LCK structures and Vaisman structures on solvmanifolds

Hiroshi Sawai National Institute of Technology, Numazu College

This talk based on

• Example of the six-dimensional LCK solvmanifold, Complex Manifolds, **4** (2017), 37-42.

• Remarks of LCK structures on Inoue surface, preprint.

1. Introduction

Definition 1.

G: simply-connected solvable Lie group.

 Γ : lattice, that is, discrete co-compact subgroup of G.

 $\Longrightarrow \Gamma \backslash G$: solvmanifold.

 $(G : nilpotent Lie group \Longrightarrow \Gamma \backslash G : nilmanifold)$

Theorem 2. [Hasegawa '06]

A solvmanifold admitting a Kähler structure is a finite quotient of a complex torus which has the structure of a complex torus bundle over a complex torus.

Definition 3.

(M, g, J): Hermitian manifold.

 Ω : the fundamental 2-form $(\Omega(X,Y)=g(X,JY))$.

(M,g,J): locally conformal Kähler (LCK)

 $\underset{\mathrm{def}}{\Longleftrightarrow} \; \exists \omega \; : \; \mathrm{closed} \; 1 \text{-form such that} \; d\Omega = \omega \wedge \Omega.$

(We call ω Lee form.)

Remark 4.

If $\omega = df$, then $(M, e^{-f}g, J)$ is Kähler.

Definition 5.

(M,g,J): LCK manifold.

(M,g,J): Vaisman manifold

 $\begin{tabular}{l} \Longleftrightarrow \\ \det \end{tabular}$ Lee form ω is parallel with respect to g.

Definition 6.

M: manifold,

 α : closed 1-form on M.

 $d_{\alpha}: A^{p}(M) \to A^{p+1}(M)$

$$d_{\alpha}\beta := \alpha \wedge \beta + d\beta \qquad (d_{\alpha}^2 = 0).$$

We call β α -closed (α -exact), if $d_{\alpha}\beta = 0$ ($\beta = d_{\alpha}\gamma$).

Similarly, we can define the new differential operator on a Lie algebra.

(M,g,J): LCK manifold.

 $\iff d\Omega = \omega \wedge \Omega \ (\omega : \text{closed 1-form}).$

 $\iff 0 = -\omega \wedge \Omega + d\Omega.$

 \iff 0 = $d_{-\omega}\Omega$, that is, Ω : $-\omega$ -closed.

Theorem 7. [León-López-Marrero-Padrón, '03]

(M,g): compact Riemannian manifold

lpha : parellel 1-from with respect to g

 \Rightarrow any α -closed form is α -exact.

The fundamental 2-form Ω of a Vaisman manifold is $-\omega$ -exact:

$$\Omega = d_{-\omega}\eta = -\omega \wedge \eta + d\eta.$$

Remark 8. [S. '15]

On solvmanifolds, the inverse is hold.

Examples

- Hopf surface (Vaisman '79) : Vaisman manifold
- Inoue surfaces (Tricerri '82) : non-Vaisman manifold
 - nilmanifold $S^1 \times \Gamma \backslash H$
- where, H is a Hisenberg Lie group : Vaisman manifold (Fernandez etal '86)
- Oeljeklaus-Toma manifold
 (Oeljeklaus-Toma, '05)
 i non-Vaisman manifold

Theorem 9. [S. '07]

G: nilpotent Lie group with a left-invariant complex structure J. $(\Gamma \backslash G, J)$ has a LCK structure,

 $\Rightarrow G = \mathbb{R} \times H$, where H is a Heisenberg Lie group.

Main Theorem.

There exits LCK solvmanifolds without Vaisman structures.

2. Preliminary

 $(M = \Gamma \backslash G, g, J)$: LCK solvmanifold with Lee form ω such that

- 1. J is left-invariant.
- 2. \exists left-invariant closed 1-form ω_0 s.t $\omega_0 \omega = df$.

Theorem 10. [Belgun '00]

For $X, Y \in \mathfrak{g}$,

$$\langle X, Y \rangle := \int_M e^f g(X, Y) d\mu$$

 $\Longrightarrow (\mathfrak{g}, \langle , \rangle, J)$: LCK solvable Lie algebra with Lee form ω_0 .

