可微分写像の特異ファイバーと同境群

Takahiro YAMAMOTO

Department of Mathematics, Tokyo Gakugei University

8 March, 2018

第25回 沼津改め 静 岡 研 究 会

ーー一幾何,数理物理,そして量子論ーーー

静岡大学理学部C棟309号室

In this talk, each mfds N, Q and each maps $N \to Q$ are smooth of class C^{∞} unless otherwise stated.

§ 0 My interest

Q For a given mfd N, **STUDY** N by using maps $f: N \to Q$, especially by using **singularity of stable maps** $f: N \to Q!!$

A C^{∞} map $f: N \to Q$ is C^{∞} stable (or C^{0} stable) $\stackrel{\text{def}}{\Leftrightarrow} \exists N(f) \stackrel{\text{open}}{\subset} C^{\infty}(N,Q)$: a nbd of f s.t. $\forall g \in N(f)$, $\exists \Phi \colon N \to N$ and $\Psi \colon Q \to Q$: diffeo.s (resp. homeo.s) which make the following diagram commutative:

$$\begin{array}{ccc}
N & \stackrel{\Phi}{\longrightarrow} & N \\
f \downarrow & & \downarrow g \\
Q & \stackrel{\Psi}{\longrightarrow} & Q,
\end{array}$$

where $C^{\infty}(N,Q)$ is equipped with the Whitney C^{∞} topology.

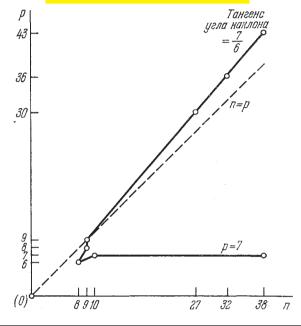
一 特異ファイバーと同境群 — 1/29

Mather '71

 N^n : a cpt. n-mfd, Q^p be a p-mfd.

 $\{f\colon N^n\to Q^p: \text{a }C^\infty \text{ stable map}\}\stackrel{\mathrm{dense}}{\subset} C^\infty(N^n,Q^p)$

if the pair (n, p) is in the NICE RANGE in the sense of Mather.



If the dim pair (n,p) is in the nice range, then each map $f: M^n \to N^p$ is approximated by a stable map.

For a C^{∞} map $f: N \to Q$,

 $S(f) := \{ p \in M \mid \operatorname{rank} df_p < \dim Q \}$: the set of singul. pt.s of f(S(f)): the set of singul. values of f.

Singular pt.s (or singular values) of stable maps $N \to Q$ relate to topology of N and Q.

R.Thom

For a stable map $f: N^n \to \mathbb{R}^2$, $(n \ge 2)$ of closed n-mfd, we have $\chi(N) \equiv \# \mathrm{cusps}(f) \pmod 2$,

where $p \in \mathbb{N}^n$ is a cusp point if the map-germ (f,p) is Right-Left equiv. to the form

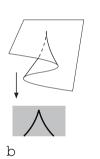
$$(x_1, x_2^3 + x_1x_2 \pm x_3^2 \pm \cdots \pm x_n^2).$$

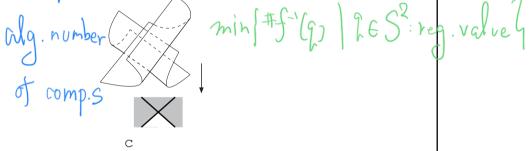
Pignoni, Kamenosono-Y

For a stable map $f: \mathbb{N}^2 \to \mathbb{S}^2$ of a closed surface, we have

$$g = \varepsilon \left((N^{+} - N^{-}) + \frac{c(f)}{2} + (1 + i^{+} - i^{-}) - m(f) \right),$$
is the genus of N .

where g is the genus of N.





Saeki-Y

For a stable map $f: N^4 \to \mathbb{R}^3$ of an oriented 4-mfd, we have

$$\sigma(N^4) = ||\mathrm{III}^8(f)|| \in \mathbb{Z}, \quad \mathrm{III}^8$$

where $||III^8(f)||$ denotes the algebraic number of singular fibers of type III⁸.

For $f: N \to Q$ and $q \in Q$, the *fiber* over q is the map germ

$$f: (N, f^{-1}(q)), \to (Q, q)$$

along the level set $f^{-1}(q)$. In particular, the fiber over q is called a $\begin{tabular}{ll} \it regular fiber \end{tabular} & \mbox{if } q \in Q \mbox{ is a regular value of } f \mbox{ and } f|_{\partial} \ , \\ \mbox{a singular fiber} & \mbox{otherwise}. \end{tabular}$

Fibers over $q_i \in Q$, (i = 0, 1), are C^0 eq.

