Invariant Einstein metrics on Stiefel manifolds

Yusuke Sakane

Kawanishi
March 6, 2014

outline

Invariant Einstein metrics

on

Stiefel manifolds

based on joint works with Andreas Arvanitoyeorgos and Marina Statha

- introduction left-invariant Einstein metrics on compact Lie groups homogeneous Einstein metrics on Stiefel manifolds

$$
V_{k} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-k)
$$

- main results
- Ricci tensor of a compact homogeneous space
- The Stiefel manifolds $V_{k_{1}+k_{2}} \mathbb{R}^{k_{1}+k_{2}+k_{3}}=\mathrm{SO}\left(k_{1}+k_{2}+k_{3}\right) / \mathrm{SO}\left(k_{3}\right)$
- The compact Lie groups $\operatorname{SO}(n)(n \geq 7)$

Introduction

(M, g) : Riemannian manifold

- (M, g) is called Einstein if the Ricci tensor $r(g)$ of the metirc g satisfies $\mathrm{r}(g)=c g$ for some constant c.
We consider G-invariant Einstein metrics on a homogeneous space G / K.
- General Problem: Find G-invariant Einstein metrics on a homogeneous space G / K and classify them if it is not unique.
- Einstein homogeneous spaces can be divided into three cases depending on Einstein constant c. Here we consider the case $c>0$.

Introduction

Examples of the case $c>0$
(G / K is compact and $\pi_{1}(G / K)$ is finite).

- Sphere $\left(S^{n}=S O(n+1) / S O(n), g_{0}\right)$, Complex Projective space ($\mathbb{C} P^{n}=S U(n+1) /(S(U(1) \times U(n)))$,
Symmetric spaces of compact type, isotropy irreducible spaces (in these cases G-invariant Einstein metrics is unique)
- Generalized flag manifolds (Kähler C-spaces) (if we fix a complex structure, it admits a unique Kähler-Einstein metric, but complex structure may not be unique)

Introduction

- Compact semi-simple Lie groups (bi-invariant metric $=$ negative of Killing form)
- Concerning left-invariant Einstein metrics on compact simple Lie groups,
D’ Atri and Ziller classified all naturally reductive metrics on G in " Naturally reductive metrics and Einstein metrics on compact Lie groups, Memoirs Amer. Math. Soc. 19 (215) (1979)"
and have found a large number of Einstein metrics on compact simple Lie groups G which are naturally reductive.
- D'Atri and Ziller rasied a question: Are there non-naturally reductive Einstein metrics on the compact simple Lie groups ?

Introduction

- Compact semi-simple Lie groups (bi-invariant metric $=$ negative of Killing form)
- Concerning left-invariant Einstein metrics on compact simple Lie groups,
D' Atri and Ziller classified all naturally reductive metrics on G in " Naturally reductive metrics and Einstein metrics on compact Lie groups, Memoirs Amer. Math. Soc. 19 (215) (1979)"
and have found a large number of Einstein metrics on compact simple Lie groups G which are naturally reductive.
- D'Atri and Ziller rasied a question:

Are there non-naturally reductive Einstein metrics on the
compact simple Lie groups ?

Introduction

- Compact semi-simple Lie groups (bi-invariant metric $=$ negative of Killing form)
- Concerning left-invariant Einstein metrics on compact simple Lie groups,
D' Atri and Ziller classified all naturally reductive metrics on G in " Naturally reductive metrics and Einstein metrics on compact Lie groups, Memoirs Amer. Math. Soc. 19 (215) (1979)"
and have found a large number of Einstein metrics on compact simple Lie groups G which are naturally reductive.
- D'Atri and Ziller rasied a question:

Are there non-naturally reductive Einstein metrics on the compact simple Lie groups ?

Introduction

- For this problem, K. Mori (1996) has shown that there exist non-naturally reductive Einstein metrics on $\mathrm{SU}(n)(n \geq 6)$.
A. Arvanitoyeorgos, K. Mori and S. (2012) have shown existence of non-naturally reductive Einstein metrics on the compact simple Lie groups $\operatorname{SO}(n)(n \geq 11), \operatorname{Sp}(n)(n \geq 3), E_{6}, E_{7}$ and E_{8}, by using Generalized flag manifolds.
- Here we consider the case of $\mathrm{SO}(n)(n \geq 7)$.
- Recently we can also show that, for compact simple Lie groups F_{4}, G_{2} and $\operatorname{SU}(n)(n \geq 3)$, there exist non-naturally reductive Einstein metrics, that is, except $\mathrm{SO}(5)$, there exist non-naturally reductive Einstein metrics on compact simple Lie groups G with $\operatorname{dim} G>3$. (Note that $\mathrm{SU}(2)=S^{3}$.)

Introduction

- For this problem, K. Mori (1996) has shown that there exist non-naturally reductive Einstein metrics on $\mathrm{SU}(n)(n \geq 6)$.
A. Arvanitoyeorgos, K. Mori and S. (2012) have shown existence of non-naturally reductive Einstein metrics on the compact simple Lie groups $\operatorname{SO}(n)(n \geq 11), \operatorname{Sp}(n)(n \geq 3), E_{6}, E_{7}$ and E_{8}, by using Generalized flag manifolds.
- Here we consider the case of $\operatorname{SO}(n)(n \geq 7)$.
- Recently we can also show that, for compact simple Lie groups F_{4}, G_{2} and $\mathrm{SU}(n)(n \geq 3)$, there exist non-naturally reductive Einstein metrics, that is, except $\mathrm{SO}(5)$, there exist non-naturally reductive Einstein metrics on compact simple Lie groups G with $\operatorname{dim} G>3$. (Note that $\mathrm{SU}(2)=S^{3}$.)

Introduction

- For this problem, K. Mori (1996) has shown that there exist non-naturally reductive Einstein metrics on $\mathrm{SU}(n)(n \geq 6)$.
A. Arvanitoyeorgos, K. Mori and S. (2012) have shown existence of non-naturally reductive Einstein metrics on the compact simple Lie groups $\mathrm{SO}(n)(n \geq 11), \mathrm{Sp}(n)(n \geq 3), E_{6}, E_{7}$ and E_{8}, by using Generalized flag manifolds.
- Here we consider the case of $\operatorname{SO}(n)(n \geq 7)$.
- Recently we can also show that, for compact simple Lie groups F_{4}, G_{2} and $\operatorname{SU}(n)(n \geq 3)$, there exist non-naturally reductive Einstein metrics, that is, except $\mathrm{SO}(5)$, there exist non-naturally reductive Einstein metrics on compact simple Lie groups G with $\operatorname{dim} G>3$. (Note that $\mathrm{SU}(2)=S^{3}$.)

Introduction

- A little history on homogeneous Einstein metrics on Stiefel manifolds $V_{k} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-k)$:

In 1963, S. Kobayashi proved
existence of a homogeneous Einstein metric on the unit tangent bundle $T_{1} S^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-2)=V_{2} \mathbb{R}^{n}$ (as S^{1}-bundle over a Kähler manifold $\mathrm{SO}(n) /(\mathrm{SO}(n-2) \times \mathrm{SO}(2)))$.

In 1970, A. Sagle proved that
the Stiefel manifolds $V_{k} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-k)$ for $k \geq 3$ admits an homogeneous Einstein metric.

