Vaisman 完全可解多様体の構造定理

沢井 洋 (沼津高専 教養科 数学教室)*

1. 序章

G を単連結な可解リー群とし、 Γ を G の格子群とするとき、コンパクト多様体 $\Gamma \backslash G$ を可解多様体という。べき零多様体も同様に定義される。可解多様体がケーラー構造をもつならば、複素トーラスとなる [6]. 可解多様体において、ケーラー構造の拡張となる構造について報告する。

(M,g,J) をコンパクトなエルミート多様体とする. また, Ω を (g,J) の基本 2 次形式する. $d\Omega=\omega\wedge\Omega$ を満たす閉 1 次形式 ω が存在するとき, (M,g,J) を局所共形ケーラー多様体という. また, 閉 1 次形式 ω を Lee 形式という. $\omega=df$ のとき, $(M,e^{-f}g,J)$ はケーラー多様体である.

M を多様体とし、 α を M 上の閉 1 次形式とする。p 次形式から p+1 次形式への微分作要素 d_{α} を、 $d_{\alpha}\beta:=\alpha\wedge\beta+d\beta$ と定義する。 α は閉 1 次形式より、 $d_{\alpha}^2=0$ を満たす。また、 $d_{\alpha}\beta=0$ のとき β を α -閉形式、 $\beta=d_{\alpha}\gamma$ のとき β を α -完全形式とそれぞれいう。リー環上でも、同様に定義できる。局所共形ケーラー構造の基本 2 次形式 Ω は、 $-\omega\wedge\Omega+d\Omega=0$ を満たすことから、 $-\omega$ -閉形式である。

ケーラー多様体でない局所共形ケーラー多様体の例として、Hopf 曲面 [14], 井上曲面 [13], Kodaira-Thurston 多様体 [2] が知られている (cf. [5]). また, 井上曲面, Kodaira-Thurston 多様体は, 可解多様体, べき零多様体の構造をそれぞれもつ.

局所共形ケーラー多様体 (M,g,J) について、その Lee 形式 ω が計量 g に関して平行となるとき、Vaisman 多様体という。 Hopf 曲面、Kodaira-Thurston 多様体は Vaisman 多様体である。 井上曲面はこれと異なり、その Lee 形式は平行でない。

単連結な可解リー群 G のリー環を $\mathfrak g$ とする. 任意の $X\in\mathfrak g$ に対して, その随伴表現の固有値がすべて実数のとき, G を完全可解リー群という. 完全可解多様体 $\Gamma\backslash G$ 上の Vaisman 構造について次が成り立つ:

主定理 1. [12] $(\Gamma \backslash G, J)$ を左不変な複素構造をもつ完全可解多様体とする. $(\Gamma \backslash G, J)$ が Vaisman 構造をもつならば, $\Gamma \backslash G$ は $S^1 \times \Gamma \backslash H$, 但し, H は Heisenberg リー群, となる. なお. 左不変な複素構造も決定できる.

主定理より、局所共形ケーラー構造をもつ局所共形ケーラーべき零多様体が決定できる. べき零多様体上の局所共形ケーラー構造は、Vaisman 構造を誘導する ([4], [11]). べき零多様体は完全可解多様体であるから、次を得る:

系 2. (cf. [9]) $(\Gamma \setminus G, J)$ を左不変な複素構造をもつべき零多様体とする. $(\Gamma \setminus G, J)$ が 局所共形ケーラー構造をもつならば, $\Gamma \setminus G$ は $S^1 \times \Gamma \setminus H$, 但し, H は Heisenberg リー群, となる.

2. 準備

本章では、主定理を証明するための準備を述べる.

2000 Mathematics Subject Classification: primary 53C55; secondary 17B30

キーワード:局所共形ケーラー多様体, Vaisman 多様体, 可解多様体

^{*}e-mail: sawai@numazu-ct.ac.jp

 $(M=\Gamma\backslash G,J)$ を左不変な複素構造をもつ完全可解多様体とする. (M,J) が局所共形ケーラー計量 g をもつと仮定する. このとき, Lee 形式 ω に対して, $\omega-\omega_0=df$ を満たす左不変な閉 1 次形式 ω_0 と M 上の C^∞ 級関数 f が存在する [7]. これらを用いて, 左不変な 2 次形式 Ω_0 を, 左不変なベクトル場 X,Y に対して,

