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Backgrounds 1

The free rigid body is an example of completely integrable
geodesic flows on Lie groups w. r. t. left-invariant metrics.

It is nothing but the geodesic flow on SO(3) w. r. t. a
left-invariant Riemannian metric.

Classical result: this dynamics can be solved by quadrature.

Modern formulation: a Hamiltonian system on T ∗SO(3)
admitting three functionally independent first integrals
(constants of motion). ⇝ Completely integrable.
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Backgrounds 2

Completely integrable systems on symplectic manifolds:
(M , ω): sympl. mfd (i.e. ω: non-degenerate closed 2-form).
For H ∈ C∞(M): Hamiltonian, the Hamiltonian vector field
ΞH is defined through

ιΞH
ω = −dH .

Assume dimM = 2n. The Hamiltonian system is called
completely integrable in the sense of Liouville, if there exist n
functionally independent functions F1, · · · ,Fn−1,Fn(= H)
which Poisson commute:

{Fi ,Fj} = 0, (i , j = 1, · · · , n).

Here, {F ,G} = ω (ΞF ,ΞG ) = ΞF (G ).
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Backgrounds 3

Theorem (Liouville-Arnol’d)

Assume that the Hamiltonian system (M , ω,H) is completely
integrable, whose first integrals are F1, · · · ,Fn−1,Fn(= H).
Set F = (F1, · · · ,Fn) : M → Rn. Then, for µ ∈ ImF : regular
value, F−1 (µ) is a torus, if it is compact and connected.
Further, F is a torus bundle around this fibre and on each fibre
the induced flow is linear on the torus.
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Short history

Researches on the complete integrability of geodesic flow on
Lie groups w.r.t. a left-invariant metric.

SO(3): Euler, Poinsot, Jacobi, · · · .
SO(n): Mishchenko, Dikii, Manakov, Ratiu (1970’s,
1980’s).

semi-simple Lie groups (complex, normal real form,
compact real form, their intersection):
Mishchenko-Fomenko (1978).

U(n): Iwai (2004), Ratiu-T (2015).
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Nilpotent Lie group case

Existence of a complete set of Poisson commuting
functions on the dual to nilpotent Lie algebras: Vergne
(1972).

Heisenberg groups (explicit construction of first
integrals): Kocsard-Ovando-Reggiani (2016).

Problem:

How about more general nilpotent Lie groups?
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§2. Geodesic flow on step-two nilpotent Lie groups
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Sympl. form on the tangent bundle to Lie groups

G : Lie group, g: Lie algebra. Consider the left-trivializations:

TG ⊃ TgG ∋ Xg 7→ (g , dLg−1Xg ) ∈ G × g,

T ∗G ⊃ T ∗
gG ∋ αg 7→

(
g , L∗gαg

)
∈ G × g∗.

Given ⟨·, ·⟩: left-invariant metric on G (or equivalently metric
on g), we can identify T ∗G ∼= G × g∗ with TG ∼= G × g.
Then, the canonical symplectic form on T ∗G induces the one
Ω on TG ∼= G × g, which is described as

Ω (g ,X ) ((U ,V ) , (U ′,V ′)) = ⟨U ,V ′⟩−⟨V ,U ′⟩−⟨X , [U ,U ′]⟩ ,

where (g ,X ) ∈ G × g ∼= TG ,
(U ,V ) , (U ′,V ′) ∈ g× g ∼= T(g ,X ) (G × g).
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Poisson bracket and Hamiltonian vector field

The corresponding Poisson bracket {·, ·} on TG ∼= G × g is
given as

{F ,G} (g ,X ) = ⟨V ′,U⟩ − ⟨U ′,V ⟩ − ⟨X , [V ′,V ]⟩ ,

if gradF (g ,X ) = (U ,V ) , gradG (g ,X ) = (U ′,V ′).
Hamiltonian vector field ΞF for the Hamiltonian F is written as

ΞF (g ,X ) = (V , (adV )
∗ X − U) .

The Hamiltonian of the geodesic flow is H (g ,X ) =
1

2
⟨X ,X ⟩

whose Hamiltonian vector field is

ΞH (g ,X ) = (X , (adX )
∗ X ) .
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Step-two nilpotent Lie groups 1

Assume that G is a step-two nilpotent Lie group.
I.e., [g, g] ⊂ z, where z ⊂ g is the centre of g.
W.r.t. the metric ⟨·, ·⟩, the complement to z is denoted by
v ⊂ g; g = v⊕ z: the orthogonal decomposition.

