# 冪零 Lie 群上の左不変計量に関する測地流 の完全積分可能性について

#### 多羅間 大輔

立命館大学理工学部数理科学科 E-mail: dtarama [at] fc.ritsumei.ac.jp

Wolfram Bauer 氏 (Universität Hannover) との共同研究に基づく





2 Geodesic flow on step-two nilpotent Lie groups

Complete integrability of geodesic flow on step-two nilpotent Lie groups

#### $\S1.$ Introduction

## Backgrounds 1

- The free rigid body is an example of completely integrable geodesic flows on Lie groups w. r. t. left-invariant metrics.
- It is nothing but the geodesic flow on SO(3) w. r. t. a left-invariant Riemannian metric.
- Classical result: this dynamics can be solved by quadrature.
- Modern formulation: a Hamiltonian system on  $T^*SO(3)$ admitting three functionally independent first integrals (constants of motion).  $\rightsquigarrow$  Completely integrable.

### Backgrounds 2

Completely integrable systems on symplectic manifolds:  $(M, \omega)$ : sympl. mfd (i.e.  $\omega$ : non-degenerate closed 2-form). For  $H \in C^{\infty}(M)$ : Hamiltonian, the Hamiltonian vector field  $\Xi_H$  is defined through

$$\iota_{\Xi_H}\omega=-\mathsf{d}H.$$

Assume dim M = 2n. The Hamiltonian system is called *completely integrable* in the sense of Liouville, if there exist *n* functionally independent functions  $F_1, \dots, F_{n-1}, F_n(=H)$  which Poisson commute:

$$\{F_i,F_j\}=0,$$
  $(i,j=1,\cdots,n).$ 

Here,  $\{F, G\} = \omega (\Xi_F, \Xi_G) = \Xi_F (G).$ 

### Backgrounds 3

#### Theorem (Liouville-Arnol'd)

Assume that the Hamiltonian system  $(M, \omega, H)$  is completely integrable, whose first integrals are  $F_1, \dots, F_{n-1}, F_n (= H)$ . Set  $F = (F_1, \dots, F_n) : M \to \mathbb{R}^n$ . Then, for  $\mu \in \text{Im}F$ : regular value,  $F^{-1}(\mu)$  is a torus, if it is compact and connected. Further, F is a torus bundle around this fibre and on each fibre the induced flow is linear on the torus.

## Short history

Researches on the complete integrability of geodesic flow on Lie groups w.r.t. a left-invariant metric.

- SO(3): Euler, Poinsot, Jacobi, ···.
- *SO*(*n*): Mishchenko, Dikii, Manakov, Ratiu (1970's, 1980's).
- semi-simple Lie groups (complex, normal real form, compact real form, their intersection): Mishchenko-Fomenko (1978).
- U(n): Iwai (2004), Ratiu-T (2015).

## Nilpotent Lie group case

- Existence of a complete set of Poisson commuting functions on the dual to nilpotent Lie algebras: Vergne (1972).
- Heisenberg groups (explicit construction of first integrals): Kocsard-Ovando-Reggiani (2016).

#### Problem:

How about more general nilpotent Lie groups?

 $\S2.$  Geodesic flow on step-two nilpotent Lie groups

## Sympl. form on the tangent bundle to Lie groups

G: Lie group,  $\mathfrak{g}$ : Lie algebra. Consider the left-trivializations:

$$TG \supset T_gG \ni X_g \mapsto (g, \mathsf{d}L_{g^{-1}}X_g) \in G \times \mathfrak{g},$$
  
$$T^*G \supset T_g^*G \ni \alpha_g \mapsto (g, L_g^*\alpha_g) \in G \times \mathfrak{g}^*.$$

