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In this talk, each mfds N, ? and each maps N — () are smooth of
class C°° unless otherwise stated.

§ 0 My interest

Q For a given mfd N, STUDY N by using maps f: N — @, especiallly
by using singularity of stable maps f: N — Q!!

A C>® map f: N - Q is C* stable (or CO stable)

open
®©F IN(f) TC C(N,Q): a nbd of f s.t. Vg € N(f), 3d: N — N
and V: Q — Q: diffeo.s (resp. homeo.s) which make the following
diagram commutative:

U
Q — Q)
where C*°(N, Q) is equipped with the Whitney C° topology.
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~ Mather '71 \
N™ a cpt. n-mfd, QP be a p-mfd.
dense
{f: N*" — QP :a C°° stable map} C C°°(N",QP)
if the pair (n,p) is in the NICE RANGE in the sense of Mather.
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If the dim pair (n,p) is in the nice range, then each map f: M™ — NP
IS approximated by a stable map.
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Fora C°®° map f: N — Q,

S(f) ={peM|
F(S(f)) : the set
Singular pt.s (or s
topology of N and

rankdf, < dim@} : the set of singul. pt.s of f,
of singul. values of f.

ingular values) of stable maps N — @ relate to

Q.

~ R. Thom

where p € N™ is a
equiv. to the form

N

For a stable map f: N® — R?, (n > 2) of closed n-mfd, we have

x(IV) = #cusps(f)  (mod 2),
cusp point if the map-germ (f,p) is Right-Left

(:Ul,a:%—l—aclzcgzlzzr:%:t---:tx%).
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~ Pignoni, Kamenosono-Y N
For a stable map f: N2 — 52 of a closed surface, we have
_ T c(f) N
o=< (@t - v+ LD +<1+fz\v,> m(f)>,
where g is th/ enus of N.

g o Aol ““’“\’e
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~ Saeki-Y
For a stable map f: N* — R3 of an oriented 4-mfd, we have

S(NYY = |[UB(f)| €Z,  m® @

where [|[IIIB(f)|| denotes the algebraic number of singular fibers of
type 1118,

J

For f: N — @ and q € Q, the fiber over g is the map germ

fr (N ), — (Q,9)

along the level set f~1(¢). In particular, the fiber over ¢ is called
a regular fiber if ¢ € Q is a regular value of f and flg ,
a Singular fiber otherwise.
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Fibers over ¢; € Q, (i =0,1), are C9 eq.
€3, cQ;: anbdof ¢, €Q, (i =0,1),

3 & (fg (U0, 5t (r0)) — (f1 (U1, f1 *(q1)): homeo
preserving 0
d ¢: Ug— Uy: homeo with go(qo) =q1
s.t. which make the following diagram commutative:

(fo ' (Vo). f5H(q0)) — (f1 (U1, £~ H(q1))

| I

(Uo, 90) BN (U1,q91).
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§ 1 Cobordism relations among Morse ft.s

N: a cpt n-mfd with 0,
fi: N —Ris a Morse ft

o

ef

SR

Iff
<~

‘q \'l L b,

\

(f has NO critaical pt.s on a nbd of 9 and,
\critical pt.s of f and f|g are all NON-degenerate.

(Vp € N, map germ (f,p) is equiv. to one of the following ft.s:

f=z1 or f=Hx7+- +a2 if p€IntN,
f=x1 oOr f=ix%i---x%_1ixn if p € ON,

\where IntN <« {zp > 0}, 0 <> {zn = 0} for coord. (z1,...,Tn).

A A
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open, dense o
! {f: N —R: Morse ft.} C C*®°(N,R).

Q (1) For N, classify Morse ft.s f: N — R.
(2) Study topology of the space bN(n) = {f: N — R : Morse ft}.

_ X .

No 0 7 g M

Today, we study cobordism relations on bN(n): fo lF\/lfl
RT R x I ]‘ R

Hitory of cobordism theory:

Thom '54: Cobordism grp.s of embeddings

Wells '66: Cobordism grp.s of immersions

Rimayni and Sziucz '98: Cobordism grp.s of maps of singularities
Nn_>Qn—I—k
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Saeki, Ikegami, Kalmar: Cobordism grp.s of Morse ft.s on closed
mfd.s.