In 1973, G. Jensen proved that the Stiefel manifolds $V_{k} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-k)$ for $k \geq 3$ admits at least two homogeneous Einstein metric.

Introduction

- $V_{2} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-2)$

By a result of A. Back and W.Y. Hsiang (1987) and M. Kerr (1998), for $n \geq 5$ it is known that $\mathrm{SO}(n) / \mathrm{SO}(n-2)$ admits exactly one homogeneous Einstein metric.
(the diagonal metrics are only homogeneous Einstein metrics)

- $V_{2} \mathbb{R}^{4}=\mathrm{SO}(4) / \mathrm{SO}(2)$

By a result of D. V. Alekseevsky, I. Dotti and C. Ferraris, $\mathrm{SO}(4) / \mathrm{SO}(2)$ admits exactly two invariant Einstein metrics (one is diagonal metric and the other is non-diagonal metric). Jensen's metric is a diagonal metric. Note that $\mathrm{SO}(4) / \mathrm{SO}(2)$ is diffeomorphic to $S^{3} \times S^{2}$. The non-diagonal Einstein metric comes from the product metric on $S^{3} \times S^{2}$.

The Stiefel manifolds $V_{k} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-k)$

- For the tangent space \mathfrak{p} of Stiefel manifold $\mathrm{SO}(n) / \mathrm{SO}(n-4)$

$$
\mathfrak{p}=\left(\begin{array}{cccc|c}
0 & a_{12} & a_{13} & a_{14} & A_{15} \\
-a_{12} & 0 & a_{23} & a_{24} & A_{25} \\
-a_{13} & -a_{23} & 0 & a_{34} & A_{35} \\
-a_{14} & -a_{24} & a_{34} & 0 & A_{45} \\
\hline-A_{15} & -{ }^{t} A_{25} & -t^{t} A_{35} & -{ }^{t} A_{45} & *
\end{array}\right)
$$

we have a decomposition $\mathfrak{p}=\sum_{i<j} \mathfrak{p}_{i j} \oplus \sum_{k<5} \mathfrak{p}_{k s}$ as $\operatorname{Ad}(\mathrm{SO}(n-4))$ submodules, where $\operatorname{dim} \mathfrak{p}_{i j}=1$ and $\operatorname{dim} \mathfrak{p}_{k 5}=n-4$. Note that submodules $\mathfrak{p}_{i j}$ are equivalent each other and submodules $\mathfrak{p}_{k 5}$ are equivalent each other.

- For general invariant metrics on the Stiefel manifolds homogeneous Einstein metrics.

The Stiefel manifolds $V_{k} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-k)$

- For the tangent space \mathfrak{p} of Stiefel manifold $\mathrm{SO}(n) / \mathrm{SO}(n-4)$

$$
\mathfrak{p}=\left(\begin{array}{cccc|c}
0 & a_{12} & a_{13} & a_{14} & A_{15} \\
-a_{12} & 0 & a_{23} & a_{24} & A_{25} \\
-a_{13} & -a_{23} & 0 & a_{34} & A_{35} \\
-a_{14} & -a_{24} & a_{34} & 0 & A_{45} \\
\hline-{ }^{t} A_{15} & -^{t} A_{25} & -^{t} A_{35} & -^{t} A_{45} & *
\end{array}\right),
$$

we have a decomposition $\mathfrak{p}=\sum_{i<j} \mathfrak{p}_{i j} \oplus \sum_{k<5} \mathfrak{p}_{k 5}$ as $\operatorname{Ad}(\mathrm{SO}(n-4))$ submodules, where $\operatorname{dim} \mathfrak{p}_{i j}=1$ and $\operatorname{dim} \mathfrak{p}_{k 5}=n-4$. Note that submodules $\mathfrak{p}_{i j}$ are equivalent each other and submodules $\mathfrak{p}_{k 5}$ are equivalent each other.

- For general invariant metrics on the Stiefel manifolds $V_{k} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-k)$, it would be difficult to find all homogeneous Einstein metrics.

The Stiefel manifolds $V_{k} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-k)$

- Open problem : How many homogeneous Einstein metrics are there on Stiefel manifold $V_{k} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-k)$?

Are there homogeneous Einstein metrics on Stiefel manifold $\mathrm{SO}(n) / \mathrm{SO}(n-k)$ other than Jensen's Einstein metrics?

Main results

- Now we state our main results:

Theorem

There exist new homogeneous Einstein metrics on the Stiefel manifolds $V_{k} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-k)$ for $k \geq 4$ and $n \geq 6$.

These are not Jensen's Einstein metrics.
(For $k=4$, A. Arvanitoyeorgos, S. and M. Statha: New homogeneous Einstein metrics on Stiefel manifolds, Differential Geom. Appl. (2014), in press. Available online 5th February 2014, http://dx.doi.org/10.1016/j.difgeo.2014.01.007)

Main results

- Now we state our main results:

Theorem

There exist new homogeneous Einstein metrics on the Stiefel manifolds $V_{k} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-k)$ for $k \geq 4$ and $n \geq 6$.

These are not Jensen's Einstein metrics.
(For $k=4$, A. Arvanitoyeorgos, S. and M. Statha: New homogeneous Einstein metrics on Stiefel manifolds, Differential Geom. Appl. (2014), in press. Available online 5th February 2014, http://dx.doi.org/10.1016/j.difgeo.2014.01.007)

Theorem

There exist non-naturally reductive Einstein metrics on the compact Lie groups $\operatorname{SO}(n)(n \geq 7)$.

Related known other results

- A. Arvanitoyeorgos, V.V. Dzhepko and Yu. G. Nikonorov (2009) proved that for $s>1$ and $\ell>k \geq 3$, the Stiefel manifold $\mathrm{SO}(s k+\ell) / \mathrm{SO}(\ell)$ admits at least four $\mathrm{SO}(s k+\ell)$-invariant Einstein metrics that are also $\operatorname{Ad}\left(\mathrm{SO}(k)^{s} \times \mathrm{SO}(\ell)\right)$-invariant and two of which are Jensen's metrics.

In 2007, they have treated $\mathrm{SO}(k+k+\ell) / \mathrm{SO}(\ell)(\ell>k \geq 3)$ as the special case of above and proved that the Stiefel manifold $\mathrm{SO}(k+k+\ell) / \mathrm{SO}(\ell)$ admits at least four $\mathrm{SO}(k+k+\ell)$-invariant Einstein metrics that are also $\operatorname{Ad}(\mathrm{SO}(k) \times \mathrm{SO}(k) \times \mathrm{SO}(\ell))$-invariant.

