Examples of solvmanifolds without LCK structures

Hiroshi Sawai National Institute of Technology, Numazu College

1. Introduction

Definition 1.

G: simply-connected solvable Lie group.

 Γ : lattice, that is, discrete co-compact subgroup of G.

 $\Longrightarrow \Gamma \backslash G$: solvmanifold.

 $(G : nilpotent Lie group \Longrightarrow \Gamma \backslash G : nilmanifold)$

Theorem 2. [Hasegawa '06]

A solvmanifold admitting a Kähler structure is a finite quotient of a complex torus which has the structure of a complex torus bundle over a complex torus.

Definition 3.

(M,g,J): Hermitian manifold.

 Ω : the fundamental 2-form $(\Omega(X,Y)=g(X,JY))$.

(M,g,J): locally conformal Kähler (LCK)

 $\iff^{\exists}\omega \text{ : closed 1-form such that } d\Omega = \omega \wedge \Omega.$

(We call ω Lee form.)

Remark 4.

If $\omega = df$, then $(M, e^{-f}g, J)$ is Kähler.

Definition 5.

(M,g,J): LCK manifold.

(M,g,J): Vaisman manifold

 $\begin{tabular}{l} \Longleftrightarrow \\ \det \end{array}$ Lee form ω is parallel with respect to g.

Definition 6.

M: manifold,

 α : closed 1-form on M.

 $d_{\alpha}: A^{p}(M) \to A^{p+1}(M)$

$$d_{\alpha}\beta := \alpha \wedge \beta + d\beta \qquad (d_{\alpha}^2 = 0).$$

We call β α -closed (α -exact), if $d_{\alpha}\beta = 0$ ($\beta = d_{\alpha}\gamma$).

Similarly, we can define the new differential operator on a Lie algebra.

(M,g,J): LCK manifold.

 $\iff d\Omega = \omega \wedge \Omega \ (\omega : \text{closed 1-form}).$

 $\iff 0 = -\omega \wedge \Omega + d\Omega.$

 \iff 0 = $d_{-\omega}\Omega$, that is, Ω : $-\omega$ -closed.

Theorem 7. [León-López-Marrero-Padrón, '03]

(M,g): compact Riemannian manifold

lpha : parallel 1-from with respect to g

 \Rightarrow any α -closed form is α -exact.

The fundamental 2-form Ω of a Vaisman manifold is $-\omega$ -exact:

$$\Omega = d_{-\omega}\eta = -\omega \wedge \eta + d\eta.$$

Remark 8. [S. '15]

On solvmanifolds, the inverse is hold.

Examples

- Hopf surface (Vaisman '79) : Vaisman manifold
- Inoue surfaces (Tricerri '82) : non-Vaisman manifold
 - nilmanifold $S^1 \times \Gamma \backslash H$
- where, H is a Hisenberg Lie group : Vaisman manifold (Fernandez etal '86)
- Oeljeklaus-Toma manifold (Oeljeklaus-Toma, '05)
 i non-Vaisman manifold

LCK nilmanifold $\Gamma \backslash G$

Theorem 9. [S. '07]

 $\Gamma \backslash G$ has a LCK structure (g,J) such that J is left-invariant, $\Rightarrow G = \mathbb{R} \times H$, where H is a Heisenberg Lie group.

Theorem 10. [Bazzoni. '17]

 $\Gamma \backslash G$ has a Vaisman structure (g, J),

 $\Rightarrow G = \mathbb{R} \times H$, where H is a Heisenberg Lie group.

In this talk, we consider the following solvable Lie group:

$$G_n = \left\{ \left(t, \begin{pmatrix} x_i \\ y_i \end{pmatrix}, z \right) : t, x_i, y_i, z \in \mathbb{R}, i = 1, \dots, n \right\},$$

where a structure group on G_n is defined by

$$\left(t, \begin{pmatrix} x_i \\ y_i \end{pmatrix}, z\right) \cdot \left(t', \begin{pmatrix} x'_i \\ y'_i \end{pmatrix}, z'\right) \\
= \left(t + t', \begin{pmatrix} e^{a_i t} x'_i + x_i \\ e^{-a_i t} y'_i + y_i \end{pmatrix}, z' + \frac{1}{2} \sum_{i=1}^n \left(-e^{a_i t} y_i x'_i + e^{-a_i t} x_i y'_i\right) + z\right)$$

and $a_i \in \mathbb{Z} - \{0\}$.