$$\stackrel{\text{def}}{\Rightarrow} \exists U_i \subset Q_i: \text{ a nbd of } q_i \in Q, \ (i = 0, 1), \\ \exists \ \Phi : (f_0^{-1}(U_0), f_0^{-1}(r_0)) \to (f_1^{-1}(U_1), f_1^{-1}(q_1)): \text{ homeo}$$

preserving ∂

$$\exists \varphi : U_0 \to U_1$$
: homeo with $\varphi(q_0) = q_1$

s.t. which make the following diagram commutative:

$$(f_0^{-1}(U_0), f_0^{-1}(q_0)) \xrightarrow{\Phi} (f_1^{-1}(U_1), f^{-1}(q_1))$$

$$f_0 \downarrow \qquad \qquad \downarrow f_1$$

$$(U_0, q_0) \xrightarrow{\varphi} (U_1, q_1).$$

§ 1 Cobordism relations among Morse ft.s

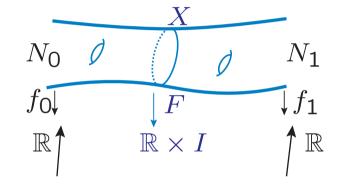
 $N: \text{ a cpt n-mfd with ∂,} \\ f\colon N\to\mathbb{R} \text{ is a } \text{Morse ft} \\ \underset{\rightleftharpoons}{\text{def}} \begin{cases} f \text{ has } \textbf{NO} \text{ critaical pt.s on a nbd of ∂ and,} \\ \text{critical pt.s of f and $f|_{\partial}$ are all $\textbf{NON-degenerate}$.} \end{cases} \\ \begin{cases} \forall p\in N, \text{ map germ } (f,p) \text{ is equiv. to one of the following ft.s:} \\ f=x_1 \quad \text{or} \quad f=\pm x_1^2\pm\cdots\pm x_n^2 \quad \text{if $p\in \text{Int}N$,} \\ f=x_1 \quad \text{or} \quad f=\pm x_1^2\pm\cdots x_{n-1}^2\pm x_n \quad \text{if $p\in\partial N$,} \\ \text{where } \text{Int}N \leftrightarrow \{x_n>0\}, \ \partial \leftrightarrow \{x_n=0\} \text{ for coord. } (x_1,\ldots,x_n). \end{cases}$

$$\begin{array}{c} f_0 \\ \hline \end{array}$$

 $\{f \colon N \to \mathbb{R} : \mathsf{Morse} \ \mathsf{ft.} \} \overset{\mathsf{open, dense}}{\subset} C^\infty(N, \mathbb{R}).$

- **Q** (1) For N, classify Morse ft.s $f: N \to \mathbb{R}$.
- (2) Study topology of the space $b\mathcal{N}(n) = \{f : N \to \mathbb{R} : \text{Morse ft}\}.$

Today, we study cobordism relations on $b\mathcal{N}(n)$:



Hitory of cobordism theory:

Thom '54: Cobordism grp.s of embeddings

Wells '66: Cobordism grp.s of immersions

Rimayni and Szűcz '98: Cobordism grp.s of maps of singularities $N^n \to Q^{n+k}$

Saeki, Ikegami, Kalmar: Cobordism grp.s of Morse ft.s on closed mfd.s.

 \mathcal{N}_n : Codordism grp of Morse ft.s on un-oriented and closed n-mfd.s

Kalmar '05
$$\mathcal{N}_2 \cong \mathbb{Z}_2 \oplus \mathbb{Z}$$
,
Ikegami '04 $\mathcal{N}_n \cong \mathfrak{N}_n \oplus \mathbb{Z}^{\lfloor n/2 \rfloor}$,

where \mathfrak{N}_n denotes the un-oriented cobordism grp of closed n-mfd.s.

 \mathcal{M}_n : Codordism grp of Morse ft.s on oriented and closed n-mfd.s

Ikegami-Saeki '03
$$\mathcal{M}_2 \cong \mathbb{Z}$$
Ikegami '04 $\mathcal{M}_n \cong \begin{cases} \Omega_n \oplus \mathbb{Z}^{\lfloor n/2 \rfloor} \oplus \mathbb{Z}_2 & n \equiv 1 \pmod{4}, \\ \Omega_n \oplus \mathbb{Z}^{\lfloor n/2 \rfloor} & \text{otherwise,} \end{cases}$

where Ω_n denotes the oriented cobordism grp of closed n-mfd.s

! In the case of mfd.s with ∂ , n-dim, $(n \ge 1)$, un-oriented Cobordism grp is trivial. Namely any n-mfd with ∂ is null-cobordant:

 N_i : cpt n-mfd possibly with ∂ $N_0 \overset{\mathsf{Cob}}{\sim} N_1 \overset{\mathsf{def}}{\Leftrightarrow} \exists X$:a cpt (n+1)-mfd possibly with corners $\exists F \colon X \to \mathbb{R} \times [0,1]$: a C^∞ map

s.t. (1) $N_1, Q \subset \partial X$: cod 1, $\partial X = N_0 \cup Q \cup N_1$, $N_0 \cap N_1 = \emptyset$, $\partial Q = (N_0 \cap Q) \cup (N_1 \cap Q)$ $\partial X = N_0 \cup Q \cup N_1$ (2) X has corners along ∂Q

For N: a mfd with bdry ∂ , put $X = N \times I$ and $Q = N \times \{1\} \cup \partial N \times I$. It implies that $N \stackrel{\mathsf{Cob}}{\sim} \emptyset$.

