Note: One of the sides of Δ may be parallel to **v**.

Remark

We construct "good" triangulations of (Y, q) by this proposition. The "ends" of this triangulation are triangles corresponding to simple cylinders on (X, ω) .

Lemma 1

Assume that $\overline{[\gamma]} \neq X$ and $i([\gamma], [\delta]) > 0$. Then, there exists a simple cylinder $[\gamma']$ such that $d([\gamma], [\gamma']) \leq 1$ and $i([\gamma'], [\delta]) \leq i([\gamma], [\delta])$.

Lemma 2

Assume that $\overline{[\gamma]} = X$. Then, there exists a simple cylinder $[\gamma']$ such that $d([\gamma], [\gamma']) = 2$ and $i([\gamma'], [\delta]) \le i([\gamma], [\delta])$.

- $d([\gamma], [\delta])$ $\leq d([\gamma], [\gamma'])d([\gamma'], [\delta']) + d([\delta'], [\delta]) \leq d([\gamma'], [\delta']) + 4$
- $i([\gamma], [\delta]) \ge i([\gamma'], [\delta]) \ge i([\gamma'], [\delta'])$

Proof of Lemma 1

Lemma 1

Assume that $\overline{[\gamma]} \neq X$ and $i([\gamma], [\delta]) > 0$. Then, there exists a simple cylinder $[\gamma']$ such that $d([\gamma], [\gamma']) \leq 1$ and $i([\gamma'], [\delta]) \leq i([\gamma], [\delta])$.

<u>Proof</u> Let $(Y, q) = (X, \omega) / \langle \tau \rangle$. Then q has a unique zero \circ and some simple poles \bullet . If $[\gamma]$ is a simple cylinder, then $[\gamma'] = [\gamma]$. Assume that $[\gamma]$ is not a simple cylinder.

Proof of Lemma 2

Lemma 2

Assume that $\overline{[\gamma]} = X$. Then, there exists a simple cylinder $[\gamma']$ such that $d([\gamma], [\gamma']) = 2$ and $i([\gamma'], [\delta]) \leq i([\gamma], [\delta])$.

<u>Proof</u>

Proof of Lemma 2

Lemma 2

Assume that $\overline{[\gamma]} = X$. Then, there exists a simple cylinder $[\gamma']$ such that $d([\gamma], [\gamma']) = 2$ and $i([\gamma'], [\delta]) \le i([\gamma], [\delta])$.

- $1 < d([\gamma], [\gamma']) \le d([\gamma], [\gamma'']) + d([\gamma''], [\gamma']) = 2$ $\rightarrow d([\gamma], [\gamma']) = 2$
- $i([\gamma'], [\delta]) \leq i([\gamma], [\delta])$ by construction.

Hereafter, the direction of a cylinder $C = [\gamma]$ is a direction of γ .

Lemma 3

Let C' and D' be simple cylinders. If there exists a leaf of direction D' which does not intersect C', then $d(C', D') \leq 2$.

Lemma 4

Let C' and D' be simple cylinders. If all leaves of direction D' intersect C', then there exists a simple cylinder C'' such that $d(C', C'') \leq 3$ and i(C'', D') < i(C', D').

If C' and D' satisfy the assumption of Lemma 3, then $d(C', D') \leq 2$. If not, apply Lemma 4; there exists a simple cylinder C'' such that

- $d(C', D') \leq d(C', C'') + d(C'', D') \leq 3 + d(C'', D')$
- i(C'', D') < i(C', D')

 $\rightarrow \cdots \rightarrow d(C,D) \leq d(C',D') + 4 \leq \cdots \leq 3i(C,D) + 6.$

Aff⁺(X, ω) := { $h: X \to X$: ori. pres. homeo : h is an affine map of (X, ω) } i.e. h is locally of the form h(z) = Az + c on (X, ω) . $\Gamma(X, \omega) :=$ { $A \in SL(2, \mathbb{R}) : h$ is locally h(z) = Az + c ($h \in Aff^+(X, \omega)$)} A map $h \in Aff^+(X, \omega)$ induces an automorphism $\rho(h)$ of $\hat{C}(X, \omega)$.

Theorem (Nguyen)

Let
$$(X, \omega) \in \mathcal{H}_{g}^{hyp}$$
. Then, $\operatorname{Aut}\left(\hat{\mathcal{C}}(X, \omega)\right) = \rho\left(\operatorname{Aff}^{+}(X, \omega)\right)$

Theorem (Nguyen)

Let $(X, \omega) \in \mathcal{H}_2^{\text{hyp}}$. Then, $\Gamma(X, \omega)$ is a lattice in $SL(2, \mathbb{R})$ iff the number of vertices of $\hat{\mathcal{C}}(X, \omega)/\text{Aut}(\hat{\mathcal{C}}(X, \omega))$ is finite.

$$ightarrow$$
 How about $(X,\omega)\in \mathcal{H}^{\mathrm{hyp}}_{m{g}}$?

Theorem (Nguyen)

If $(X, \omega) \in \mathcal{H}_2^{\text{hyp}}$, then the extended graph $\hat{\mathcal{C}}(X, \omega)$ is Gromov hyperbolic.

 \rightarrow How about $(X, \omega) \in \mathcal{H}_{g}^{\mathrm{hyp}}$?

Theorem (Nguyen:g = 2, S: $g \ge 3$)

- If $(x, \omega) \in \mathcal{H}^{\mathrm{hyp}}(2g 2)$, then $\mathcal{C}(X, \omega)$ contains K_g but not K_{g+1} .
- If $(x, \omega) \in \mathcal{H}^{hyp}(g 1, g 1)$, then $\mathcal{C}(X, \omega)$ contains K_{g+1} but not K_{g+2} .

 \rightarrow How about $\hat{\mathcal{C}}(X,\omega)$?

References

- [Gar87] Frederick P. Gardiner, Teichmüller theory and quadratic differentials, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987, A Wiley-Interscience Publication.
- [KZ03] Maxim Kontsevich and Anton Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math.
 153 (2003), no. 3, 631–678. MR 2000471
- [Ngu11] Duc-Manh Nguyen, Parallelogram decompositions and generic surfaces in $\mathcal{H}^{\mathrm{hyp}}(4)$, Geom. Topol. **15** (2011), no. 3, 1707–1747. MR 2851075
- [Ngu14] Duc-Manh Nguyen, On the topology of $\mathcal{H}(2)$, Groups Geom. Dyn. 8 (2014), no. 2, 513–551. MR 3231227
- [Ngu17] Duc-Manh Nguyen, Translation surfaces and the curve graph in genus two, Algebr. Geom. Topol. **17** (2017), no. 4, 2177–2237. MR 3685606
- [Str84] Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984.

3Dプリンタ

- QIDI TECH QI Pro
- 46.7奥行きx 47.7幅x 48.9高さ(cm)
- ・8万円くらい
- 材料:フィラメント
 (数種類の素材がある)

色々作ってみた!

ルーローの三角形

ルーローの多角形

三角錐の体積

シェルピンスキーのギャスケット

シェルピンスキー四面体

Q. 上から見ると円,正面から見ると正三角形, 横から見ると四角形であるような立体は?

Q. 上から見ると円,正面から見ると正三角形, 横から見ると四角形であるような立体は?

Q. 上から見ると正三角形,正面から見ると正方形, 横から見ると正五角形であるような立体は?

Q. 上から見ると正三角形,正面から見ると正方形, 横から見ると正五角形であるような立体は?

楕円の面積公式:関孝和の方法