Ricci tensor of a compact homogeneous space G / K

- Let G be a compact semi-simple Lie group and K a connected closed subgroup of G.
Let \mathfrak{m} be the orthogonal complement of $\mathfrak{f} \mathfrak{g}$ with respect to $B(=-$ Killing form of $\mathfrak{g})$. Then we have $\mathfrak{g}=\mathfrak{f} \oplus \mathfrak{m},[\mathfrak{f}, \mathfrak{m}] \subset \mathfrak{m}$ and a decomposition of m into irreducible $\operatorname{Ad}(K)$-modules:

$$
\mathfrak{m}=\mathfrak{m}_{1} \oplus \cdots \oplus \mathfrak{m}_{q}
$$

- We assume that $\operatorname{Ad}(K)$-modules $\mathfrak{m}_{j}(j=1, \cdots, q)$ are mutually non-equivalent.
Then a G-invariant metric on G / K can be written as

$$
\begin{equation*}
<,>=\left.x_{1} B\right|_{\mathfrak{m}_{1}}+\cdots+\left.x_{q} B\right|_{\mathfrak{m}_{q}}, \tag{1}
\end{equation*}
$$

for positive real numbers x_{1}, \cdots, x_{q}.

Ricci tensor of a compact homogeneous space G / K

- Note that G-invariant symmetric covariant 2-tensors on G / K are the same form as the metrics.
In particular, the Ricci tensor r of a G-invariant Riemannian metric on G / K is of the same form as (1).
- Let $\left\{e_{\alpha}\right\}$ be a B-orthonormal basis adapted to the decomposition of \mathfrak{m}, i.e., $e_{\alpha} \in \mathfrak{m}_{i}$ for some i, and $\alpha<\beta$ if $i<j$ (with $e_{\alpha} \in \mathfrak{m}_{i}$ and $e_{\beta} \in \mathfrak{m}_{j}$).
- We put $A_{\alpha \beta}^{\gamma}=B\left(\left[e_{\alpha}, e_{\beta}\right], e_{\gamma}\right)$, so that $\left[e_{\alpha}, e_{\beta}\right]=\sum_{\gamma} A_{\alpha \beta}^{\gamma} e_{\gamma}$, and set $\left[\begin{array}{l}k \\ i j\end{array}\right]=\sum\left(A_{\alpha \beta}^{\gamma}\right)^{2}$, where the sum is taken over all indices α, β, γ with $e_{\alpha} \in \mathfrak{m}_{i}, e_{\beta} \in \mathfrak{m}_{j}, e_{\gamma} \in \mathfrak{m}_{k}$.
- Notations $\left[\begin{array}{l}k \\ i j\end{array}\right]$ are introduced by Wang and Ziller in 1986.

Ricci tensor of a compact homogeneous space G / K

- Then, the non-negative number $\left[\begin{array}{l}k \\ i j\end{array}\right]$ is independent of the B-orthonormal bases chosen for $\mathfrak{m}_{i}, \mathfrak{m}_{j}, \mathfrak{m}_{k}$, and

$$
\left[\begin{array}{c}
k \tag{2}\\
i j
\end{array}\right]=\left[\begin{array}{c}
k \\
j i
\end{array}\right]=\left[\begin{array}{c}
j \\
k i
\end{array}\right] .
$$

- Let $d_{k}=\operatorname{dim} \mathfrak{m}_{k}$. Then we have (cf. Park - S. (1997))

Lemma

The components r_{1}, \cdots, r_{q} of Ricci tensor r of the metric $<,>=\left.x_{1} B\right|_{\mathfrak{m}_{1}}+\cdots+\left.x_{q} B\right|_{\mathfrak{m}_{q}}$ on G / K are given by

$$
r_{k}=\frac{1}{2 x_{k}}+\frac{1}{4 d_{k}} \sum_{j, i} \frac{x_{k}}{x_{j} x_{i}}\left[\begin{array}{l}
k \tag{3}\\
j i
\end{array}\right]-\frac{1}{2 d_{k}} \sum_{j, i} \frac{x_{j}}{x_{k} x_{i}}\left[\begin{array}{c}
j \\
k i
\end{array}\right] \quad(k=1, \cdots, q)
$$

where the sum is taken over $i, j=1, \cdots, q$.

The Stiefel manifolds $V_{k_{1}+k_{2}} \mathbb{R}^{k_{1}+k_{2}+k_{3}}=\mathrm{SO}\left(k_{1}+k_{2}+k_{3}\right) / \mathrm{SO}\left(k_{3}\right)$

- We consider the homogeneous space $G / K=\mathrm{SO}\left(k_{1}+k_{2}+k_{3}\right) / \mathrm{SO}\left(k_{1}\right) \times \mathrm{SO}\left(k_{2}\right) \times \mathrm{SO}\left(k_{3}\right)$, where the embedding of K in G is diagonal. The tangent space m of G / K decomposes into three $\operatorname{Ad}(K)$-submodules

$$
\mathfrak{m}=\mathfrak{m}_{12} \oplus \mathfrak{m}_{13} \oplus \mathfrak{m}_{23}
$$

where

$$
\mathfrak{m}_{12}=\left(\begin{array}{ccc}
0 & A_{12} & 0 \\
-{ }^{t} A_{12} & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \mathfrak{m}_{13}=\left(\begin{array}{ccc}
0 & 0 & A_{13} \\
0 & 0 & 0 \\
-{ }^{t} A_{13} & 0 & 0
\end{array}\right), \mathfrak{m}_{23}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & A_{23} \\
0 & -t^{t} A_{23} & 0
\end{array}\right)
$$

and $A_{12} \in M\left(k_{1}, k_{2}\right), A_{13} \in M\left(k_{1}, k_{3}\right), A_{23} \in M\left(k_{2}, k_{3}\right)$
($M(p, q)$ the set of all $p \times q$ matrices). Note that the irreducible $\operatorname{Ad}(K)$-submodules $\mathfrak{m}_{12}, \mathfrak{m}_{13}$ and \mathfrak{m}_{23} are mutually non-equivalent.

The Stiefel manifolds $V_{k_{1}+k_{2}} \mathbb{R}^{k_{1}+k_{2}+k_{3}}=\mathrm{SO}\left(k_{1}+k_{2}+k_{3}\right) / \mathrm{SO}\left(k_{3}\right)$

- For the tangent space \mathfrak{p} of the Stiefel manifold
$G / H=\mathrm{SO}\left(k_{1}+k_{2}+k_{3}\right) / \mathrm{SO}\left(k_{3}\right)$, we consider the decomposition

$$
\mathfrak{p}=\mathfrak{s o}\left(k_{1}\right) \oplus \mathfrak{s o}\left(k_{2}\right) \oplus \mathfrak{m}_{12} \oplus \mathfrak{m}_{13} \oplus \mathfrak{m}_{23}
$$

where corresponding $\operatorname{Ad}\left(\mathrm{SO}\left(k_{1}\right) \times \mathrm{SO}\left(k_{2}\right) \times \mathrm{SO}\left(k_{3}\right)\right)$ submodules are non-equivalent.
We consider G-invariant metrics on the Stiefel manifold G / H determined by the $\operatorname{Ad}\left(\mathrm{SO}\left(k_{1}\right) \times \mathrm{SO}\left(k_{2}\right) \times \mathrm{SO}\left(k_{3}\right)\right)$-invariant scalar products on \mathfrak{p} given by

$$
\begin{align*}
\langle,\rangle= & \left.x_{1}(-B)\right|_{\mathfrak{s p}\left(k_{1}\right)}+\left.x_{2}(-B)\right|_{\mathfrak{s o}\left(k_{2}\right)} \tag{4}\\
& +\left.x_{12}(-B)\right|_{\mathfrak{m}_{12}}+\left.x_{13}(-B)\right|_{\mathfrak{m}_{13}}+\left.x_{23}(-B)\right|_{\mathfrak{m}_{23}}
\end{align*}
$$

for $k_{1} \geq 2, k_{2} \geq 2$ and $k_{3} \geq 1$.