! Un-oriented cobordism grp \mathfrak{N}_n of n-mfd.s is the following: $\mathfrak{N}_0\cong\mathbb{Z}_2,\quad\mathfrak{N}_1\cong 0,\quad\mathfrak{N}_2\cong\mathbb{Z}_2,\quad\mathfrak{N}_3\cong 0,\quad\mathfrak{N}_4\cong\mathbb{Z}_2\oplus\mathbb{Z}_2,\ldots$

— 特異ファイバーと同境群 — 10/29

Prop. (Stable maps $N^n \to Q^2$)

A map $f: N^{n \ge 3} \to Q^2$ is stable $\stackrel{\text{iff}}{\Leftrightarrow} f$ satisfies the followings:

(1) (Local conditions) In the following, for $p \in \partial$, we use local coord.

$$(x_1,\ldots,x_n)$$
 around p s.t. $IntN \leftrightarrow \{x_n > 0\}$ and $\partial \leftrightarrow \{x_n = 0\}$.

(1a) For $p \in IntN$, (f, p) is right-left equivalent to one of

$$(x, \dots, x_n) \mapsto \begin{cases} (x_1, x_2) & p : \text{ regular pt.,} \\ (x_1, \pm x_2^2 \cdots \pm x_n^2) & p : \text{ fold pt.,} \\ (x_1, x_2^3 + x_1 x_2 \pm x_3^2 \pm \cdots \pm x_n^2) & p : \text{ cusp pt.} \end{cases}$$

(1b) For $p \in \partial$, (f, p) is right-left equivalent to one of

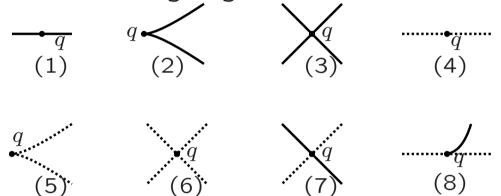
$$(x_1, \dots, x_n) \mapsto \begin{cases} (x_1, x_2) & p: \text{ regular pt.} \\ (x_1, \pm x_2^2 \pm \dots \pm x_{n-1}^2 \pm x_n) & p: \partial \text{-fold pt.,} \\ (x_1, x_2^3 + x_1 x_2 \pm x_3^2 \pm \dots \pm x_{n-1}^2 \pm x_n) & p: \partial \text{-cusp pt.} \\ (x_1, \pm x_2^2 + \dots \pm x_n^2 + x_1 x_n) & p: B_2 \text{ pt.} \end{cases}$$

Proposition. (Stable maps $N^n \to Q^2$ Conti.) -

(Global conditions) For each $q \in f(S(f)) \cup f(S(f|N))$, the multi-germ

$$(f|_{S(f)\cup S(f|_{\partial})}, f^{-1}(q)\cap (S(f)\cup S(f|_{\partial})))$$

is right-left equivalent to one of the eight multi-germs whose images are depicted in the following Figure:



where solid line $\leftrightarrow f(S(f))$ and dotted line $\leftrightarrow f(S(f|_N))$.

A stable map $f: N \to Q$ is a stable fold map

 $\stackrel{\text{def}}{\Leftrightarrow} f$ has **NO** cusps and **NO** bdry cusps.

A stable map $f: N \to Q^2$ is admissible

 $\stackrel{\mathsf{def}}{\Leftrightarrow} f$ is **submersion** on a nbd of $\partial \stackrel{\mathsf{iff}}{\Leftrightarrow} f$ has **NO** B_2 **pt.s**.

Fibers of stable maps $N^3 \to Q^2$ of 3-mfd.s with ∂ :