Given  $\langle \cdot, \cdot \rangle$ : left-invariant metric on G (or equivalently metric on  $\mathfrak{g}$ ), we can identify  $T^*G \cong G \times \mathfrak{g}^*$  with  $TG \cong G \times \mathfrak{g}$ . Then, the canonical symplectic form on  $T^*G$  induces the one  $\Omega$  on  $TG \cong G \times \mathfrak{g}$ , which is described as

$$\Omega(g,X)((U,V),(U',V')) = \langle U,V' \rangle - \langle V,U' \rangle - \langle X,[U,U'] \rangle,$$

where  $(g, X) \in G \times \mathfrak{g} \cong TG$ ,  $(U, V), (U', V') \in \mathfrak{g} \times \mathfrak{g} \cong T_{(g,X)}(G \times \mathfrak{g}).$ 

## Poisson bracket and Hamiltonian vector field

The corresponding Poisson bracket  $\{\cdot,\cdot\}$  on  $\mathcal{T}G\cong G\times\mathfrak{g}$  is given as

$$\{F,G\}(g,X) = \langle V',U \rangle - \langle U',V \rangle - \langle X,[V',V] \rangle,$$

if  $\operatorname{grad} F(g, X) = (U, V)$ ,  $\operatorname{grad} G(g, X) = (U', V')$ . Hamiltonian vector field  $\Xi_F$  for the Hamiltonian F is written as

$$\Xi_F(g,X) = (V, (\mathrm{ad}_V)^* X - U).$$

The Hamiltonian of the geodesic flow is  $H(g, X) = \frac{1}{2} \langle X, X \rangle$ whose Hamiltonian vector field is

$$\Xi_H(g,X) = (X, (\mathrm{ad}_X)^* X).$$

## Step-two nilpotent Lie groups 1

Assume that G is a step-two nilpotent Lie group. I.e.,  $[\mathfrak{g},\mathfrak{g}] \subset \mathfrak{z}$ , where  $\mathfrak{z} \subset \mathfrak{g}$  is the centre of  $\mathfrak{g}$ . W.r.t. the metric  $\langle \cdot, \cdot \rangle$ , the complement to  $\mathfrak{z}$  is denoted by  $\mathfrak{v} \subset \mathfrak{g}$ ;  $\mathfrak{g} = \mathfrak{v} \oplus \mathfrak{z}$ : the orthogonal decomposition.

For any  $Z \in \mathfrak{z}$ , consider the endomorphism  $j(Z) : \mathfrak{v} \to \mathfrak{v}$  defined through

$$\langle j(Z)Y, Y' \rangle = \langle Z, [Y, Y'] \rangle,$$

 $Y, Y' \in \mathfrak{v}.$ Note that j(Z) is skew-symmetric w.r.t.  $\langle \cdot, \cdot \rangle|_{\mathfrak{v}}.$ 

## Step-two nilpotent Lie groups 2

The Hamiltonian vector field for the geodesic flow is written as

$$\Xi_H(p, Y) = (Y, j(Y_{\mathfrak{z}}) Y_{\mathfrak{v}}), \quad (p, Y) \in G \times \mathfrak{g} \cong TG.$$

Here,  $Y = Y_{v} + Y_{z}$  is the decomposition according to the orthogonal decomposition  $\mathfrak{g} = \mathfrak{v} \oplus \mathfrak{z}$ .

#### Problem

Prove the complete integrability of this Hamiltonian system.

In the following, a set of Poisson commuting functions is found explicitly.

 $\S3.$  Complete integrability of geodesic flow on step-two nilpotent Lie groups

## First integrals obtained from maps $\alpha : \mathfrak{z} \to \mathfrak{v}$

Assume that G is simply connected, so that the exponential mapping exp :  $\mathfrak{g} \to G$  is invertible. log :  $G \to \mathfrak{g}$ : the inverse.

For an arbitrary differentiable mapping  $\alpha : \mathfrak{z} \to \mathfrak{v}$ , set

$$F_{\alpha}(p,Y) := \langle \alpha(Y_{\mathfrak{z}}), j(Y_{\mathfrak{z}}) \log p - Y_{\mathfrak{v}} \rangle, \quad (p,Y) \in G imes \mathfrak{g} \cong TG.$$