For any Z ∈ z, consider the endomorphism j(Z ) : v → v
defined through

⟨j(Z )Y ,Y ′⟩ = ⟨Z , [Y ,Y ′]⟩ ,

Y ,Y ′ ∈ v.
Note that j(Z ) is skew-symmetric w.r.t. ⟨·, ·⟩|v.
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Step-two nilpotent Lie groups 2

The Hamiltonian vector field for the geodesic flow is written as

ΞH (p,Y ) = (Y , j (Yz)Yv) , (p,Y ) ∈ G × g ∼= TG .

Here, Y = Yv + Yz is the decomposition according to the
orthogonal decomposition g = v⊕ z.

Problem

Prove the complete integrability of this Hamiltonian system.

In the following, a set of Poisson commuting functions is
found explicitly.
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§3. Complete integrability of geodesic flow on step-two
nilpotent Lie groups
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First integrals obtained from maps α : z → v

Assume that G is simply connected, so that the exponential
mapping exp : g → G is invertible. log : G → g: the inverse.

For an arbitrary differentiable mapping α : z → v, set

Fα (p,Y ) := ⟨α (Yz) , j (Yz) log p − Yv⟩ , (p,Y ) ∈ G×g ∼= TG .

Proposition

For α, β : z → v: differentiable and
for F ∈ C∞ (TG ): left-invariant,

1 {Fα,Fβ} (p,Y ) = ⟨Yz, [α (Yz) , β (Yz)]⟩ =
⟨j (Yz) (α (Yz)) , β (Yz)⟩,

2 {Fα,F} = 0. In particular, {Fα,H} = 0.
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Left-invariant first integrals

For arbitrary left-invariant functions F ,G ∈ C∞ (TG ), we have

{F ,G} (p,Y ) = −⟨Yz, [V
′
v,Vv]⟩ = ⟨j (Yz) (Vv) ,V

′
v⟩ ,

where gradF (p,Y ) = (0,V ) , gradG (p,Y ) = (0,V ′).

As to the Hamiltonian H (p,Y ) =
1

2
⟨Y ,Y ⟩, we have

{F ,H} (p,Y ) = ⟨j (Yz) (Vv) ,Yv⟩ = ⟨Vv, j (Yz) (Yv)⟩ .

A left-invariant function F (p,Y ) = F (Yz), depending only on
the central component Yz of Y , is a first integral of the
geodesic flow.
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H type Lie group

Now, assume that g is an H type (due to Kaplan (1980’s)),
i.e. defined by a Clifford representation as follows:

Consider the Clifford algebra Cℓ
(
z, ⟨·, ·⟩|z

)
and assume that

(v, ⟨·, ·⟩|v) is a Clifford representation of it.

If, for any Z ∈ z, the skew-symmetric operator j(Z ) : v → v
defined through ⟨j(Z )X ,Y ⟩ = ⟨Z , [X ,Y ]⟩, X ,Y ∈ v, satisfies

⟨j(Z )X , j(Z )Y ⟩ = ⟨Z ,Z ⟩⟨X ,Y ⟩,

then the step-two nilpotent Lie algebra g = v+ z is called of H
type.
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First integrals for H type Lie group 1

On an H type nilpotent Lie algebra g, the operator j (Z ) is a
skew-symmetric matrix with j (Z )2 = −⟨Z ,Z ⟩idv. In this case
dim v(=: 2m) is even.
There exists an orthonormal basis v1(Z ), · · · , v2m(Z ) ∈ v s.t.

⟨vi , j (Z ) vj⟩ =


√
⟨Z ,Z ⟩, if i +m = j ,

−
√
⟨Z ,Z ⟩, if i = j +m,

0, otherwise.

Then, for Fv1 , · · · ,Fv2n , we have

{Fvi ,Fvi} (p,Y ) =


√
⟨Yz,Yz⟩, if i +m = j ,

−
√
⟨Yz,Yz⟩, if i = j +m,

0, otherwise.

In particular,
{
Fvi ,Fvj

}
= 0, i , j = 1, · · · ,m.
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First integrals for H type Lie group 2

For Y = Yv + Yz ∈ v+ z = g, using the same basis
v1(Yz), · · · , v2m(Yz) ∈ v, we write

Y = y1v1(Yz) + · · ·+ y2mv2m(Yz) + Yz.

Then, gi (p,Y ) = y 2
i + y 2

i+m, i = 1, · · · ,m, satisfy
gradgi (p,Y ) = (0, yivi + yi+mvi+m) and hence {gi , gj} = 0,
i , j = 1, · · · ,m.