$$\kappa = 0$$

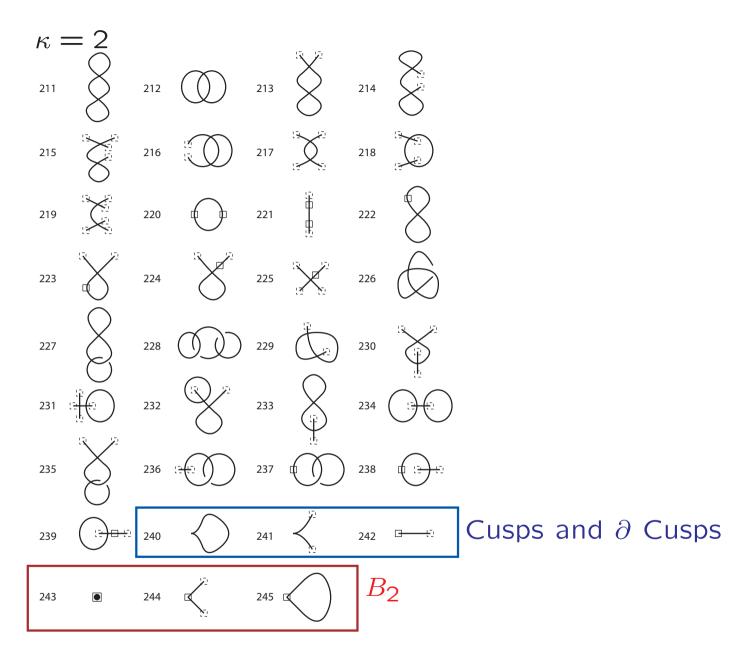
$$\widetilde{b0}^0$$
 $\widetilde{b0}^1$

$$\kappa = 1$$

$$\widetilde{\mathrm{bI}}^2$$
 • $\widetilde{\mathrm{bI}}^3$ $\widetilde{\mathrm{bI}}^4$ $\widetilde{\mathrm{bI}}^5$ $\widetilde{\mathrm{bI}}^5$

$$\widetilde{\mathrm{bI}}^6 \quad \bullet \quad \widetilde{\mathrm{bI}}^7 \bigoplus \quad \widetilde{\mathrm{bI}}^8 \bigoplus \quad \widetilde{\mathrm{bI}}^9 \bigoplus$$

$$\widetilde{bI}^{10} \left(\overline{\underline{}} \right)$$



```
N_i: cpt n-mfd possibly with \partial (n \geq 2) , f_i: N_i \to \mathbb{R}: Morse ft.s,
                                                                                                            (i = 0, 1)
f_0 \stackrel{\text{ad-stable Cob}}{\sim} f_1 \text{ (or } f_0 \stackrel{\text{fold-Cob}}{\sim} f_1, f_0 \stackrel{\text{ad fold-Cob}}{\sim} f_1)
\overset{\text{def}}{\Leftrightarrow} \exists X : \text{a cpt } (n+1) - \text{mfd possibly with corners}
      \exists F \colon X \to \mathbb{R} \times [0,1]: a C^{\infty} map
s.t. (1) N_1, Q \subset \partial X: cod 1, \partial X = N_0 \cup Q \cup N_1,
                N_0 \cap N_1 = \emptyset, \partial Q = (N_0 \cap Q) \cup (N_1 \cap Q) \partial X = N_0 \cup Q \cup N_1
(2) X has corners along \partial Q
(3) F|_{N_0 \times [0,\varepsilon)} = f_0 \times \mathrm{i} d_{[0,\varepsilon)}, \ F|_{N_1 \times (1-\varepsilon,1]} = f_1 \times \mathrm{i} d_{(1-\varepsilon,1]}
(4) F^{-1}(\mathbb{R} \times \{i\}) = N_i, and
       F|_{X\setminus(N_0\cup N_1)} is a proper admissible stable map
                                  (or stable fold map, admissible stable fold map).
```

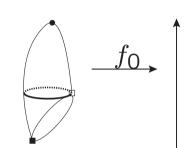
- ! (1) Cobordism relations $\stackrel{\text{ad-stable Cob}}{\sim}$, $\stackrel{\text{fold-Cob}}{\sim}$ and $\stackrel{\text{ad fold-Cob}}{\sim}$ are equiv. relations.
- (2) $b\mathcal{N}(n)/\stackrel{*-\operatorname{Cob}}{\sim}$ forms an additive grp under the disjoint union.

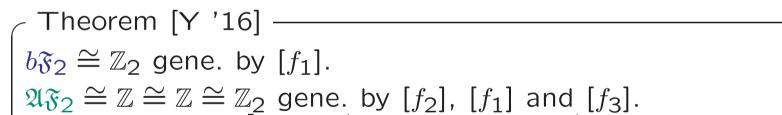
Cf.
$$[0] = [f: \emptyset \to \mathbb{R}], [-f: N \to \mathbb{R}, x \mapsto -f(x)] = -[f]$$
 — 特異ファイバーと同境群 — 15/29

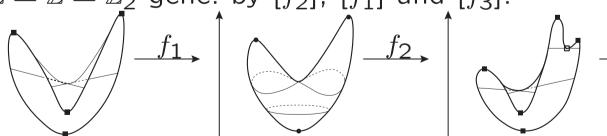
Denote
$$b\mathfrak{N}_n := b\mathcal{N}(n)/\overset{\text{ad-stable Cob}}{\sim}$$
, $b\mathfrak{F}_n := b\mathcal{N}(n)/\overset{\text{fold-Cob}}{\sim}$ and $\mathfrak{AF}_n := b\mathcal{N}(n)/\overset{\text{ad-fold Cob}}{\sim}$.