$$\Omega_0(X,Y) := \int_{x \in M} (e^{-f}\Omega)_x(X_x, Y_x) d\mu,$$

但し、 $d\mu$ は両側不変な M 上の体積要素、と定義する。これより、(M,J) 上に、 Ω_0 を基本 2 次形式とする左不変なエルミート構造 $(\langle \ , \ \rangle, J)$ が決まり、 $d\Omega_0 = \omega_0 \wedge \Omega_0$ を満たす [1]. 即ち、G に対応する完全可解リー環 $\mathfrak g$ 上に局所共形ケーラー構造 $(\langle \ , \ \rangle, J)$ が誘導される。

(M,g) をリーマン多様体とし、 α を M 上の平行な 1 次形式とする. α は閉 1 次形式であるが、次が知られている:

定理 3. [8] コンパクトなリーマン多様体 (M,g) において、任意の α -閉形式は、 α -完全形式である.

したがって、Vaisman 多様体の基本 2 次形式 Ω は $-\omega$ -完全形式となる. さらに、Vaisman 可解多様体の場合、上記の左不変な基本 2 次形式 Ω_0 も $-\omega_0$ -完全形式となる [10].

3. 主定理の証明

 $(\mathfrak{g},\langle\;,\;\rangle,J)$ を前章で得られた局所共形ケーラー完全可解リー環とする. この基本 2 次形式 Ω_0 は、閉 1 次形式 ω_0 と 1 次形式 η_0 を用いて, $\Omega_0=d_{-\omega_0}\eta_0$ によって与えられることに注意する. 本章では、主定理の証明の概略を述べる.

 $\mathfrak g$ 上の内積 $\langle\ ,\ \rangle$ によって誘導される $\mathfrak g^*$ から $\mathfrak g$ への線形写像を γ_0 とし, $A:=\gamma_0(\omega_0)$ とおく. また, $\langle A,A\rangle=1$ と仮定してよい.

局所共形ケーラー構造をもつ可解リー環 g について、次が成り立つ:

定理 4. [11] 基本 2 次形式 Ω_0 が $-\omega_0$ -完全形式ならば, Lee 形式 ω_0 は平行である.

定理 5. [11] g 上の内積 $\langle \ , \ \rangle$ から誘導される $\wedge \mathfrak{g}^*$ 上の内積を $(\ , \)$ とする. このとき、次の Schwarz の不等式

$$(\Omega_0, d_{-\omega_0}(\omega_0 \circ J))^2 \le (\Omega_0, \Omega_0)(d_{-\omega_0}(\omega_0 \circ J), d_{-\omega_0}(\omega_0 \circ J))$$

は、次と同値である:

$$0 \le \langle [A, JA], JA \rangle.$$

 $\Omega_0 = d_{-\omega_0}\eta_0$ より、定理 4 から、 ω_0 は平行である. ゆえに、

$$\langle [A, JA], JA \rangle = \langle A, \nabla_{JA}JA \rangle = \omega_0(\nabla_{JA}JA) = -\nabla_{JA}\omega_0(JA) = 0$$

となる. 即ち、定理5より、

$$\Omega_0 = kd_{-\omega_0}(\omega_0 \circ J) = k(-\omega_0 \wedge \omega_0 \circ J + d(\omega_0 \circ J))$$

を満たす $k\in\mathbb{R}$ が存在する. 特に, $\langle A,A\rangle=1$ より, k=-1 となる. $\Omega_0=d_{-\omega_0}(-\omega_0\circ J)$ から, $JA\in Z(\mathfrak{g})$ となる [10].

 \mathfrak{g} を $\mathfrak{g}=\mathrm{span}\{A,JA\}\oplus\mathfrak{b}$ と直交分解し、 $\mathfrak{g}_1=\mathrm{span}\{JA\}\oplus\mathfrak{b}$ とおく. また、 π を \mathfrak{g}_1 から $\mathfrak{g}_1/\mathrm{span}\{JA\}$ への射影とする. $JA\in Z(\mathfrak{g})$ より、 π は準同型となることに注意 する.