 $[G_n,G_n]$: (2n+1)-dimensional Heisenberg Lie group

Construction of solvmanifold $\Gamma_n \backslash G_n$

 $B = \begin{pmatrix} 0 & -1 \\ 1 & k \end{pmatrix}$ be a unimodular matrix with distinct positive eigenvalues λ, λ^{-1}

$$\exists P = \begin{pmatrix} 1 & \lambda \\ 1 & \lambda^{-1} \end{pmatrix} \text{ such that } PBP^{-1} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$$

 $\varphi: \mathbb{R}^{2n+2} \to G_n$ diffeomorphism

$$\varphi(A) = \left((\log \lambda)t, 2P \begin{pmatrix} x_i \\ y_i \end{pmatrix}, |P| z \right)$$

 \Rightarrow We can prove that $\varphi(\mathbb{Z}^{2n+2})$ is a lattice Γ_n on G_n

Main Theorem .

Let J_n be a left-invariant complex structure on $\Gamma_n \backslash G_n$.

- In the case of n=1, $(\Gamma_1\backslash G_1,J_1)$ has a LCK structure, but has no Vaisman structures.
- In the case of $n \ge 2$, $(\Gamma_n \backslash G_n, J_n)$ has no LCK structures.

Remark 11.

On a LCK structure, in absence of a complex structure, it is said to be *locally conformal symplectic* (LCS). The solvmanifold $\Gamma_n \backslash G_n$ has LCS structures.

2. Preliminary

Definition 12.

G: simply-connected solvable Lie group.

G: completely solvable

 $\ \Longleftrightarrow \ \operatorname{For}\ ^{\forall}X\in \mathfrak{g},\ \operatorname{ad}(X):\mathfrak{g}\to \mathfrak{g}\ \operatorname{has}\ \operatorname{only}\ \operatorname{real}\ \operatorname{eigenvalues},$

where \mathfrak{g} : Lie algebra of G.

Theorem 13. [Hattori '60]

 $H^*_{\mathsf{DR}}(\Gamma \backslash G) \cong H^*(\mathfrak{g})$, where \mathfrak{g} : Lie algebra of G.

Note that G_n is completely solvable.

 $(M = \Gamma \backslash G, g, J)$: LCK solvmanifold with Lee form ω such that 1. J is left-invariant.

2. \exists left-invariant closed 1-form ω_0 s.t $\omega_0 - \omega = df$.

Theorem 14. [Belgun '00]

For $X,Y\in\mathfrak{g}$,

$$\langle X, Y \rangle := \int_M e^f g(X, Y) d\mu$$

 $\Longrightarrow (\mathfrak{g}, \langle , \rangle, J)$: LCK solvable Lie algebra with Lee form ω_0 .

 Ω_0 : the fundamental 2-form of (\langle , \rangle, J)

Remark 15. [S. '12]

 $(M = \Gamma \backslash G, g, J)$: Vaisman solvmanifold $(\Omega = d_{-\omega}\eta)$

$$\Longrightarrow \Omega_0 = d_{-\omega_0}\eta_0$$

Definition 16.

 J_1,J_2 : complex structure on \mathfrak{g} J_1,J_2 are equivalent

 \iff $\exists F \in \operatorname{Aut}(\mathfrak{g})$ such that $J_1 \circ F = F \circ J_2$

 (g, J_1) : Hermitian structure $\Longrightarrow (F^*g, J_2)$: Hermitian structure

Proposition 17. [Ugarte '07]

 (g, J_1) : LCK structure $\Longrightarrow (F^*g, J_2)$: LCK structure

3. In the case of n=1

$$\mathfrak{g}_1 = \mathrm{span}\{A, X, Y, Z : [A, X] = X, [A, Y] = -Y, [X, Y] = Z\}$$