Nyn: Codordism grp of Morse ft.s on un-oriented and closed n-mfd.s

Kalmar '05 No =7, P 7,
Ikegami '04 N, =M, @ z"/2]
where 91, denotes the un-oriented cobordism grp of closed n-mfd.s.

M,,: Codordism grp of Morse ft.s on oriented and closed n-mfd.s

Ikegami-Saeki '03 M, =7

Qaz"2 a7, n=1 (mod 4),
Qn @ 7Ln/2] otherwise,
where 2,, denotes the oriented cobordism grp of closed n-mfd.s

Ikegami '04 My, =
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I In the case of mfd.s with 9, n-dim, (n > 1), un-oriented Cobordism
grp is trivial. Namely any n-mfd with 9 is null-cobordant:

N;. cpt n-mfd possibly with 0
Cob C(’zeﬂc 3X:a cpt (n+ 1)-mfd possibly with corners

No ~" N
JF: X - R x [0,1]: a C*° map

submfd.s
s.t. (1) Ni,Q C 0X:cod1l, 090X =NogUQU Ny,

NoN Ny =0,0Q=(NogNQ)U(N1NQR) 00X =NogUQU Ny
(2) X has corners along 0Q

For N: a mfd with bdry 0, put X =N xI and Q =N x {1} UJN x I.

It implies that N 2P ¢.

! Un-oriented cobordism grp 91, of n-mfd.s is the following:
Nog=7Zp, N1 =0, No=Zp, N3=0, Ng=ZoDZp, ...
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A map f: N*>3 5 92 is stable L f satisfies the followings :

(1) (Local conditions) In the following, for p € 9, we use local coord.
(x1,...,zn) around p s.t. IntN < {x, > 0} and 9 < {z, = 0}.

(1a) For p € IntN, (f,p) is right-left equivalent to one of

((z1,25) p: regular pt.,
(z,...,2n) — < (:Ul,j::c%---:lzm%) p. fold pt.,
\(xl,:c%—l—:clamzlza:%:l:---:l::c%) p. cusp pt.

(1b) For p € 9, (f,p) is right-left equivalent to one of

~ Prop. (Stable maps N" — Q?) A

(z1,2) p: regular pt.

(x1,...,2n) — X (@1, j::c% T x 33727,_1 + zp) p. O-fold pt.,

($1,x%—|—x1x2ix§i---ix%_l:tg;n) p: O-cusp pt.
\(:cl,:tx%-k...j;m%—l—:clxn) p: Bo pt.

> J
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~ Proposition. (Stable maps N" — Q2 Conti.)

~

(Global conditions) For each g € f(S(f))Uf(S(f|ln)), the multi-germ

(Fls(pyus(sly: £~ (@ N (S US(f1a)))

IS right-left equivalent to one of the eight multi-germs whose images

are depicted in the following Figure:

q q
(1) (2) (3) (4)
q
- ‘:.:‘g ......... .{ -
(5) (6) (8)

\Where solid line < f(S(f)) and dotted line < f(S(f|n)).

A stable map f: N — @) is a stable fold map

%e; f has NO cusps and NO bdry cusps.

A stable map f: N — Q2 is admissible

C@f f is submersion on a nbd of 0 g f has NO B> pt.s.
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Fibers of stable maps N3 — Q2 of 3-mfd.s with 9:

k=20
B‘C/)OQ 6\61[
k=1

e wR K
I ONE 2 ET0»
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N;: cpt n-mfd possibly with 0 (n >2) , f;: N; — R: Morse ft.s,

(i=0,1)

ad-staQJIe Cob fold-Cob ad fold-Cob

fo f1 (or fo "~ f1, fo ~ f1)
®© 3x:2a cpt (n 4+ 1)-mfd possibly with corners

JF: X - R x [0,1]: a C° map
submfd.s
s.t. (1) N,Q C 9X:cod1l, 00X = NogUQU Ny,

NoNN1=0,0Q0=(NogNQ)U(N1NQ) 0X = No U Q U Ny
(2) X has corners along 9@
(3) Flnyx[0,e) = fo X idg oy, Fln,x(1-,1] = f1 X id1_¢ 1]
(4) F~I(R x {i}) = N;, and
F|X\(NOUN1) is a proper admissible stable map
(or stable fold map, admissible stable fold map).