The Stiefel manifolds $V_{k_{1}+k_{2}} \mathbb{R}^{k_{1}+k_{2}+k_{3}}=\mathrm{SO}\left(k_{1}+k_{2}+k_{3}\right) / \mathrm{SO}\left(k_{3}\right)$

Lemma

The components of the Ricci tensor r for the left-invariant metric〈, 〉on G / H defined by (4), are given as follows

$$
\begin{aligned}
r_{1}= & \frac{k_{1}-2}{4(n-2) x_{1}}+\frac{1}{4(n-2)}\left(k_{2} \frac{x_{1}}{x_{12}{ }^{2}}+k_{3} \frac{x_{1}}{x_{13}{ }^{2}},\right. \\
r_{2}= & \frac{k_{2}-2}{4(n-2) x_{2}}+\frac{1}{4(n-2)}\left(k_{1} \frac{x_{2}}{x_{12}^{2}}+k_{3} \frac{x_{2}}{x_{23}^{2}}\right), \\
r_{12}= & \frac{1}{2 x_{12}}+\frac{k_{3}}{4(n-2)}\left(\frac{x_{12}}{x_{13} x_{23}}-\frac{x_{13}}{x_{12} x_{23}}-\frac{x_{23}}{x_{12} x_{13}}\right) \\
& -\frac{1}{4(n-2)}\left(\left(k_{1}-1\right) \frac{x_{1}}{x_{12}{ }^{2}}+\left(k_{2}-1\right) \frac{x_{2}}{x_{12}^{2}}\right),
\end{aligned}
$$

The Stiefel manifolds $V_{k_{1}+k_{2}} \mathbb{R}^{k_{1}+k_{2}+k_{3}}=\mathrm{SO}\left(k_{1}+k_{2}+k_{3}\right) / \mathrm{SO}\left(k_{3}\right)$

Lemma

$$
\begin{aligned}
r_{13}= & \frac{1}{2 x_{13}}+\frac{k_{2}}{4(n-2)}\left(\frac{x_{13}}{x_{12} x_{23}}-\frac{x_{12}}{x_{13} x_{23}}-\frac{x_{23}}{x_{12} x_{13}}\right) \\
& -\frac{1}{4(n-2)}\left(\left(k_{1}-1\right) \frac{x_{1}}{x_{13}{ }^{2}}\right) \\
r_{23}= & \frac{1}{2 x_{23}}+\frac{k_{1}}{4(n-2)}\left(\frac{x_{23}}{x_{13} x_{12}}-\frac{x_{13}}{x_{12} x_{23}}-\frac{x_{12}}{x_{23} x_{13}}\right) \\
& -\frac{1}{4(n-2)}\left(\left(k_{2}-1\right) \frac{x_{2}}{x_{23}{ }^{2}}\right),
\end{aligned}
$$

where $n=k_{1}+k_{2}+k_{3}$.

The Stiefel manifolds $V_{1+k_{2}} \mathbb{R}^{1+k_{2}+k_{3}}=\mathrm{SO}\left(1+k_{2}+k_{3}\right) / \mathrm{SO}\left(k_{3}\right)$

For $k_{1}=1$ and $k_{2} \geq 2$, we have the Stiefel manifold
$G / H=\mathrm{SO}\left(1+k_{2}+k_{3}\right) / \mathrm{SO}\left(k_{3}\right)$ with corresponding decomposition

$$
\mathfrak{p}=\mathfrak{s o}\left(k_{2}\right) \oplus \mathfrak{m}_{12} \oplus \mathfrak{m}_{13} \oplus \mathfrak{m}_{23} .
$$

We consider G-invariant metrics on G / H determined by the $\mathrm{Ad}\left(\mathrm{SO}\left(k_{2}\right) \times \mathrm{SO}\left(k_{3}\right)\right)$-invariant scalar products on \mathfrak{p} given by

$$
\begin{equation*}
\langle,\rangle=\left.x_{2}(-B)\right|_{\operatorname{so}\left(k_{2}\right)}+\left.x_{12}(-B)\right|_{m_{12}}+\left.x_{13}(-B)\right|_{m_{13}}+\left.x_{23}(-B)\right|_{m_{23}} . \tag{5}
\end{equation*}
$$

For simplicity we use the notation

$$
\langle,\rangle=\left(\begin{array}{ccc}
0 & x_{12} & x_{13} \\
x_{12} & x_{2} & x_{23} \\
x_{13} & x_{23} & *
\end{array}\right) .
$$

The Stiefel manifolds $V_{1+k_{2}} \mathbb{R}^{1+k_{2}+k_{3}}=\mathrm{SO}\left(1+k_{2}+k_{3}\right) / \mathrm{SO}\left(k_{3}\right)$

Lemma

The components of the Ricci tensor r for the left-invariant metric \langle,$\rangle on G / H$ defined by (5), are given as follows

$$
\begin{aligned}
& r_{2}=\frac{k_{2}-2}{4(n-2) x_{2}}+\frac{1}{4(n-2)}\left(\frac{x_{2}}{x_{12}{ }^{2}}+k_{3} \frac{x_{2}}{x_{23}^{2}}\right), \\
& r_{12}=\frac{1}{2 x_{12}}+\frac{k_{3}}{4(n-2)}\left(\frac{x_{12}}{x_{13} x_{23}}-\frac{x_{13}}{x_{12} x_{23}}-\frac{x_{23}}{x_{12} x_{13}}\right)-\frac{1}{4(n-2)}\left(\left(k_{2}-1\right) \frac{x_{2}}{x_{12}^{2}}\right), \\
& r_{23}=\frac{1}{2 x_{23}}+\frac{1}{4(n-2)}\left(\frac{x_{23}}{x_{13} x_{12}}-\frac{x_{13}}{x_{12} x_{23}}-\frac{x_{12}}{x_{23} x_{13}}\right)-\frac{1}{4(n-2)}\left(\left(k_{2}-1\right) \frac{x_{2}}{x_{23}^{2}}\right), \\
& r_{13}=\frac{1}{2 x_{13}}+\frac{k_{2}}{4(n-2)}\left(\frac{x_{13}}{x_{12} x_{23}}-\frac{x_{12}}{x_{13} x_{23}}-\frac{x_{23}}{x_{12} x_{13}}\right),
\end{aligned}
$$

where $n=1+k_{2}+k_{3}$.