 Ω_0 : the fundamental 2-form of (\langle , \rangle, J)

Remark 11. [S. '12]

 $(M = \Gamma \backslash G, g, J)$: Vaisman solvmanifold $(\Omega = d_{-\omega}\eta)$

$$\Longrightarrow \Omega_0 = d_{-\omega_0}\eta_0$$

Theorem 12. [Hasegawa, '05]

A complex structure on 4-dimensional solvmanifolds is left-invariant.

Theorem 13. [Vaisman, '82]

The first Betti number b_1 of a Vaisman manifold is odd.

Theorem 14. [Kasuya, '12]

Let $G = \mathbb{R}^n \ltimes \mathbb{R}^m$.

If $\dim[\mathfrak{g},\mathfrak{g}] > \dim\mathfrak{g}/2$, then $(\Gamma \backslash G,J)$ has no Vaisman structures.

Theorem 15. [S. '17]

 $(\Gamma \backslash G, J)$: Vaisman completely solvable solvmanifold $\Rightarrow G = \mathbb{R} \times H$, where H is a Heisenberg Lie group.

3. Examples

Example 1. [Inoue surface S^0]

$$G_{1} = \left\{ \begin{pmatrix} \alpha^{t} & 0 & 0 & x \\ 0 & \beta^{t} & 0 & z \\ 0 & 0 & \overline{\beta}^{t} & \overline{z} \\ 0 & 0 & 0 & 1 \end{pmatrix} : t, x \in \mathbb{R}, z \in \mathbb{C} \right\},\,$$

where $\alpha, \beta, \overline{\beta}$ are eigenvalues of a unimodular matrix $B \in SL(3, \mathbb{Z})$ such that $\beta \neq \overline{\beta}$.

Remark 16.

Inoue surface S^0 is given by $\mathbb{H} \times \mathbb{C}$:

$$(x + \sqrt{-1}\alpha^t, z) \cdot (x' + \sqrt{-1}\alpha^{t'}, z') = (\alpha^t x' + x + \sqrt{-1}\alpha^{t+t'}, \beta^t z' + z)$$

LCK structure on $\Gamma_1 \backslash G_1$ (Tricerri '82) $\{\varphi, \mu, \nu_i\}$ is a base of \mathfrak{g}_1^* as follows:

$$d\varphi = 0,$$

$$d\mu = -\varphi \wedge \mu,$$

$$d\nu_1 = \frac{1}{2}\varphi \wedge \nu_1 + c\varphi \wedge \nu_2,$$

$$d\nu_2 = \frac{1}{2}\varphi \wedge \nu_2 - c\varphi \wedge \nu_1,$$

- \cdot The complex structure J such that
- $w = \varphi + \sqrt{-1}\mu$ and $w_2 = \nu_1 + \sqrt{-1}\nu_2$ are (1,0)-form.
- The 2-form Ω such that $\Omega = \sqrt{-1}(\omega_1 \wedge \bar{\omega}_1 + \omega_2 \wedge \bar{\omega}_2)$.
- Lee form $\omega_1 + \bar{\omega}_1$ is not parallel.

• $\Gamma_1 \backslash G_1$ has a LCK structure (Tricerri '82)

• $b_1(\Gamma_1 \backslash G_1) = 1$.

• $\Gamma_1 \backslash G_1$ has no Vaisman structures, because $G_1 = \mathbb{R} \ltimes_{\varphi} \mathbb{R}^3$ (Kasuya, '12).

Example 2. [O-T manifold of type (2,1), '05]

$$G_{2} = \left\{ \begin{pmatrix} \alpha_{1}^{t_{1}} \alpha_{1}^{\prime t_{2}} & 0 & 0 & 0 & x_{1} \\ 0 & \alpha_{2}^{t_{1}} \alpha_{2}^{\prime t_{2}} & 0 & 0 & x_{2} \\ 0 & 0 & \beta^{t_{1}} \beta^{\prime t_{2}} & 0 & z \\ 0 & 0 & 0 & \bar{\beta}^{t_{1}} \bar{\beta}^{\prime t_{2}} & \bar{z} \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} : t_{i}, x_{i} \in \mathbb{R}, z \in \mathbb{C} \right\},$$

where $\alpha_1, \alpha_2, \beta, \bar{\beta}$ are roots of the polynomial $f_1(x) = x^4 - 2x^3 - 2x^2 + x + 1$, and $\alpha'_i = \alpha_i^{-1} + \alpha_i^{-2} (i = 1, 2), \beta' = \beta^{-1} + \beta^{-2}$. \Rightarrow We can construct alattice Γ_2 on G_2 (S. '17)

Remark 17.