#### Proposition

For  $\alpha, \beta : \mathfrak{z} \to \mathfrak{v}$ : differentiable and for  $F \in \mathcal{C}^{\infty}(TG)$ : left-invariant,

$$\{F_{\alpha}, F_{\beta}\}(p, Y) = \langle Y_{\mathfrak{z}}, [\alpha(Y_{\mathfrak{z}}), \beta(Y_{\mathfrak{z}})] \rangle = \langle j(Y_{\mathfrak{z}})(\alpha(Y_{\mathfrak{z}})), \beta(Y_{\mathfrak{z}}) \rangle,$$

**2**  $\{F_{\alpha}, F\} = 0$ . In particular,  $\{F_{\alpha}, H\} = 0$ .

## Left-invariant first integrals

For arbitrary left-invariant functions  $F, G \in \mathcal{C}^{\infty}$  (*TG*), we have

$$\{F,G\}(p,Y) = -\langle Y_{\mathfrak{z}}, [V'_{\mathfrak{v}}, V_{\mathfrak{v}}] \rangle = \langle j(Y_{\mathfrak{z}})(V_{\mathfrak{v}}), V'_{\mathfrak{v}} \rangle,$$

where  $\operatorname{grad} F(p, Y) = (0, V)$ ,  $\operatorname{grad} G(p, Y) = (0, V')$ .

As to the Hamiltonian  $H(p, Y) = \frac{1}{2} \langle Y, Y \rangle$ , we have

$$\{F,H\}(p,Y) = \langle j(Y_{\mathfrak{z}})(V_{\mathfrak{v}}), Y_{\mathfrak{v}} \rangle = \langle V_{\mathfrak{v}}, j(Y_{\mathfrak{z}})(Y_{\mathfrak{v}}) \rangle.$$

A left-invariant function  $F(p, Y) = F(Y_3)$ , depending only on the central component  $Y_3$  of Y, is a first integral of the geodesic flow.

## H type Lie group

Now, assume that  $\mathfrak{g}$  is an H type (due to Kaplan (1980's)), i.e. defined by a Clifford representation as follows:

Consider the Clifford algebra  $C\ell\left(\mathfrak{z}, \langle\cdot, \cdot\rangle|_{\mathfrak{z}}\right)$  and assume that  $(\mathfrak{v}, \langle\cdot, \cdot\rangle|_{\mathfrak{v}})$  is a Clifford representation of it.

If, for any  $Z \in \mathfrak{z}$ , the skew-symmetric operator  $j(Z) : \mathfrak{v} \to \mathfrak{v}$ defined through  $\langle j(Z)X, Y \rangle = \langle Z, [X, Y] \rangle$ ,  $X, Y \in \mathfrak{v}$ , satisfies

$$\langle j(Z)X, j(Z)Y \rangle = \langle Z, Z \rangle \langle X, Y \rangle,$$

then the step-two nilpotent Lie algebra  $\mathfrak{g}=\mathfrak{v}+\mathfrak{z}$  is called of H type.

### First integrals for H type Lie group 1

On an H type nilpotent Lie algebra  $\mathfrak{g}$ , the operator j(Z) is a skew-symmetric matrix with  $j(Z)^2 = -\langle Z, Z \rangle \mathrm{id}_{\mathfrak{v}}$ . In this case dim  $\mathfrak{v}(=:2m)$  is even.

There exists an orthonormal basis  $v_1(Z), \cdots, v_{2m}(Z) \in \mathfrak{v}$  s.t.

$$\langle v_i, j(Z) v_j \rangle = egin{cases} \sqrt{\langle Z, Z 
angle}, & ext{if } i+m=j, \ -\sqrt{\langle Z, Z 
angle}, & ext{if } i=j+m, \ 0, & ext{otherwise.} \end{cases}$$

Then, for  $F_{v_1}, \cdots, F_{v_{2n}}$ , we have

$$\{F_{\mathbf{v}_{i}}, F_{\mathbf{v}_{i}}\}(\mathbf{p}, \mathbf{Y}) = \begin{cases} \sqrt{\langle Y_{\mathfrak{z}}, Y_{\mathfrak{z}} \rangle}, & \text{if } i + m = j, \\ -\sqrt{\langle Y_{\mathfrak{z}}, Y_{\mathfrak{z}} \rangle}, & \text{if } i = j + m, \\ 0, & \text{otherwise.} \end{cases}$$

In particular,  $\left\{ {{ extsf{F}}_{{ extsf{v}}_i}},{{ extsf{F}}_{{ extsf{v}}_j}} 
ight\} = 0$ ,  $i,j = 1, \cdots, m$ .