The Stiefel manifolds $V_{1+k_{2}} \mathbb{R}^{1+k_{2}+k_{3}}=\mathrm{SO}\left(1+k_{2}+k_{3}\right) / \mathrm{SO}\left(k_{3}\right)$

We consider the system of equations

$$
\begin{equation*}
r_{2}=r_{12}, \quad r_{12}=r_{13}, \quad r_{13}=r_{23} . \tag{6}
\end{equation*}
$$

Then finding Einstein metrics of the form (5) reduces to finding positive solutions of system (6), and we normalize our equations by putting $x_{23}=1$.
For simplicity, we consider the case when $k_{2}=3$ and $k_{3}=n-4$. Now the system (6) reduces to the system of equations:

$$
\begin{align*}
& f_{1}=-(n-4) x_{12}^{3} x_{2}+(n-4) x_{12}^{2} x_{13} x_{2}^{2}+(n-4) x_{12} x_{13}{ }^{2} x_{2} \\
& -2(n-2) x_{12} x_{13} x_{2}+(n-4) x_{12} x_{2}+x_{12}^{2} x_{13}+3 x_{13} x_{2}^{2}=0, \\
& f_{2}=(n-3) x_{12}^{3}-2(n-2) x_{12}^{2} x_{13}-(n-5) x_{12} x_{13}^{2} \\
& +2(n-2) x_{12} x_{13}+(3-n) x_{12}+2 x_{12}^{2} x_{13} x_{2}-2 x_{13} x_{2}=0, \tag{7}\\
& f_{3}=(n-2) x_{12} x_{13}-(n-2) x_{12}+x_{12}^{2}-x_{12} x_{13} x_{2} \\
& -2 x_{13}^{2}+2=0 .
\end{align*}
$$

The Stiefel manifold $V_{4} \mathbb{R}^{n}=\operatorname{SO}(n) / \operatorname{SO}(n-4)$

We consider a polynomial ring $R=\mathbb{Q}\left[z, x_{2}, x_{12}, x_{13}\right]$ and an ideal I generated by $\left\{f_{1}, f_{2}, f_{3}, z x_{2} x_{12} x_{13}-1\right\}$ to find non-zero solutions of equations (7). We take a lexicographic order $>$ with
$z>x_{2}>x_{12}>x_{13}$ for a monomial ordering on R. Then, by the aid of computer, we see that a Gröbner basis for the ideal I contains the polynomial $\left(x_{13}-1\right) h_{1}\left(x_{13}\right)$, where $h_{1}\left(x_{13}\right)$ is a polynomial of x_{13} with degree 10 given by

$$
\begin{aligned}
& h_{1}\left(x_{13}\right) \\
& =(n-1)^{3}(5 n-11)^{2}\left(n^{3}-10 n^{2}+33 n-35\right)\left(n^{3}-6 n^{2}+9 n-3\right) x_{13}{ }^{10} \\
& -2(n-1)^{2}(5 n-11)\left(17 n^{8}-356 n^{7}+3221 n^{6}-16396 n^{5}+51159 n^{4}\right. \\
& \left.-99720 n^{3}+117862 n^{2}-76568 n+20649\right) x_{13}{ }^{19} \\
& +(n-1)\left(4 n^{11}+389 n^{10}-11430 n^{9}+136940 n^{8}-946084 n^{7}+4220820 n^{6}\right. \\
& -12735744 n^{5}+26330445 n^{4}-36830352 n^{3}+33361745 n^{2}-17678114 n \\
& +4164053) x_{13}{ }^{8}
\end{aligned}
$$

The Stiefel manifold $V_{4} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-4)$

$$
\begin{aligned}
& -4\left(8 n^{12}-38 n^{11}-2320 n^{10}+43360 n^{9}-379590 n^{8}+2055155 n^{7}\right. \\
& -7507061 n^{6}+19112638 n^{5}-34063584 n^{4}+41706995 n^{3}-33417851 n^{2} \\
& +15765962 n-3316050) x_{13}{ }^{7} \\
& +\left(112 n^{12}-2718 n^{11}+27906 n^{10}-149523 n^{9}+354855 n^{8}+588726 n^{7}\right. \\
& -7694150 n^{6}+29295831 n^{5}-65164167 n^{4}+92342878 n^{3}-82220114 n^{2} \\
& +41992646 n-9373722) x_{13}{ }^{6} \\
& -2\left(112 n^{12}-3338 n^{11}+45506 n^{10}-376557 n^{9}+2113393 n^{8}-8496684 n^{7}\right. \\
& +25132832 n^{6}-55172371 n^{5}+89317711 n^{4}-104159676 n^{3}+83190848 n^{2} \\
& -40884390 n+9337014) x_{13}{ }^{5} \\
& +\left(280 n^{12}-8710 n^{11}+123662 n^{10}-1060617 n^{9}+6124653 n^{8}\right. \\
& -25086974 n^{7}+74662934 n^{6}-162341127 n^{5}+255246159 n^{4} \\
& \left.-282268554 n^{3}+208035522 n^{2}-91729890 n+18337990\right) x_{13}{ }^{4}
\end{aligned}
$$

The Stiefel manifold $V_{4} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-4)$

$$
\begin{aligned}
& -4\left(56 n^{12}-1710 n^{11}+23600 n^{10}-194131 n^{9}+1056185 n^{8}-3982619 n^{7}\right. \\
& +10582237 n^{6}-19666327 n^{5}+24629929 n^{4}-18903391 n^{3}+6556083 n^{2} \\
& +985682 n-1096346) x_{13}{ }^{3} \\
& +(n-1)\left(112 n^{11}-3115 n^{10}+38156 n^{9}-268869 n^{8}+1189262 n^{7}\right. \\
& -3348224 n^{6}+5627178 n^{5}-3967104 n^{4}-3831854 n^{3}+11143963 n^{2} \\
& -9643014 n+3094229) x_{13}{ }^{2} \\
& -2(n-5)(n-3)(n-1)^{2}(n+1)\left(16 n^{7}-275 n^{6}+1868 n^{5}-6039 n^{4}\right. \\
& \left.+7372 n^{3}+7943 n^{2}-31120 n+23163\right) x_{13} \\
& +(n-5)^{2}(n-3)^{2}(n-1)^{3}(n+1)^{2}\left(4 n^{3}-23 n^{2}-10 n+161\right) .
\end{aligned}
$$

Note that, if the equation $h_{1}\left(x_{13}\right)=0$ has real solutions, then these are positive.

The Stiefel manifold $V_{4} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-4)$

If $x_{13}=1$ we see that $f_{3}=x_{12}\left(x_{12}-x_{2}\right)=0$ and thus the system of equations (7) reduces the system of equations

$$
x_{12}=x_{2}, \quad(n-1) x_{2}^{2}-2(n-2) x_{2}+2=0 .
$$

Thus we obtain two solutions for the system of equations (7) :

$$
\begin{aligned}
& x_{12}=x_{2}=\left(n-2-\sqrt{n^{2}-6 n+6}\right) /(n-1), x_{13}=x_{23}=1 \quad \text { and } \\
& x_{12}=x_{2}=\left(n-2+\sqrt{n^{2}-6 n+6}\right) /(n-1), x_{13}=x_{23}=1
\end{aligned}
$$

These are known as the Jensen's Einstein metrics on Stiefel manifolds.

The Stiefel manifold $V_{4} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-4)$

Consider the case when $x_{13} \neq 1$. Then we have $h_{1}\left(x_{13}\right)=0$ and we claim that the equation $h_{1}\left(x_{13}\right)=0$ has at least two positive roots.