 Φ を, $\Phi(JA)=0$, $\Phi(X)=JX$ $(X\in\mathfrak{b})$ によって定義される \mathfrak{g}_1 から \mathfrak{g}_1 への線形写像とする. これによって, $\mathfrak{g}_1/\mathrm{span}\{JA\}$ から $\mathfrak{g}_1/\mathrm{span}\{JA\}$ への線形写像 $\widetilde{\Phi}$ を

$$\widetilde{\Phi}(\pi(X)) = \pi(\Phi(X))$$

と定義する. 次が成り立つ:

補題 $\mathbf{6}$. $\widetilde{\Phi}$ は, $\mathfrak{g}_1/\operatorname{span}\{JA\}$ 上の複素構造となる.

 $\mathfrak{g}_1/\mathrm{span}\{JA\}$ 上の 2 次形式を,

$$\widetilde{\Omega}_0(\pi(X), \pi(Y)) = d(-\omega_0 \circ J)(X, Y)$$

と定義する. $JA \in Z(\mathfrak{g})$ より、これは well-defined である. 次が成り立つ:

補題 7. $\widetilde{\Omega}_0$ は閉形式である.

さらに、次が成り立つ:

命題 8. $(\widetilde{\Omega}_0, \widetilde{\Phi})$ はケーラー構造となる.

一般に次が知られている:

定理 9. [3] \mathfrak{g} をユニモジュラーな完全可解リー環とする. \mathfrak{g} がケーラー構造をもつならば, \mathfrak{g} は可換となる.

完全可解リー群 G が格子群 Γ をもつことから、 $\mathfrak g$ がユニモジュラーである.これより、 $\mathfrak g_1/\operatorname{span}\{JA\}$ も 定理 9 の仮定を満たす.したがって、 $\mathfrak g_1/\operatorname{span}\{JA\}$ は可換となる.即ち、 $[\mathfrak b,\mathfrak b]\subset\operatorname{span}\{JA\}$ であるが、 $(\widetilde\Omega_0,\widetilde\Phi)$ はケーラー構造であることから、 $\mathfrak g_1$ は Heisenberg リー環となる.

 ω_0 が平行であることから、 \mathfrak{g}_1 から \mathfrak{g}_1 への線形写像 $\operatorname{ad}(A)$ の表現行列は歪対称である.一方、 \mathfrak{g} は完全可解リー環より、線形写像 $\operatorname{ad}(A)$ の固有値は実数のみである.よって、線形写像 $\operatorname{ad}(A)$ は自明となる.

参考文献

- [1] F. A. Belgun: On the metric structure of non-Kähler complex surfaces, Math. Ann. **317** (2000), 1-40.
- [2] L. A. Cordero, M. Fernández and M. de Léon: Compact locally conformal Kähler nilmanifolds, Geom. Dedicata **21**(1986), 187-192.
- [3] J. M. Dardie and A. Medina: Kähler Lie algebras and double extension, J. Algebra **185** (1996), no. 3, 774-795.
- [4] J. Dixmier: Cohomologie des algebres de Lie nilpotentes, Acta Sci. Math. Szeged 16 (1955), 246-250.
- [5] S. Dragomir and L. Ornea: Locally conformal Kähler geometry, Birkhäuser (1998).
- [6] K. Hasegawa: A note on compact solvmanifolds with Kähler structures, Osaka J. Math 43 (2006), 131-135.
- [7] A. Hattori: Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ. Tokyo Sect. I. 8 (1960), 289-331.

- [8] M. de León, B, López, J. C. Marrero and E, Padrón: On the computation of the Lichnerowicz-Jacobi cohomology, J. Geom. Phys. 44 (2003), no. 4, 507-522.
- [9] H. Sawai: Locally conformal Kähler structures on compact nilmanifolds with left-invariant complex structures, Geom. Dedicata **125** (2007), 93-101.
- [10] ______: Locally conformal Kähler structures on compact solvmanifolds Osaka J. Math. **49**(2012), no. 4, 1087-1102.
- [11] ______: Vaisman structure on compact solvmanifolds, Geom. Dedicata 178 (2015), 389-404.
- [12] _____: Structure Theorem for Vaisman completely solvmanifolds, preprint.
- [13] F. Tricerri: Some examples of locally conformal Kähler manifolds, Rend. Sem. Math. Univ. Politec. Torino 40(1982), no.1, 81-92.
- [14] I. Vaisman: Locally conformal Kähler manifolds with parallel Lee form, Rend. Mat. **12**(1979), 263-284.