0.

## First integrals for H type Lie group 2

For 
$$Y = Y_{v} + Y_{j} \in v + j = g$$
, using the same basis  
 $v_{1}(Y_{j}), \dots, v_{2m}(Y_{j}) \in v$ , we write  
 $Y = y_{1}v_{1}(Y_{j}) + \dots + y_{2m}v_{2m}(Y_{j}) + Y_{j}$ .  
Then,  $g_{i}(p, Y) = y_{i}^{2} + y_{i+m}^{2}$ ,  $i = 1, \dots, m$ , satisfy  
 $\operatorname{grad} g_{i}(p, Y) = (0, y_{i}v_{i} + y_{i+m}v_{i+m})$  and hence  $\{g_{i}, g_{j}\} = i, j = 1, \dots, m$ .

Further, writing  $Y_{\mathfrak{z}} = y'_{1}z_{1} + \cdots + y'_{k}z_{k}$  in a basis  $z_{1}, \cdots, z_{k}$  of  $\mathfrak{z}$ , the functions  $h_{l} = y'_{l}$ ,  $l = 1, \cdots, k$ , Poisson commute with all the other functions on  $G \times \mathfrak{g} \cong TG$ .

# Complete integrability for H type Lie groups

We can show that 
$$H = \frac{1}{2} \left(g_1 + \cdots + g_m + h_1^2 + \cdots + h_k^2\right).$$

#### Theorem (Bauer-T.)

The functions  $g_1, \dots, g_m, h_1, \dots, h_k, F_{v_1}, \dots, F_{v_m}$  form a complete set of Poisson commuting functions and hence the geodesic flow  $(G \times \mathfrak{g} \cong TG, \Omega, H)$  is completely integrable.

#### Remark

These first integrals are generalizations of those obtain by Kocsard-Ovando-Reggiani in Heisenberg group case.

#### Corollary

Set  $H' := \frac{1}{2}(g_1 + \cdots + g_m)$ . The sub-Riemannian geodesic flow  $(G \times \mathfrak{g} \cong TG, \Omega, H')$  is completely integrable.

### Example

Take  $Z_1, Z_2 \in \mathbb{R}^{2,0}$ : orthonormal w.r.t. the inner product  $\langle \cdot, \cdot \rangle_{2,0}$ . Let  $C\ell_{2,0}$  be the Clifford algebra generated by  $Z_1, Z_2$  with  $Z_i^2 = -1$ , i = 1, 2,  $Z_1Z_2 + Z_2Z_1 = 0$ . Take  $v \in \mathbb{R}^{4,0}$  with  $\langle v, v \rangle_{4,0} = 1$  and set

$$X_{1} = v, X_{2} = j(Z_{1})j(Z_{2})v, X_{3} = j(Z_{1})v, X_{4} = j(Z_{2})v,$$

where  $j : C\ell_{2,0} \to \mathbb{R}^{4,0}$ : representation of  $C\ell_{2,0}$ .  $X_1, X_2, X_3, X_4$ : orthonormal basis of  $\mathbb{R}^{4,0}$ .

Lie algebra  $\mathcal{N}_{2,0}$  is defined on  $(\mathbb{R}^{4,0} \oplus \mathbb{R}^{2,0}, \langle \cdot, \cdot \rangle := \langle \cdot, \cdot \rangle_{4,0} + \langle \cdot, \cdot \rangle_{2,0})$  with the Lie bracket defined through

$$\langle Z, [X, X'] \rangle = \langle j(Z) X, X' \rangle, \quad X, X' \in \mathbb{R}^{4,0}, Z \in \mathbb{R}^{2,0}.$$