 $\{\theta,\alpha,\beta,\gamma\}$ is a dual base of $\{A,X,Y,Z\}$:

$$d\theta = 0,$$

$$d\alpha = -\theta \wedge \alpha, d\beta = \theta \wedge \beta,$$

$$d\gamma = -\alpha \wedge \beta$$

LCK structure on $\Gamma_1 \backslash G_1$ (Inoue surface S^+)

(Tricerri '82, Fernández etal '89, Kamishima '01)

- \bullet \langle , \rangle : left-inv. metric s.t $\{A, X, Y, Z\}$ is an orthonormal frame.
- J: left-inv. complex structure s.t JA = Y, JZ = X.
- \Longrightarrow (\langle , \rangle, J) : LCK structure with Lee form θ .
 - $\nabla_Y \theta(Y) = -\theta(\nabla_Y Y) = -\langle A, \nabla_Y Y \rangle = -\langle [A, Y], Y \rangle = \langle Y, Y \rangle \neq 0.$

Proposition 18. [cf. Belgun, '00] $\Gamma_1 \backslash G_1$ has no Vaisman structures.

- Proof. A complex structure on a 4-dimensional solvmanifold is left-invariant [Hasegawa, '05].
 - A complex structure on $\Gamma_1 \backslash G_1$ is equivalent to

$$J_0: J_0A=Y, J_0Y=-A, J_0Z=X, J_0X=-Z$$
 or
$$J_1: J_1A=Y+Z, J_1Y=-A-X, J_1Z=X, J_1X=-Z \text{ [Ovando, '04]}.$$

• $(\Gamma_1 \backslash G_1, J)$ has a Vaisman structure : $\Omega_0 = d_{-k\theta}\eta$ $\Longrightarrow (\Gamma_1 \backslash G_1, J_q)$ has a LCK structure : $\Omega_0^q = d_{-kq\theta}\eta_q$ (q = 0 or 1) $\langle Z, Z \rangle = d_{-kq\theta}\eta_q (J_q Z, Z) = (-k_q\theta \wedge \eta_q + d\eta_q)(X, Z) = 0$

because $X, Z \in [\mathfrak{g}_1, \mathfrak{g}_1]$ and Z is in the center of \mathfrak{g}_1 .

Remark 19.

 $(\Gamma_1 \backslash G_1, J_1)$ has no LCK structures.

Remark 20. [Vaisman, '82]

The first Betti number of a Vaisman manifold is odd.

Proposition 21. [Kasuya '12] If $\mathfrak{g} = \mathbb{R}^n \ltimes \mathbb{R}^m$ and $\dim[\mathfrak{g},\mathfrak{g}] > \frac{1}{2}\dim\mathfrak{g}$, then $(\Gamma \backslash G, J)$ has no Vaisman structures.

 \Rightarrow Inoue surface S^0 , O-T manifolds have no Vaisman structures.

4. In the case of n > 2

$$g_n = \text{span}\{A, X_i, Y_i, Z : [A, X_i] = a_i X_i, [A, Y_i] = -a_i Y_i, [X_i, Y_i] = Z\}$$

 $\{\theta, \alpha_i, \beta_i, \gamma\}$ is a dual base of $\{A, X, Y, Z\}$:

$$d\theta = 0,$$

$$d\alpha_i = -a_i \theta \wedge \alpha_i, d\beta_i = a_i \theta \wedge \beta_i,$$

$$d\gamma = -\sum_i \alpha_i \wedge \beta_i$$

Note that

 $[\mathfrak{g}_n,\mathfrak{g}_n]=\operatorname{span}\{X_i,Y_i,Z\}$, $\operatorname{span}\{Z\}$ is the center of \mathfrak{g}_n .

We assume that \mathfrak{g}_n has a LCK structure (\langle , \rangle, J_n) with Ω_0 $(-k\theta$ -closed 2-from).

Lemma 22. $\Omega_0(Z, X_i) = \Omega_0(Z, Y_i) = 0$ for each i.