. . -stabl fold-
! (1) Cobordism relations ad-stable COb, Old=%P and

equiv. relations.
(2) bN(n)/ *<P forms an additive grp under the disjoint union.
Cf. [0l =1[f:0—=R] [-f: N>Rz~ —f(z)] =-[f]
— BRI A N=C[EBERE —  15/29
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Denote v, 1= bN(n)/ad—StaEJe COb,

ngn - bN(n)/ad—foJ\ch Cob.

~ Theorem [Saeki-Y '16]

b = Zo gene. by [fol:

b3, 1= bN-(n)/foldr—VCob an

d

R

~ Theorem [Y '16]
b¥2 = Zo gene. by [f1].

\'/l _h,

AFo =7 =17 = Lz gene. by [fo], [f1] and [f3].

VJL

_ I3,
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§ 2 OutLine of Proof
Step 1: Invariants

7: a class of fibers of proper Thom maps of
codim= ¢(=dimQ@Q -dimN),
p. an eq. relation among fibers in 7.

If 7 and p satisfy SUITABLE conditions, we obtain the univ. cpx of
sinlular fibers of -maps of n-mfd into ¢g-mfd

C(r(n,q), Pn,q) = (C"(r(m,n), Pm,n)a 5m)m€Z
C*(r,p): the Zo-vec. sp. spanned by all cod= k fibers of --map N"—Q1

(CF=0ifk<0ork>q),
0. the cochain map defined by adjacency of fibers:

. Q &
w000 Bt A
_Z?QXKQESZ-O
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~ Prop N
fi: N' = Q9. 7-maps, (i =0,1)
If fo ~r-cob f1, then for each [c] € H*(7(m, q), pn,q), We have

[c(fo)] = [c(f1)] € Hg—x(QY; Z2),

where for ¢ = Y- nrxF, [c(f)] denotes the homol. class of Un-F(f).
Namely, a cohomology class [c] € H"(r(m,q),pn,q) induce -

cobordism invariant among —-maps N" — Q9 .
N J

! A 7-Cobordism invariant [¢] induced by a cohomology class may
be trivial.
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(1)
T = ASpr(3,2): the set of fibers of proper ad. stable maps N3 — Q2
p=p32(2): CV eq relation modulo TWO reg fibers.

C(ASpr(3,2),p3,2(2)) = (CH(ASpr(3,2),032(2)),0k)kez.

The cohomology groups of C(ASpr(3,2),p32(2)) are:
HO9 =2 75 generated by [bO]
Hl =2 7-5®7>® 7>, generated by

1 = BLLOU L DI PBU L 4 B0 L, oo = +00 407,
v1 = [bI, 4+ bI, 4 bI_ + bI, + bI_] = [bI., + bI, + bl + bI, + bI_].

where F, (Fe) denotes the eq. class of the fiber of type F with odd
(resp. even) number of regular fibers and F = F, + Fe.
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~ Proposition

For Morse ft.s f: N2 — R of cpt mfd.s possibly with 8,
(1) B1(f) and ~1(f) are trivial ASp--cobordism invariants.

a NON-tirival ASpr--cobordism invariant.
-

(2) a1(f) = BI°(f) + bI(f) + bI (f) 4+ bI°(£) 4+ BL(f) + bI (f) is

k=1
bI” EYI% 514_8? b1 fo

bt” «  bI'{) b} b v
/b\ilo@—ﬁ'
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(2)
T = bFpr(3,2): the set of fibers of proper stable folds N3 — Q2,
p=p32(2): CV eq relation modulo TWO reg fibers.