Theorem [Saeki-Y '16]

 $b\mathfrak{N}_2\cong\mathbb{Z}_2$ gene. by $[f_0]$:







§ 2 OutLine of Proof

Step 1: Invariants

 τ : a class of fibers of proper Thom maps of codim= $\ell(=\dim Q - \dim N)$,

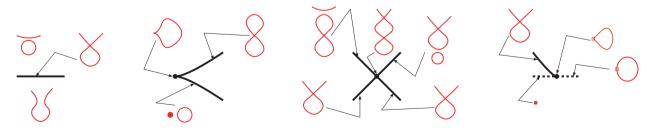
 ρ : an eq. relation among fibers in τ .

If τ and ρ satisfy **SUITABLE** conditions, we obtain **the univ. cpx of sinlular fibers of** τ -**maps** of n-mfd into q-mfd

$$C(\tau(n,q),\rho_{n,q}) = (C^{\kappa}(\tau(m,n),\rho_{m,n}),\delta_{\kappa})_{\kappa \in \mathbb{Z}}$$

 $C^{\kappa}(\tau,\rho)$: the \mathbb{Z}_2 -vec. sp. spanned by all cod= κ fibers of τ -map N^n-Q^q $(C^{\kappa}=0 \text{ if } \kappa<0 \text{ or } \kappa>q)$,

 δ_k : the cochain map defined by adjacency of fibers:



Prop

 $f_i\colon N_i^n\to Q^q\colon$ au-maps, (i=0,1) If $f_0\sim_{\tau\text{-Cob}} f_1$, then for each $[c]\in H^\kappa(\tau(m,q),\rho_{n,q})$, we have

$$[c(f_0)] = [c(f_1)] \in H_{q-\kappa}(Q^q; \mathbb{Z}_2),$$

where for $c=\sum n_{\mathcal{F}}\mathcal{F}$, [c(f)] denotes the homol. class of $\cup_{n_{\mathcal{F}}}\mathcal{F}(f)$. Namely, a cohomology class $[c]\in H^{\kappa}(\tau(m,q),\rho_{n,q})$ induce τ -cobordism invariant among τ -maps $N^n\to Q^q$.

! A τ -Cobordism invariant [c] induced by a cohomology class may be trivial.

(1)

 $\tau = \mathcal{AS}_{pr}(3,2)$: the set of fibers of proper ad. stable maps $N^3 \to Q^2$, $\rho = \rho_{3,2}(2)$: C^0 eq relation modulo **TWO** reg fibers.

$$C(AS_{pr}(3,2), \rho_{3,2}(2)) = (C^{\kappa}(AS_{pr}(3,2), \rho_{3,2}(2)), \delta_{\kappa})_{\kappa \in \mathbb{Z}}.$$

The cohomology groups of $C(AS_{pr}(3,2), \rho_{3,2}(2))$ are:

 $H^0 \cong \mathbb{Z}_2$ generated by $[\widetilde{b0}]$

 $H^1 \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$, generated by

$$\alpha_{1} = [\widetilde{\mathrm{bI}}^{2} + \widetilde{\mathrm{bI}}^{3} + \widetilde{\mathrm{bI}}^{4} + \widetilde{\mathrm{bI}}^{5} + \widetilde{\mathrm{bI}}^{9} + \widetilde{\mathrm{bI}}^{10}], \qquad \beta_{1} = [\widetilde{\mathrm{bI}}^{6} + \widetilde{\mathrm{bI}}^{7} + \widetilde{\mathrm{bI}}^{8}], \\ \gamma_{1} = [\widetilde{\mathrm{bI}}^{2}_{o} + \widetilde{\mathrm{bI}}^{3}_{e} + \widetilde{\mathrm{bI}}^{4}_{e} + \widetilde{\mathrm{bI}}^{6}_{o} + \widetilde{\mathrm{bI}}^{8}_{e}] = [\widetilde{\mathrm{bI}}^{2}_{e} + \widetilde{\mathrm{bI}}^{3}_{o} + \widetilde{\mathrm{bI}}^{4}_{o} + \widetilde{\mathrm{bI}}^{6}_{e} + \widetilde{\mathrm{bI}}^{8}_{o}].$$

where \mathcal{F}_o (\mathcal{F}_e) denotes the eq. class of the fiber of type \mathcal{F} with odd (resp. even) number of regular fibers and $\mathcal{F} = \mathcal{F}_o + \mathcal{F}_e$.