O-T manifold is given by $\mathbb{H}^2 \times \mathbb{C}$:

$$(x_1 + \sqrt{-1}\alpha_1^{t_1}\alpha_1'^{t_2}, x_2 + \sqrt{-1}\alpha_2^{t_1}\alpha_2'^{t_2}, z) \cdot (x_1' + \sqrt{-1}\alpha_1^{t_1'}\alpha_1'^{t_2'}, x_2' + \sqrt{-1}\alpha_2^{t_1'}\alpha_2'^{t_2'}, z')$$

$$= (\alpha_1^{t_1}\alpha_1^{t_2}x_1' + x_1 + \sqrt{-1}\alpha_1^{t_1+t_1'}\alpha_1'^{t_2+t_2'}, \alpha_2^{t_1}\alpha_2'^{t_2}x_2' + x_2 + \sqrt{-1}\alpha_2^{t_1+t_1'}\alpha_2'^{t_2+t_2'}, \beta^{t_1}\beta'^{t_2}z' + z)$$

LCK structure on $\Gamma_2\backslash G_2$ (Oeljeklaus-Toma, '05, Kasuya, '13) $\{\varphi_i, \mu_i, \nu_i\}$ is a base of \mathfrak{g}_2^* as follows:

$$d\varphi_{1} = 0, d\varphi_{2} = 0,$$

$$d\mu_{1} = -\varphi_{1} \wedge \mu_{1}, \ d\mu_{2} = -\varphi_{2} \wedge \mu_{2},$$

$$d\nu_{1} = \frac{1}{2}(\varphi_{1} + \varphi_{2}) \wedge \nu_{1} + (c_{1}\varphi_{1} + c_{2}\varphi_{2}) \wedge \nu_{2},$$

$$d\nu_{2} = \frac{1}{2}(\varphi_{1} + \varphi_{2}) \wedge \nu_{2} - (c_{1}\varphi_{1} + c_{2}\varphi_{2}) \wedge \nu_{1},$$

 \cdot The complex structure J such that

$$w_i = \varphi_i + \sqrt{-1}\mu_i$$
 for $i = 1, 2$ and $w_3 = \nu_1 + \sqrt{-1}\nu_2$ are (1,0)-form.

• The 2-form Ω such that

$$\Omega = \sqrt{-1}(2(\omega_1 \wedge \bar{\omega}_1 + \omega_2 \wedge \bar{\omega}_2) + \omega_1 \wedge \bar{\omega}_2 + \omega_2 \wedge \bar{\omega}_1 + \omega_3 \wedge \bar{\omega}_3).$$

• Lee form $\omega_1 + \bar{\omega}_1 + \omega_2 + \bar{\omega}_2$ is not parallel.

- The solvmanifold $\Gamma_2 \backslash G_2$ has a LCK structure.
- ullet The solvmanifold $\Gamma_2 \backslash G_2$ has no Vaisman structures, because
 - $-b_1(\Gamma_2 \backslash G_2) = 2$ (Vaisman '82).
 - $-G_2 = \mathbb{R}^2 \ltimes_{\varphi} \mathbb{R}^4$, where J is left-inv. (Kasuya, '12)

Example 3. [Inoue surface S^+ (Main example)]

$$G_3 = \left\{ \begin{pmatrix} 1 & -e^t y & e^{-t} x & z \\ 0 & e^t & 0 & x \\ 0 & 0 & e^{-t} & y \\ 0 & 0 & 0 & 1 \end{pmatrix} : t, x, y, z \in \mathbb{R} \right\}.$$

$$\mathfrak{g}_3 = \mathrm{span}\{A, X, Y, Z\}$$

 $[A, X] = X, [A, Y] = -Y, [X, Y] = Z$

Remark 18.