Further, writing Yz = y ′
1z1 + · · ·+ y ′

kzk in a basis z1, · · · , zk of
z, the functions hl = y ′

l , l = 1, · · · , k , Poisson commute with
all the other functions on G × g ∼= TG .
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Complete integrability for H type Lie groups

We can show that H =
1

2

(
g1 + · · ·+ gm + h21 + · · ·+ h2k

)
.

Theorem (Bauer-T.)

The functions g1, · · · , gm, h1, · · · , hk ,Fv1 , · · · ,Fvm form a
complete set of Poisson commuting functions and hence the
geodesic flow (G × g ∼= TG ,Ω,H) is completely integrable.

Remark

These first integrals are generalizations of those obtain by
Kocsard-Ovando-Reggiani in Heisenberg group case.

Corollary

Set H ′ :=
1

2
(g1 + · · ·+ gm). The sub-Riemannian geodesic

flow (G × g ∼= TG ,Ω,H ′) is completely integrable.
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Example

Take Z1,Z2 ∈ R2,0: orthonormal w.r.t. the inner product
⟨·, ·⟩2,0.
Let Cℓ2,0 be the Clifford algebra generated by Z1, Z2 with
Z 2
i = −1, i = 1, 2, Z1Z2 + Z2Z1 = 0.

Take v ∈ R4,0 with ⟨v , v⟩4,0 = 1 and set

X1 = v ,X2 = j (Z1) j (Z2) v ,X3 = j (Z1) v ,X4 = j (Z2) v ,

where j : Cℓ2,0 → R4,0: representation of Cℓ2,0.
X1,X2,X3,X4: orthonormal basis of R4,0.

Lie algebra N2,0 is defined on
(R4,0 ⊕ R2,0, ⟨·, ·⟩ := ⟨·, ·⟩4,0 + ⟨·, ·⟩2,0) with the Lie bracket
defined through

⟨Z , [X ,X ′]⟩ = ⟨j (Z )X ,X ′⟩ , X ,X ′ ∈ R4,0,Z ∈ R2,0.



Introduction geodesic flow Integrability

Example (continued)

W.r.t. the basis X1,X2,X3,X4, j (Z ), where
Z = z1Z1 + z2Z2 ∈ R2,0, has the matrix representation

0 0 z1 z2
0 0 z2 −z1

−z1 −z2 0 0
−z2 z1 0 0

 .

Taking the new basis
X1,X2,X

′
3 := (z1X3 + z2X4) /|Z |,X ′

4 := (z2X3 − z1X4) /|Z |,
j(Z ) is represented by

|Z |
(

0 E2

−E2 0

)
.
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Example (continued)

Expand any Y ∈ N2,0 as

Y = y1X1 + y2X2 + y ′
3X

′
3 + y ′

4X
′
4 + y5Z1 + y6Z2.

We see that the functions

FX1 , FX2 , g1 (p,Y ) = y 2
1 + y ′

3
2
, g2 (p,Y ) = y 2

2 + y ′
4
2
, y5, y6

are functionally independent and Poisson commuting first
integrals of the geodesic flow on the corresponding Lie group.
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First integrals via isometry group 1

The isometry group of (G , ⟨·, ·⟩) is K ⋉ G where the Lie
algebra k of K is given as

k = {(A,B) ∈ so (z, ⟨·, ·⟩z)× so (v, ⟨·, ·⟩v)|
Bj(Z )− j(Z )B = j (AZ ) ,Z ∈ z} .

For k = (A,B) ∈ k, the corresponding Killing vector field is

X ∗
k (p) = dLp

(
BWv −

1

2
[Wv,BWv] + AWz

)
, p ∈ G .

Here, W = log p ∈ g.
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First integrals via isometry group 2

In association to the Killing vector field X ∗
k , we consider

fX∗
k
(p,Y ) := ⟨Y , dLp−1 (X ∗

k )⟩

=

⟨
Y ,BWv −

1

2
[Wv,BWv] + AWz

⟩
.

Proposition {
fX∗

k
,H

}
= 0.
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First integrals via isometry group 3

The commutation relation with other first integrals:{
fX∗

k
, g

}
= ⟨Yv,BV

′
v⟩+ ⟨Yz,AV

′
z⟩ ,{

fX∗
k
, fX∗

k′

}
= f ∗X[k,k′]

,{
fX∗

k
,Fα

}
= Fα′ ,

where g : left-invariant s.t. gradg (p,Y ) = (0,V ′),

α′ (Yz) = Bα (Yz)−
∂α

∂Yz

(Yz) · (AYz), Yz ∈ z.
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