Proof.

$$\Omega_{0}(Z, X_{i}) = \Omega_{0}([X_{j}, Y_{j}], X_{i})
= -d\Omega_{0}(X_{j}, Y_{j}, X_{i}) + \Omega_{0}([X_{j}, X_{i}], Y_{j}) - \Omega_{0}([Y_{j}, X_{i}], X_{j})
= k\theta \wedge \Omega_{0}(X_{j}, Y_{j}, X_{i}) = 0.$$

 $\gamma_0: \mathfrak{g}^* \to \mathfrak{g}$ isomorphism induced by \langle , \rangle .

Corollary 23. $J_n \circ \gamma_0(\theta) \in \text{span}\{Z\}$.

Proof. Since $\langle J_n Z, X_i \rangle = -\Omega_0(Z, X_i) = 0, \langle J_n Z, Y_i \rangle = -\Omega_0(Z, Y_i) = 0,$ we have $J_n Z \in \text{span}\{\gamma_0(\theta)\}$, that is, $J_n \circ \gamma_0(\theta) \in \text{span}\{Z\}$.

 $(\mathfrak{g}, \langle , \rangle, J)$ LCK solvable Lie algebra with Lee form ω_0 .

Proposition 24. [S. '15]

If $\langle [\gamma_0(\omega_0), J \circ \gamma_0(\omega_0)], J \circ \gamma_0(\omega_0) \rangle = 0$, then (\langle , \rangle, J) is a Vaisman structure.

 \Rightarrow LCK structure on (\langle , \rangle, J_n) on \mathfrak{g}_n is Vaisman, because $J \circ \gamma_0(\theta) \in \text{span}\{Z\}$.

Proposition 25. [S. '17]

If \mathfrak{g} is completely solvable and (\langle , \rangle, J) is a Vaisman structure, then $\mathfrak{g} = \mathbb{R} \times \mathfrak{h}$, where \mathfrak{h} is a Heisenberg Lie algebra.

 \Rightarrow This is a contradiction, because \mathfrak{g}_n is completely solvable.

Remark 26. A non-degenerate $-\omega$ -closed 2-form is called LCS.

The solvmanifold $\Gamma_n \backslash G_n$ has LCS structures:

$$\Omega_{1} = d_{-\theta}\gamma = -\theta \wedge \gamma - \sum_{i} \alpha_{i} \wedge \beta_{i} \text{(exact type)}$$

$$\Omega_{2} = \alpha_{k} \wedge \alpha_{l} + d_{(a_{k}+a_{l})\theta}\gamma$$

$$= \alpha_{k} \wedge \alpha_{l} + (a_{k}+a_{l})\theta \wedge \gamma - \sum_{i} \alpha_{i} \wedge \beta_{i} \text{(non-exact type)}$$

Remark 27. If $a_i = 0$ for each i, then the solvmanifold $\Gamma_n \backslash G_n$ has a LCK structure (Vaisman).

4. Future Work

Structure Theorem for Vaisman solvmanifolds?

Classification of low dimensional LCK solvmanifolds

Proposition 28. [S. '12]

Classification of 4-dimensional LCK solvmanifolds:

Kodaira-Thurston manifold, Inoue surfaces

Proposition 29. [Bock, '16]

Classification of 6-dimensional solvable Lie algebras

Proposition 30. [S. '15]

If Ω_0 is $-\omega_0$ -exact, then (Ω, J) is Vaisman.

Since \mathfrak{g} is solvable, $\mathfrak{n} := [\mathfrak{g}, \mathfrak{g}]$ is nilpotent:

$$\mathfrak{n} = [\mathfrak{g},\mathfrak{g}] \supset \mathfrak{n}^{(1)} = [\mathfrak{n},\mathfrak{n}] \supset \mathfrak{n}^{(2)} = [\mathfrak{n},\mathfrak{n}^{(1)}] \supset \cdots \supset \mathfrak{n}^{(r)} \supset \mathfrak{n}^{(r+1)} = 0,$$
 where $\mathfrak{n}^{(i+1)} = [\mathfrak{n},\mathfrak{n}^i].$

Proposition 31.

If $J\mathfrak{n}^{(r)} \subset [\mathfrak{g},\mathfrak{g}]^{\perp}$, then (Ω,J) is Vaisman, where $[\mathfrak{g},\mathfrak{g}]^{\perp}$ is the orthogonal component.

⇒ We can construct 6-dimensional solvmanifolds without LCK structures.