Proposition

For Morse ft.s $f: \mathbb{N}^2 \to \mathbb{R}$ of cpt mfd.s possibly with ∂ ,

- (1) $\beta_1(f)$ and $\gamma_1(f)$ are **trivial** \mathcal{AS}_{pr} -cobordism invariants.
- (2) $\alpha_1(f) = \widetilde{\mathrm{bI}}^2(f) + \widetilde{\mathrm{bI}}^3(f) + \widetilde{\mathrm{bI}}^4(f) + \widetilde{\mathrm{bI}}^5(f) + \widetilde{\mathrm{bI}}^9(f) + \widetilde{\mathrm{bI}}^{10}(f)$ is

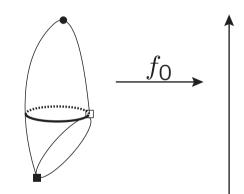
a **NON-tirival** \mathcal{AS}_{pr} -cobordism invariant.

$$\kappa = 1$$

$$\widetilde{\mathrm{bI}}^2 \bullet \widetilde{\mathrm{bI}}^3$$

$$\widetilde{\text{pI}}^6 \quad \bullet \quad \widetilde{\text{bI}}^7 \oplus$$

$$\widetilde{\text{bI}}^9$$



(2)

 $\tau = b\mathcal{F}_{pr}(3,2)$: the set of fibers of proper stable folds $N^3 \to Q^2$, $\rho = \rho_{3,2}(2)$: C^0 eq relation modulo **TWO** reg fibers.

$$C(b\mathcal{F}_{pr}(3,2), \rho_{3,2}(2)) = (C^{\kappa}(b\mathcal{F}_{pr}(3,2), \rho_{3,2}(2)), \delta_{\kappa})_{\kappa \in \mathbb{Z}}.$$

The cohomology groups of $C(b\mathcal{F}_{pr}(3,2), \rho_{3,2}(2))$ are:

 $H^0 \cong \mathbb{Z}_2$ generated by $[\widetilde{b0}]$

 $H^1 \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$, generated by

$$\alpha_{2} = [\widetilde{\mathrm{bI}}^{5} + \widetilde{\mathrm{bI}}^{8} + \widetilde{\mathrm{bI}}^{9} + \widetilde{\mathrm{bI}}^{10}], \qquad \beta_{2} = [\widetilde{\mathrm{bI}}^{6} + \widetilde{\mathrm{bI}}^{7} + \widetilde{\mathrm{bI}}^{8}],$$

$$\gamma_{2} = [\widetilde{\mathrm{bI}}_{o}^{2} + \widetilde{\mathrm{bI}}_{e}^{3} + \widetilde{\mathrm{bI}}_{e}^{4} + \widetilde{\mathrm{bI}}_{o}^{6} + \widetilde{\mathrm{bI}}_{e}^{8}] = [\widetilde{\mathrm{bI}}_{e}^{2} + \widetilde{\mathrm{bI}}_{o}^{3} + \widetilde{\mathrm{bI}}_{o}^{4} + \widetilde{\mathrm{bI}}_{e}^{6} + \widetilde{\mathrm{bI}}_{o}^{8}].$$

where \mathcal{F}_o (\mathcal{F}_e) denotes the eq. class of the fiber of type \mathcal{F} with odd (resp. even) number of regular fibers and $\mathcal{F} = \mathcal{F}_o + \mathcal{F}_e$.

Proposition

For Morse ft.s $f: N^2 \to \mathbb{R}$ of cpt mfd.s possibly with ∂ ,

- (1) $\beta_2(f)$ and $\gamma_2(f)$ are **trivial** $b\mathcal{F}_{pr}$ -cobordism invariants. (2) $\alpha_2(f) = \widetilde{\mathrm{bI}}^5(f) + \widetilde{\mathrm{bI}}^8(f) + \widetilde{\mathrm{bI}}^9(f) + \widetilde{\mathrm{bI}}^{10}(f)$ is a **NON-tirival** $b\mathcal{F}_{pr}$ -cobordism invariant.

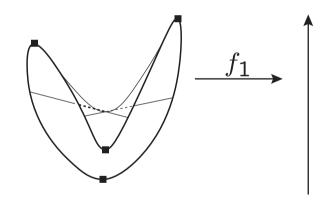
$$\kappa = 1$$

$$\widetilde{\text{pI}}^2 \bullet \widetilde{\text{bI}}^3$$



$$\widetilde{bI}^{5} \underbrace{\times}_{2}$$

$$\widetilde{\mathrm{bI}}^{\mathrm{6}}$$
 ■



(3)

 $\tau = \mathcal{AF}_{pr}(3,2)$: the set of fibers of proper ad. stable folds $N^3 \to Q^2$, $\rho = \rho_{3,2}(2)$: C^0 eq relation modulo **TWO** reg fibers.

$$C(\mathcal{AF}_{pr}(3,2), \rho_{3,2}(2)) = (C^{\kappa}(\mathcal{AF}_{pr}(3,2), \rho_{3,2}(2)), \delta_{\kappa})_{\kappa \in \mathbb{Z}}.$$

The cohomology groups of $C(A\mathcal{F}_{pr}(3,2), \rho_{3,2}(2))$ are:

 $H^0 \cong \mathbb{Z}_2$ generated by $[\widetilde{b0}]$

 $H^1 \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$, generated by

$$\gamma_{3} = [\widetilde{\mathrm{bI}}^{2}], \quad \beta_{3} = [\widetilde{\mathrm{bI}}^{6}],
\gamma_{3} = [\widetilde{\mathrm{bI}}^{2}_{o} + \widetilde{\mathrm{bI}}^{3}_{e} + \widetilde{\mathrm{bI}}^{4}_{e} + \widetilde{\mathrm{bI}}^{6}_{o} + \widetilde{\mathrm{bI}}^{8}_{e}] = [\widetilde{\mathrm{bI}}^{2}_{e} + \widetilde{\mathrm{bI}}^{3}_{o} + \widetilde{\mathrm{bI}}^{4}_{o} + \widetilde{\mathrm{bI}}^{6}_{e} + \widetilde{\mathrm{bI}}^{8}_{o}],
\zeta_{3} = [\widetilde{\mathrm{bI}}^{5} + \widetilde{\mathrm{bI}}^{8} + \widetilde{\mathrm{bI}}^{9} + \widetilde{\mathrm{bI}}^{10}], \quad \eta_{3} = [\widetilde{\mathrm{bI}}^{7} + \widetilde{\mathrm{bI}}^{8}]$$

where \mathcal{F}_o (\mathcal{F}_e) denotes the eq. class of the fiber of type \mathcal{F} with odd (resp. even) number of regular fibers and $\mathcal{F} = \mathcal{F}_o + \mathcal{F}_e$.

— 特異ファイバーと同境群 — 23/29

Proposition

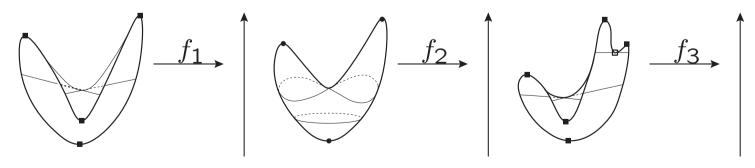
For Morse ft.s $f: N^2 \to \mathbb{R}$ of cpt mfd.s possibly with ∂ ,

(1) $\gamma_3(f)$ and $\eta_3(f)$ are **trivial** \mathcal{AF}_{pr} -cobordism invariants.

(2)
$$\alpha_3(f) = \widetilde{\mathrm{bI}}^2(f)$$
, $\beta_3(f) = \widetilde{\mathrm{bI}}^6(f)$ and $\zeta_3(f) = \widetilde{\mathrm{bI}}^5(f) + \widetilde{\mathrm{bI}}^8(f) + \widetilde{\mathrm{bI}}^9(f) + \widetilde{\mathrm{bI}}^{10}(f)$ are **NON-tirival** \mathcal{AF}_{pr} -cobordism invariants.

$$\kappa = 1$$

$$\widetilde{bI}^{2} \cdot \widetilde{bI}^{3} \times \widetilde{bI}^{4} \times \widetilde{bI}^{5} \times \widetilde{bI}^{5} \times \widetilde{bI}^{6} \cdot \widetilde{bI}^{7} \times \widetilde{bI}^{8} \times \widetilde{bI}^{9} \times \widetilde{bI}^{10} \times \widetilde{bI$$



― 特異ファイバーと同境群 ― 24

(4)

 $\tau = \mathcal{AF}_{pr}(3,2)$: the set of **Co-oriented** fibers

of proper ad. stable folds $N^3 \rightarrow Q^2$,

 $\rho = \rho_{3,2}(2)$: C^0 eq relation modulo **TWO** reg fibers.

$$CO(AF_{pr}(3,2), \rho_{3,2}(2)) = (CO^{\kappa}(AF_{pr}(3,2), \rho_{3,2}(2)), \delta_{\kappa})_{\kappa \in \mathbb{Z}}.$$

The cohomology groups of $\mathcal{CO}(\mathcal{AF}_{pr}(3,2), \rho_{3,2}(2))$ are:

 $H^0 \cong \mathbb{Z}$ generated by $[\widetilde{b0}]$

 $H^1 \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, generated by

$$\alpha_{4} = [\widetilde{\mathrm{bI}}_{o}^{2} - \widetilde{\mathrm{bI}}_{e}^{2}], \qquad \beta_{4} = [\widetilde{\mathrm{bI}}_{0}^{6} - \widetilde{\mathrm{bI}}_{e}^{6}],$$

$$\gamma_{4} = [\widetilde{\mathrm{bI}}_{e}^{2} + \widetilde{\mathrm{bI}}_{o}^{3} + \widetilde{\mathrm{bI}}_{o}^{4} + \widetilde{\mathrm{bI}}_{e}^{6} + \widetilde{\mathrm{bI}}_{o}^{8}] = -[\widetilde{\mathrm{bI}}_{o}^{2} + \widetilde{\mathrm{bI}}_{e}^{3} + \widetilde{\mathrm{bI}}_{e}^{4} + \widetilde{\mathrm{bI}}_{o}^{6} + \widetilde{\mathrm{bI}}_{e}^{8}],$$

where \mathcal{F}_o (\mathcal{F}_e) denotes the eq. class of the fiber of type \mathcal{F} with odd (resp. even) number of regular fibers and $\mathcal{F} = \mathcal{F}_o + \mathcal{F}_e$.