- At first we consider the value $h_{1}\left(x_{13}\right)$ at $x_{13}=1$. We have

$$
\begin{aligned}
& h_{1}(1)=-800\left(6 n^{5}-88 n^{4}+476 n^{3}-1175 n^{2}+1274 n-490\right) \\
& =-800\left(6(n-6)^{5}+92(n-6)^{4}+524(n-6)^{3}+1345(n-6)^{2}\right. \\
& +1430(n-6)+278) .
\end{aligned}
$$

Thus we see that $h_{1}(1)<0$ for $n \geq 6$.

- Secondly we consider the value $h_{1}\left(x_{13}\right)$ at $x_{13}=0$. Then we have

The Stiefel manifold $V_{4} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-4)$

Consider the case when $x_{13} \neq 1$. Then we have $h_{1}\left(x_{13}\right)=0$ and we claim that the equation $h_{1}\left(x_{13}\right)=0$ has at least two positive roots.

- At first we consider the value $h_{1}\left(x_{13}\right)$ at $x_{13}=1$. We have

$$
\begin{aligned}
& h_{1}(1)=-800\left(6 n^{5}-88 n^{4}+476 n^{3}-1175 n^{2}+1274 n-490\right) \\
& =-800\left(6(n-6)^{5}+92(n-6)^{4}+524(n-6)^{3}+1345(n-6)^{2}\right. \\
& +1430(n-6)+278) .
\end{aligned}
$$

Thus we see that $h_{1}(1)<0$ for $n \geq 6$.

- Secondly we consider the value $h_{1}\left(x_{13}\right)$ at $x_{13}=0$. Then we have

$$
\begin{aligned}
& h_{1}(0)=(n-5)^{2}(n-3)^{2}(n-1)^{3}(n+1)^{2}\left(4 n^{3}-23 n^{2}-10 n+161\right) \\
& =(n-5)^{2}(n-3)^{2}(n-1)^{3}(n+1)^{2} \times \\
& \left(4(n-5)^{3}+37(n-5)^{2}+60(n-5)+36\right)
\end{aligned}
$$

Thus we see that $h_{1}(0)>0$ for $n \geq 6$.

The Stiefel manifold $V_{4} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-4)$

- Thirdly we consider the value $h_{1}\left(x_{13}\right)$ at $x_{13}=2$. We have

$$
\begin{aligned}
& h_{1}(2)=(n-5)\left(4 n^{11}+313 n^{10}-2902 n^{9}-11175 n^{8}+334728 n^{7}\right. \\
& -2555222 n^{6}+10151316 n^{5}-22397134 n^{4}+25374596 n^{3} \\
& \left.-8599331 n^{2}-8372942 n+6279733\right) \\
& =(n-5)\left(4(n-5)^{11}+533(n-5)^{10}+18248(n-5)^{9}+292860(n-5)^{8}\right. \\
& +2795928(n-5)^{7}+17723008(n-5)^{6}+77831856(n-5)^{5} \\
& +236200016(n-5)^{4}+477068416(n-5)^{3}+593616384(n-5)^{2} \\
& +389736448(n-5)+89941248) .
\end{aligned}
$$

Thus we see that $h_{1}(0)>0, h_{1}(1)<0$ and $h_{1}(2)>0$ for $n \geq 6$. Hence, we obtain two solutions $x_{13}=\alpha_{13}, \beta_{13}$ of the equation $h_{1}\left(x_{13}\right)=0$ between $0<\alpha_{13}<1$ and $1<\beta_{13}<2$.
More precisely, for $n \geq 9$, we have

$$
\begin{gathered}
1-2 / n-6 / n^{2}<\alpha_{13}<1-2 / n-7 /\left(2 n^{2}\right) \\
1+50 /\left(63 n^{2}\right)<\beta_{13}<1+3 / n^{2}
\end{gathered}
$$

The Stiefel manifold $V_{4} \mathbb{R}^{n}=\operatorname{SO}(n) / \operatorname{SO}(n-4)$

We consider a polynomial ring $R=\mathbb{Q}\left[z, x_{2}, x_{12}, x_{13}\right]$ and an ideal J generated by $\left\{f_{1}, f_{2}, f_{3}, z x_{2} x_{12} x_{13}\left(x_{13}-1\right)-1\right\}$ and take a lexicographic order $>$ with $z>x_{2}>x_{12}>x_{13}$ for a monomial ordering on R. Then, by the aid of computer, we see that a Gröbner basis for the ideal J contains the polynomials $h_{1}\left(x_{13}\right)$ and

$$
8(n-3)(n-2)^{3}(n-1)^{2} a(n) x_{12}-w_{12}\left(x_{13}\right),
$$

Also, for the same ideal J and the lexicographic order $>$ with $z>x_{12}>x_{2}>x_{13}$ for monomials on R, we see that a Gröbner basis for J contains the polynomial
$8(n-5)(n-2)^{3}(n-1)^{3}(n+1)\left(4 n^{3}-23 n^{2}-10 n+161\right) a(n) x_{2}-w_{2}\left(x_{13}\right)$.
where $a(n)$ is a polynomial of n of degree 43 with integer coefficients and $w_{12}\left(x_{13}\right), w_{2}\left(x_{13}\right)$ are polynomials of $x_{13}($ and $n)$ with integer coefficients.

The Stiefel manifold $V_{4} \mathbb{R}^{n}=\operatorname{SO}(n) / \operatorname{SO}(n-4)$

It is easy to check that $a(n)>0$ for $n \geq 6$. Thus for the positive values $x_{13}=\alpha_{13}, \beta_{13}$ found above we obtain real values $x_{2}=\alpha_{2}, \beta_{2}$ and $x_{12}=\alpha_{12}, \beta_{12}$ as solutions of the system of equations (7).

- We claim that $\alpha_{2}, \beta_{2}, \alpha_{12}, \beta_{12}$ are positive.

Consider the ideal J generated by
$\left\{f_{1}, f_{2}, f_{3}, z x_{2} x_{12} x_{13}\left(x_{13}-1\right)-1\right\}$ and take a lexicographic order $>$ with $z>x_{2}>x_{13}>x_{12}$ for a monomial ordering on R. Then a Gröbner basis for the ideal J contains the polynomial $h_{2}\left(x_{12}\right)$ of x_{12} of the form

$$
h_{2}\left(x_{12}\right)=\sum_{k=0}^{10} b_{k}(n) x_{12}{ }^{k}
$$

where, for $n \geq 6, b_{k}(n)$ are positive for even k and negative for odd. Thus if the equation $h_{2}\left(x_{12}\right)=0$ has real solutions, then these are positive.

The Stiefel manifold $V_{4} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-4)$

- For the same ideal J take a lexicographic order $>$ with $z>x_{12}>x_{13}>x_{2}$ for a monomial ordering on R. Then a Gröbner basis for the ideal J contains the polynomial $h_{3}\left(x_{2}\right)$ of x_{2} of the form

$$
h_{3}\left(x_{2}\right)=\sum_{k=0}^{10} c_{k}(n) x_{2}{ }^{k}
$$

where, for $n \geq 6, c_{k}(n)$ are positive for even k and negative for odd. Thus if the equation $h_{3}\left(x_{2}\right)=0$ has real solutions, then these are positive.