## Example (continued)

W.r.t. the basis  $X_1, X_2, X_3, X_4$ , j(Z), where  $Z = z_1Z_1 + z_2Z_2 \in \mathbb{R}^{2,0}$ , has the matrix representation

$$\begin{pmatrix} 0 & 0 & z_1 & z_2 \\ 0 & 0 & z_2 & -z_1 \\ -z_1 & -z_2 & 0 & 0 \\ -z_2 & z_1 & 0 & 0 \end{pmatrix}$$

Taking the new basis  $X_1, X_2, X'_3 := (z_1X_3 + z_2X_4)/|Z|, X'_4 := (z_2X_3 - z_1X_4)/|Z|, j(Z)$  is represented by

$$|Z|\begin{pmatrix} 0 & E_2\\ -E_2 & 0 \end{pmatrix}.$$

# Example (continued)

Expand any  $Y \in \mathcal{N}_{2,0}$  as

$$Y = y_1 X_1 + y_2 X_2 + y_3' X_3' + y_4' X_4' + y_5 Z_1 + y_6 Z_2.$$

We see that the functions

$$F_{X_1}, F_{X_2}, g_1(p, Y) = y_1^2 + {y'_3}^2, g_2(p, Y) = y_2^2 + {y'_4}^2, y_5, y_6$$

are functionally independent and Poisson commuting first integrals of the geodesic flow on the corresponding Lie group.

## First integrals via isometry group 1

The isometry group of  $(G, \langle \cdot, \cdot \rangle)$  is  $K \ltimes G$  where the Lie algebra  $\mathfrak{k}$  of K is given as

$$\begin{split} \mathfrak{k} &= \{ (A,B) \in \mathfrak{so} \left( \mathfrak{z}, \langle \cdot, \cdot \rangle_{\mathfrak{z}} \right) \times \mathfrak{so} \left( \mathfrak{v}, \langle \cdot, \cdot \rangle_{\mathfrak{v}} \right) | \\ & Bj(Z) - j(Z)B = j \left( AZ \right), Z \in \mathfrak{z} \} \,. \end{split}$$

For  $k = (A, B) \in \mathfrak{k}$ , the corresponding Killing vector field is

$$X_k^*(p) = \mathsf{d}L_p\left(BW_\mathfrak{v} - rac{1}{2}\left[W_\mathfrak{v}, BW_\mathfrak{v}\right] + AW_\mathfrak{z}
ight), \quad p \in G.$$

Here,  $W = \log p \in \mathfrak{g}$ .

## First integrals via isometry group 2

#### In association to the Killing vector field $X_k^*$ , we consider

$$egin{aligned} &f_{X_k^*}\left( oldsymbol{p},Y
ight) &:= \left\langle Y,\mathsf{d}L_{p^{-1}}\left(X_k^*
ight) 
ight
angle \ &= \left\langle Y,\mathsf{B}W_\mathfrak{v} - rac{1}{2}\left[W_\mathfrak{v},\mathsf{B}W_\mathfrak{v}
ight] + \mathsf{A}W_\mathfrak{z} 
ight
angle. \end{aligned}$$

#### Proposition

$$\left\{f_{X_k^*},H\right\}=0.$$

## First integrals via isometry group 3

The commutation relation with other first integrals:

$$\begin{split} \left\{ f_{X_{k}^{*}}, g \right\} &= \left\langle Y_{\mathfrak{v}}, BV'_{\mathfrak{v}} \right\rangle + \left\langle Y_{\mathfrak{z}}, AV'_{\mathfrak{z}} \right\rangle, \\ \left\{ f_{X_{k}^{*}}, f_{X_{k'}^{*}} \right\} &= f_{X_{[k,k']}}^{*}, \\ \left\{ f_{X_{k}^{*}}, F_{\alpha} \right\} &= F_{\alpha'}, \end{split}$$

where g: left-invariant s.t. gradg (p, Y) = (0, V'),  $\alpha'(Y_{\mathfrak{z}}) = B\alpha(Y_{\mathfrak{z}}) - \frac{\partial \alpha}{\partial Y_{\mathfrak{z}}}(Y_{\mathfrak{z}}) \cdot (AY_{\mathfrak{z}}), Y_{\mathfrak{z}} \in \mathfrak{z}.$