— 特異ファイバーと同境群 — 25/29

Proposition

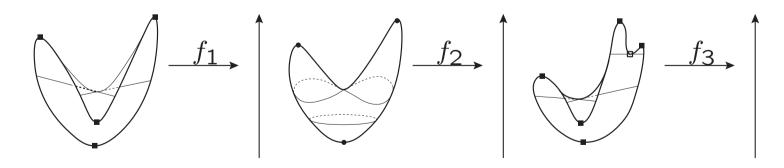
For Morse ft.s $f: N^2 \to \mathbb{R}$ of cpt mfd.s possibly with ∂ ,

(1) $\gamma_4(f)$ is a **trivial** \mathcal{AF}_{pr} -cobordism invariant.

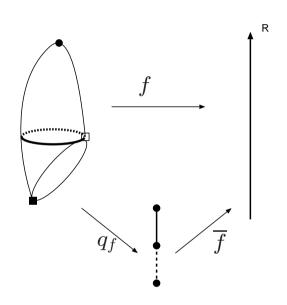
(2)
$$\alpha_4(f) = \widetilde{\mathrm{bI}}_o^2(f) - \widetilde{\mathrm{bI}}_e^2(f)$$
, and $\beta_4(f) = \widetilde{\mathrm{bI}}_0^6(f) - \widetilde{\mathrm{bI}}_e^6(f)$ are **NON-tirival** \mathcal{AF}_{pr} -cobordism invariants.

$$\kappa = 1$$

$$\widetilde{\text{bI}}^2 \cdot \widetilde{\text{bI}}^3 \qquad \widetilde{\text{bI}}^4 \qquad \widetilde{\text{bI}}^5 \qquad \widetilde{\text{bI}}^5 \qquad \widetilde{\text{bI}}^6 \qquad \widetilde{\text{bI}}^7 \qquad \widetilde{\text{bI}}^8 \qquad \widetilde{\text{bI}}^9 \qquad \widetilde{\text{bI}}^1 \qquad \widetilde{\text{bI}}$$



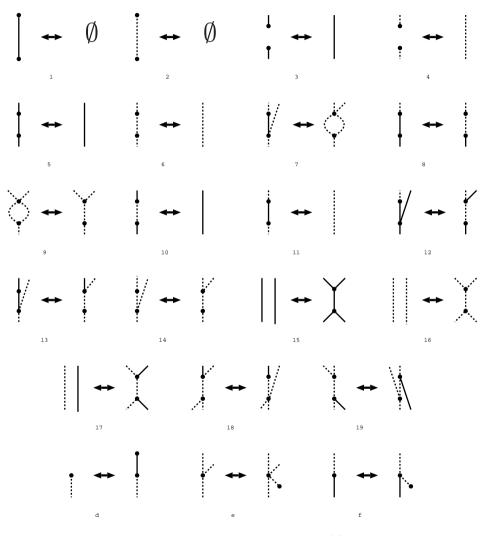
Step 2: Let Cob = $b\mathfrak{N}_2$ or $b\mathfrak{F}_2$, $\mathfrak{A}\mathfrak{F}_2$. $\rho_{\mathsf{Cob}} \colon \mathsf{Cob} \to \mathcal{R}_{\mathsf{Cob}}$, $[f \colon N \to \mathbb{R}] \mapsto [\overline{f} \colon W_f \to \mathbb{R}]$: iso, where $\mathcal{R}_{\mathsf{Cob}}$ denote the cobordism group of **labeled Reeb-like ft.s** on labeled Reeb-like graphs.



! For $f: N \to \mathbb{R}$ of a surface possibly with ∂ and $p_1, p_2 \in N$, $p_1 \sim p_2 \stackrel{\mathsf{def}}{\Leftrightarrow} \exists q \in \mathbb{R} \text{ s.t. } p_1, p_2 \text{ are in the same con. comp. of } f^{-1}(q)$. Then, $W_f := N/\sim$.

— 特異ファイバーと同境群 — 27/29

Then, calculate \mathcal{R}_{Cob} by using local moves induced by the Reeb space of stable maps $f: N^3 \to Q^2$:



§ FutherWorks

Prop [Y 17]
$$n \ge 3$$
, $b\mathfrak{N}_n \ne 0$, $b\mathfrak{F}_n \ne 0$ and $\mathfrak{AF}_n \ne 0$.

Q Study the structure of $b\mathfrak{N}_n$, $b\mathfrak{F}_n$ and \mathfrak{AF}_n for $n \geq 3$.