The Stiefel manifold $V_{4} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-4)$

We see that, for $n \geq 16$,

$$
\begin{aligned}
& 1-\frac{2}{n}-\frac{6}{n^{2}}<\alpha_{13}<1-\frac{2}{n}-\frac{7}{2 n^{2}}, \quad 1+\frac{50}{63 n^{2}}<\beta_{13}<1+\frac{3}{n^{2}}, \\
& 2-\frac{2}{n}-\frac{6}{n^{2}}<\alpha_{12}<2-\frac{4}{n}-\frac{31}{4 n^{2}}, \quad \frac{5}{3 n}+\frac{815}{162 n^{2}}<\beta_{12}<\frac{5}{3 n}+\frac{10}{n^{2}}, \\
& \frac{1}{2 n}+\frac{13}{8 n^{2}}<\alpha_{2}<\frac{1}{2 n}+\frac{11}{5 n^{2}}, \quad \frac{5}{9 n}+\frac{23}{20 n^{2}}<\beta_{2}<\frac{5}{9 n}+\frac{10}{n^{2}} .
\end{aligned}
$$

Comparison of the metrics on $V_{4} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-4)$

Jensen's metrics on Stiefel manifold $V_{4} \mathbb{R}^{n}=\mathrm{SO}(n) / \mathrm{SO}(n-4)$

$$
\langle,\rangle=\left(\begin{array}{lll}
0 & a & 1 \\
a & a & 1 \\
1 & 1 & *
\end{array}\right), \operatorname{Ad}(\mathrm{SO}(4)) \times \mathrm{SO}(n-4) \text {-invariant. }
$$

Our Einstein metrics

$$
\langle,\rangle=\left(\begin{array}{lll}
0 & \beta & \gamma \\
\beta & \alpha & 1 \\
\gamma & 1 & *
\end{array}\right), \operatorname{Ad}(\mathrm{SO}(3) \times \operatorname{SO}(n-4)) \text {-invariant }
$$

($\alpha, \beta, \gamma \neq 1$ are all different).
For the Stiefel manifolds $V_{\ell} \mathbb{R}^{k+k+\ell}=\mathrm{SO}(2 k+\ell) / \mathrm{SO}(\ell)(\ell>k \geq 3)$
Einstein metrics of Arvanitoyeorgos, Dzhepko and Nikonorov

$$
\langle,\rangle=\left(\begin{array}{ccc}
\alpha & \beta & 1 \\
\beta & \alpha & 1 \\
1 & 1 & *
\end{array}\right) \quad(\alpha, \beta \text { are different }) .
$$

The Stiefel manifolds $V_{1+k_{2}} \mathbb{R}^{1+k_{2}+k_{3}}=\mathrm{SO}\left(1+k_{2}+k_{3}\right) / \mathrm{SO}\left(k_{3}\right)$

For general Stiefel manifolds $V_{1+k_{2}} \mathbb{R}^{1+k_{2}+k_{3}}\left(k_{2} \geq 3\right.$ and $k_{3} \geq 2$), the system of equations (6) reduces to the system of polynomial equations of three variables $\left\{x_{2}, x_{12}, x_{13}\right\}$ similar to $\left\{f_{1}=0, f_{2}=0, f_{3}=0\right\}$.

Again we compute a Gröbner basis and we obtain a polynomial $q_{1}\left(x_{13}\right)$ of x_{13} which is a product of a polynomial $p_{1}\left(x_{13}\right)$ of degree 10 with parameter k_{2} and k_{3} (similar to $h_{1}\left(x_{13}\right)$) and ($x_{13}-1$).

Then we can show that at least two positive solutions for $p_{1}\left(x_{13}\right)=0$ and also we can see that there exist at least two positive solutions of Einstein equations (6).

For $x_{13}=1$ we obtain Jensen's Einstein metrics.

The Lie groups $G=\operatorname{SO}(n)\left(n=k_{1}+k_{2}+k_{3}\right)$

- For the tangent space $\mathfrak{s o}\left(k_{1}+k_{2}+k_{3}\right)$ of the Lie group $G=\mathrm{SO}\left(k_{1}+k_{2}+k_{3}\right)$, we consider the decomposition

$$
\begin{equation*}
\mathfrak{s o}\left(k_{1}+k_{2}+k_{3}\right)=\mathfrak{s o}\left(k_{1}\right) \oplus \mathfrak{s o}\left(k_{2}\right) \oplus \mathfrak{s o}\left(k_{3}\right) \oplus \mathfrak{m}_{12} \oplus \mathfrak{m}_{13} \oplus \mathfrak{m}_{23}, \tag{8}
\end{equation*}
$$

where corresponding $\operatorname{Ad}(K)$-submodules are non-equivalent. By taking into account the diffeomorphism
$G /\{e\} \cong\left(G \times \mathrm{SO}\left(k_{1}\right) \times \mathrm{SO}\left(k_{2}\right) \times \mathrm{SO}\left(k_{3}\right)\right) / \operatorname{diag}\left(\mathrm{SO}\left(k_{1}\right) \times \mathrm{SO}\left(k_{2}\right) \times \mathrm{SO}\left(k_{3}\right)\right)$,
left-invariant metrics on G which are $\operatorname{Ad}\left(\mathrm{SO}\left(k_{1}\right) \times \mathrm{SO}\left(k_{2}\right) \times \mathrm{SO}\left(k_{3}\right)\right)$-invariant are given by

$$
\begin{align*}
\langle,\rangle= & \left.x_{1}(-B)\right|_{\mathfrak{s o}\left(k_{1}\right)}+\left.x_{2}(-B)\right|_{\mathfrak{s o}\left(k_{2}\right)}+\left.x_{3}(-B)\right|_{\mathfrak{s o}\left(k_{3}\right)} \tag{9}\\
& +\left.x_{12}(-B)\right|_{\mathfrak{m}_{12}}+\left.x_{13}(-B)\right|_{\mathfrak{m}_{13}}+\left.x_{23}(-B)\right|_{\mathfrak{m}_{23}}
\end{align*}
$$

for $k_{1} \geq 2, k_{2} \geq 2$ and $k_{3} \geq 2$.

The Lie groups $G=\operatorname{SO}(n)\left(n=k_{1}+k_{2}+k_{3}\right)$

Lemma

The components of the Ricci tensor r for the left-invariant metric〈, > on G defined by (9), are given as follows

$$
\begin{aligned}
& r_{1}=\frac{k_{1}-2}{4(n-2) x_{1}}+\frac{1}{4(n-2)}\left(k_{2} \frac{x_{1}}{x_{12}^{2}}+k_{3} \frac{x_{1}}{x_{13} 2}\right), \\
& r_{2}=\frac{k_{2}-2}{4(n-2) x_{2}}+\frac{1}{4(n-2)}\left(k_{1} \frac{x_{2}}{x_{12}^{2}}+k_{3} \frac{x_{2}}{x_{23}{ }^{2}}\right), \\
& r_{3}=\frac{k_{3}-2}{4(n-2) x_{3}}+\frac{1}{4(n-2)}\left(k_{1} \frac{x_{3}}{x_{13}^{2}}+k_{2} \frac{x_{3}}{x_{23}}\right),
\end{aligned}
$$