 $G_3 = \mathbb{R} \ltimes_{\varphi} H$, where H is a 3-dimensional Heisenberg Lie group.

LCK structure on $\Gamma_3\backslash G_3$ (Tricerri '82, Andrés-Cordero-Fernández-Mencía, '89) $\{\varphi, \mu_i, \nu\}$ is a base of \mathfrak{g}_3^* as follows:

$$d\varphi = 0,$$

$$d\mu_1 = -\varphi \wedge \mu_1, d\mu_2 = \varphi \wedge \mu_2$$

$$d\nu = -\mu_1 \wedge \mu_2$$

 \cdot The complex structure J such that

$$w_1 = \varphi + \sqrt{-1}\mu_2$$
 and $w_2 = \nu + \sqrt{-1}\mu_1$ are (1,0)-form.

- The 2-form Ω such that $\Omega = \sqrt{-1}(\omega_1 \wedge \bar{\omega}_1 + \omega_2 \wedge \bar{\omega}_2)$.
- Lee form $\omega_1 + \bar{\omega}_1$ is not parallel.

• The solvmanifold $\Gamma_3 \backslash G_3$ has a LCK structure.

• $b_1(\Gamma_3 \backslash G_3) = 1$.

Theorem 19. [cf. Belgun. '00]

 $\Gamma_3 \backslash G_3$ has no Vaisman structures.

Proof 1

Definition 20.

G: simply-connected solvable Lie group.

G: completely solvable

 $\ \Longleftrightarrow \ \operatorname{For}\ ^{\forall}X\in \mathfrak{g},\ \operatorname{ad}(X):\mathfrak{g}\to \mathfrak{g}\ \operatorname{has}\ \operatorname{only}\ \operatorname{real}\ \operatorname{eigenvalues},$

where \mathfrak{g} : Lie algebra of G.

Proof. G_3 : completely solvable.

Theorem 15. [S. '17]

 $(\Gamma \backslash G, J)$: Vaisman completely solvable solvmanifold $\Rightarrow G = \mathbb{R} \times H$, where H is a Heisenberg Lie group.

 $G_3 = \mathbb{R} \ltimes_{\varphi} H$, where H is a 3-dimensional Heisenberg Lie group. Note that φ is non-trivial.

<u>Proof 2</u> A complex structure J_q on $\Gamma \backslash G_3$ is given by

$$J_q A = Y + qZ, J_q Y = -A - qX, J_q Z = X, J_q X = -Z,$$

where $q \in \mathbb{R}$ (Hasegawa, 04).

 $(\Gamma \backslash G_3, J_q)$ has a Vaisman metric g_q .

 \implies the fundamental 2-form $\Omega_q=d_{\theta_q}\eta_q=\theta_q\wedge\eta_q+d\eta_q$, where θ_q is closed.

$$\Longrightarrow \langle Z, Z \rangle = \Omega_q(J_q Z, Z) = (\theta_q \wedge \eta_q + d\eta_q)(X, Z) = 0,$$

because $X,Z\in [\mathfrak{g},\mathfrak{g}]$ and Z is a center of \mathfrak{g} .

Remark 21.

 $(\Gamma_3 \backslash G_3, J_q)$ has a LCK structure $\iff q = 0$, i.e., Inoue surface S^+ .

Proof. $^{\exists}\Omega_0$: non-degenerate and non-exact $k\varphi$ -closed 2-from $\iff k=\pm 1.$

Case
$$k = -1$$
 $\Omega_0^- = a\nu \wedge \mu_2 + d_{-\varphi}\eta_0$
$$\langle Z, Z \rangle = \Omega_0^- (J_q Z, Z) = (a\nu \wedge \mu_2 + d_{-\varphi}\eta_0)(X, Z) = 0$$

Case
$$k = 1$$
 $\Omega_0^+ = b\nu \wedge \mu_1 + d_{\varphi}\eta_0$

$$\Omega_0^+(X,Y) = \Omega_0^+(J_qX, J_qY)$$

$$d\eta_0(X,Y) = (b\nu \wedge \mu_1 + d_{\varphi}\eta_0)(-Z, -A - qX)$$

$$-\eta_0([X,Y]) = -\eta_0(Z) = -\eta_0(Z) + bq$$

$$0 = bq$$