C(bFpr(3,2),p32(2)) = (C*(bFpr(3,2),p3,2(2)), k) ez

The cohomology groups of C(bFpr(3,2),p32(2)) are:
HO9 =2 75 generated by [bO]
Hl =2 7-®7>® 7>, generated by

2SOl BB L =Bl pl +81.
vo = [bI, + bI + bI, + bI, + bI_] = [bI. + bl + bI, + bI, + bI,].

where F, (Fe) denotes the eq. class of the fiber of type F with odd
(resp. even) number of regular fibers and F = F, + Fe.
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~ Proposition

For Morse ft.s f: N2 — R of cpt mfd.s possibly with 8,
(1) Bo(f) and ~o(f) are trivial bFy--cobordism invariants.

(2) as(f) = BI(f) + bI(f) + bl (f) 4+ bl "(f) is a NON-tirival
bFpr-cobordism invariant.

N

k=1

bI° e Eﬁg 514'8'? b l f1 |
ol « b)) B°| b \/

6110@_9
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(3)
T = AFpr(3,2): the set of fibers of proper ad. stable folds N3 — Q2
p=p32(2): CV eq relation modulo TWO reg fibers.

C(.A.Fpr(:g, 2)7 p3,2(2)) — (CK(AFpr(:B, 2)7 p3,2(2))7 51{)&62'

The cohomology groups of C(AFpr(3,2),p32(2)) are:
HO = 7, generated by [bO]

H! = 75575575, generated by
5%,

—~2 —~—0
az = [bI'], B3z = [bI],
~2  ~3 4 —~6 ' ~8 2 -3 4 —6 8
13 = [bI, + BI + b, + bI, +bl,] = [bI; + bI, + bl, + bL. + BL,],
¢3 =[Pl +bI° Dbl +bI "], ng=[bl' +bl]

where F, (Fe) denotes the eq. class of the fiber of type F with odd
(resp. even) number of regular fibers and F = F, + Fe.
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~ Proposition
For Morse ft.s f: N2 — R of cpt mfd.s possibly with 9,
(1) v3(f) and n3(f) are trivial A]-'pr-cobordism invariants.

(2) as(f) = bl° (f) 63(91“) = bI° (f) and
C3(f) = bI (f) + bI (f) +bI"(f) + bI (f) are NON-tirival AF -

Kcobordlsm invariants.

k=1

bI- « blg ’bvl‘g' bI

bi°.  BIY) b} B

o0
@ 13
N
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(4)
T = AFpr(3,2): the set of Co-oriented fibers
of proper ad. stable folds N3 — Q2,

p=p32(2): CV eq relation modulo TWO reg fibers.
CO(AFpr(3,2),p32(2)) = (CO®(AFpr(3,2),p3,2(2)), k) rez-

The cohomology groups of CO(AFpr(3,2),p32(2)) are:
HO 2 7 generated by [bO]
H'=2 737 ®7, generated by

—~2 D ~6 =6
. o4 = L[LbIO —6bI€], . Ba =2[bIo > bIe],4 ] .
va = [PIZ + bI, + b, + bl; + bl,] = —[bI;, + bl + bI. + bl, + bL],

where F, (Fe) denotes the eq. class of the fiber of type F with odd
(resp. even) number of regular fibers and F = F, + Fe.
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~ Proposition

NS

For Morse ft.s f: N2 — R of cpt mfd.s possibly with 9,
(1) v4(f) is a trivial AF,--cobordism invariant.

(2) aa(f) =BL(f) —bL(f),  and  Ba(f) = blo(f) — bIo(f)

are NON-tirival AFp--cobordism invariants.

bI- .« Big ’51%‘ bI¢
5°. B0 B BIpD

@ /3,
N
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Step 2: Let Cob = b1y or b§o, ASH.

pCob: Cob = Reop, [f: N = R] — [f: Wy — R]: iso,

where Rcop denote the cobordism group of labeled Reeb-like ft.s
on labeled Reeb-like graphs.

! For f: N — R of a surface possibly with 0 and pq1, p> € N,

Pl ~ P2 & Jg € R s.t. p1,po are in the same con. comp. of f~1(q).

Then, Wg = N/ ~.
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‘Then, calculate Rcop by using local moves induced by the Reeb space
of stable maps f: N3 — Q%
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§ FutherWorks

Prop [Y 17]
[n23, b, =0, b§n#0 and 25, £ 0. }

Q Study the structure of 91, bFn and 2§, for n > 3.

— RRT A N=C[EBERE —  29/29