The Lie groups $G=\operatorname{SO}(n)\left(n=k_{1}+k_{2}+k_{3}\right)$

Lemma

$$
\begin{aligned}
r_{12}= & \frac{1}{2 x_{12}}+\frac{k_{3}}{4(n-2)}\left(\frac{x_{12}}{x_{13} x_{23}}-\frac{x_{13}}{x_{12} x_{23}}-\frac{x_{23}}{x_{12} x_{13}}\right) \\
& -\frac{1}{4(n-2)}\left(\left(k_{1}-1\right) \frac{x_{1}}{x_{12}{ }^{2}}+\left(k_{2}-1\right) \frac{x_{2}}{x_{12}^{2}}\right), \\
r_{13}= & \frac{1}{2 x_{13}}+\frac{k_{2}}{4(n-2)}\left(\frac{x_{13}}{x_{12} x_{23}}-\frac{x_{12}}{x_{13} x_{23}}-\frac{x_{23}}{x_{12} x_{13}}\right) \\
& -\frac{1}{4(n-2)}\left(\left(k_{1}-1\right) \frac{x_{1}}{x_{13}{ }^{2}}+\left(k_{3}-1\right) \frac{x_{3}}{x_{13}{ }^{2}}\right), \\
r_{23}= & \frac{1}{2 x_{23}}+\frac{k_{1}}{4(n-2)}\left(\frac{x_{23}}{x_{13} x_{12}}-\frac{x_{13}}{x_{12} x_{23}}-\frac{x_{12}}{x_{23} x_{13}}\right) \\
& -\frac{1}{4(n-2)}\left(\left(k_{2}-1\right) \frac{x_{2}}{x_{23}^{2}}+\left(k_{3}-1\right) \frac{x_{3}}{x_{23}^{2}}\right) .
\end{aligned}
$$

The Lie groups $G=\mathrm{SO}(n)\left(n=3+3+k_{3}\right)$

We consider the system of equations

$$
\begin{equation*}
r_{1}=r_{2}, \quad r_{2}=r_{3}, \quad r_{3}=r_{12}, \quad r_{12}=r_{13}, \quad r_{13}=r_{23} . \tag{10}
\end{equation*}
$$

Then finding Einstein metrics of the form (9) reduces to finding positive solutions of system (10).
We put $k_{1}=k_{2}=3$ and consider our equations by putting

$$
x_{13}=x_{23}=1, \quad x_{2}=x_{1} .
$$

Then the system of equations (10) reduces to the system of equations:

$$
\begin{align*}
g_{1}= & n x_{1}^{2} x_{12}^{2} x_{3}-n x_{1} x_{12}^{2}-6 x_{1}^{2} x_{12}^{2} x_{3}+3 x_{1}^{2} x_{3} \\
& -6 x_{1} x_{12}^{2} x_{3}^{2}+8 x_{1} x_{12}^{2}+x_{12}^{2} x_{3}=0, \\
g_{2}= & -n x_{1} 2^{3} x_{3}+n x_{12}^{2}+4 x_{1} x_{3}+6 x_{12}^{3} x_{3} \\
& +6 x_{12}^{2} x_{3}^{2}-8 x_{12}^{2}-8 x_{12} x_{3}=0, \tag{11}\\
g_{3}= & n x_{1} 2^{3}+n x_{12}^{2} x_{3}-2 n x_{12}^{2}+2 x_{1} x_{12}^{2}-4 x_{1} \\
& -3 x_{12}^{3}-7 x_{12}^{2} x_{3}+4 x_{12}{ }^{2}+8 x_{12}=0 .
\end{align*}
$$

The Lie groups $G=\mathrm{SO}(n)\left(n=3+3+k_{3}\right)$

By computing a Gröbner basis for $\left\{g_{1}, g_{2}, g_{3}\right\}$, we see that there exist at least two positive solutions of the system for $n \geq 10$ of the form

$$
\langle,\rangle=\left(\begin{array}{ccc}
\alpha & \beta & 1 \\
\beta & \alpha & 1 \\
1 & 1 & \gamma
\end{array}\right) \quad(\alpha, \beta \text { are different, } \beta \neq 1) .
$$

We can see that these metrics are not naturally reductive.

- For $G=\mathrm{SO}(7), \mathrm{SO}(8), \mathrm{SO}(9)$, we consider separately and we see that $\mathrm{Ad}(\mathrm{SO}(3) \times \mathrm{SO}(3))$-invariant Einstein metrics on $\mathrm{SO}(7)$, $\mathrm{Ad}(\mathrm{SO}(3) \times \mathrm{SO}(3) \times \mathrm{SO}(2)$)-invariant Einstein metrics on $\mathrm{SO}(8)$ and $\mathrm{Ad}(\mathrm{SO}(3) \times \mathrm{SO}(3) \times \mathrm{SO}(3))$-invariant Einstein metrics on $\mathrm{SO}(9)$ which are not naturally reductive.

References

1. D. V. Alekseevsky, I. Dotti and C. Ferraris: Homogeneous Ricci positive 5-manifolds, Pacific. J. Math. 175 (1) (1996) 1-12.
2. A. Arvanitoyeorgos: Homogeneous Einstein metrics on Stiefel manifolds, Comment. Math. Univ. Carolinae 37 (3) (1996) 627-634.
3. A. Arvanitoyeorgos, V.V. Dzhepko and Yu. G. Nikonorov: Invariant Einstein metrics on some homogeneous spaces of classical Lie groups, Canad. J. Math. 61 (6) (2009) 1201-1213.
4. A. Arvanitoyeorgos, V.V. Dzhepko and Yu. G. Nikonorov: Invariant Einstein metrics on certain Stiefel manifolds, Differential Geometry and its Applications, Proc. Conf., in Honor of Leonard Euler, Olomouc, August 2007, World Sci. 2008, 35-44.

References

5. A. Arvanitoyeorgos, V.V. Dzhepko and Yu. G. Nikonorov: Invariant Einstein metrics on quaternionic Stiefel manifolds, Bull. Greek Math. Soc. 53 (2007) 1-14.
6. A. Arvanitoyeorgos, K. Mori and Y. Sakane: Einstein metrics on compact Lie groups which are not naturally reductive, Geom. Dedicata 160 (1) (2012) 261-285.
7. A. Back and W.Y. Hsiang: Equivariant geometry and Kervaire spheres, Trans. Amer. Math. Soc. 304 (1) (1987) 207-227.
8. J. E. D’ Atri and W. Ziller: Naturally reductive metrics and Einstein metrics on compact Lie groups, Memoirs Amer. Math. Soc. 19 (215) (1979).
9. G. Jensen: Einstein metrics on principal fiber bundles, J. Differential Geom. 8 (1973) 599-614.

References

10. M. Kerr: New examples of homogeneous Einstein metrics, Michigan J. Math. 45 (1) (1998) 115-134.
11. S. Kobayashi: Topology of positively pinched Kähler manifolds, Tôhoku Math. J. 15 (1963) 121-139.
12. J-S. Park and Y. Sakane: Invariant Einstein metrics on certain homogeneous spaces, Tokyo J. Math. 20 (1) (1997) 51-61.
13. A. Sagle: Some homogeneous Einstein manifolds, Nagoya Math. J. 39 (1970) 81-106.
14. M. Wang and W. Ziller: Existence and non-excistence of homogeneous Einstein metrics, Invent. Math. 84 (1986) 177-194.
