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Introduction

(M, g): Riemannian manifold

(M, g) is called Einstein if the Ricci tensor r(g) of the metirc g
satisfies r(g) = cg for some constant c.

We consider G-invariant Einstein metrics on a homogeneous
space G/K.

General Problem: Find G-invariant Einstein metrics on a
homogeneous space G/K and classify them if it is not unique.

Einstein homogeneous spaces can be diveded into three
cases depending on Einstein constant c.
Here we consider the case c > 0.
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Introduction

1. Examples of the case c > 0
( G/K is compact and π1(G/K) is finite ).

Sphere (S n = SO(n + 1)/SO(n), g0),
Complex Projective space (CPn = SU(n + 1)/(S(U(1)×U(n))),
Symmetric spaces of compact type,
isotropy irreducible spaces ( in these cases G-invariant
Einstein metrics is unique )

Compact semi-simple Lie groups ( bi-invariant metric (negative
of Killing form ) )

Generalized flag manifolds (Kähler C-spaces) (if we fix a
complex structure, it admits a unique Kähler-Einstein metric,
but complex structure may not be unique )
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Introduction

( Wang-Ziller [17] 1986) There exist compact homogeneous
space G/K with no G-invariant Einstein metrics.

Example. Let G = SU(4), L = Sp(2), K = SU(2) ( SU(2) is a
maxmal subgroup of Sp(2)). Then G/K has no (G-)invariant
Einstein metrics. Note that dim G/K = 12.

(Böhm-Kerr (2006) ) For a simply connected compact
homogeneous space G/K of dim G/K ≤ 11, there exists at
least one G-invariant Einstein metric on G/K.
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Introduction

Problem: Find all G-invariant Einstein metrics on a compact
homogeneous space G/K.

( Nikonorov, Rodionov (2003) ) For a simply connected
compact homogeneous space G/K of dim G/K ≤ 7, all
G-invariant Einstein metrics has been determined on G/K,
except for SU(2) × SU(2).

For SU(2) × SU(2), there exist at least two left-invariant
Einstein metrics. The first is the standard metric, and the other
was found by Jensen.
In 2003 Nikonorov and Rodionov computed the scalar
curvature of left-invariant metrics on SU(2) × SU(2), but these
depend on 14 parameters and it is difficult to find critical points
(Einstein metrics).
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Introduction

Open problem : How many left-invariant Einstein metrics are
there on compact simple Lie groups G ( dim G ≥ 4 ) ?
( finite or infinite?)

(Wang-Ziller (1990) )
The principal S 1-bundles over CP1 × CP1 are all diffeomorphic
to S 2 × S 3, but as homogeneous spaces (S U(2) × S U(2))/S 1

they are quite different. There are infinitely many ways to
embed the group S 1 in S U(2) × S U(2). On S 2 × S 3 the moduli
space of Einstein metrics has infinitely many components.
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Generalized flag manifolds

A generalized flag manifold M is an adjoint orbit of a compact
connected semi-simple Lie group G, and is a homogeneous
space of the form M = G/C(S ), where C(S ) is the centralizer of
a torus S in G.
Generalized flag manifolds exhaust compact simply connected
homogeneous Kähler manifolds.
A generalized flag manifold admits a finite number of
G-invariant complex structures. For each G-invariant complex
structure there is a compatible Kähler-Einstein metric.
Generalized flag manifolds can be classified by use of painted
Dynkin diagrams.
Generalized flag manifolds are also referred to as Kähler
C-spaces.
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Examples of Generalized flag manifolds

Set G = SU(n + 1), K = S (U(n) × U(1)). Then G/K is a
complex projective space CPn.
Set G = SU(n + m), K = S (U(n) × U(m)). Then G/K is a
Grassmann manifold Gm+n, n(C).
Set G = SU(n + m + "), K = S (U(n) × U(m) × U(")). Then G/K
is a generalized flag manifold.
Set G = Sp(n + 1), K = Sp(n) × U(1). Then G/K is a a complex
projective space CP2n−1.
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Ricci tensor of a compact homogeneous space G/K

Let G be a compact semi-simple Lie group and K a connected
closed subgroup of G.
Let m be the orthogonal complement of k in g with respect to
B (= − Killing form of g ). Then we have g = k ⊕m, [ k, m ] ⊂ m
and a decomposition of m into irreducible Ad(K)-modules:

m = m1 ⊕ · · · ⊕mq.

We assume that Ad(K)-modules m j ( j = 1, · · · , q) are mutually
non-equivalent.
Then a G-invariant metric on G/K can be written as

< , >= x1B|m1 + · · · + xqB|mq , (1)

for positive real numbers x1, · · · , xq.
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Ricci tensor of a compact homogeneous space G/K

Note that G-invariant symmetric covariant 2-tensors on G/K
are the same form as the metrics.
In particular, the Ricci tensor r of a G-invariant Riemannian
metric on G/K is of the same form as (1).

Let {eα} be a B-orthonormal basis adapted to the
decomposition of m, i.e., eα ∈ mi for some i, and α < β if i < j
(with eα ∈ mi and eβ ∈ m j).

We put Aγαβ = B
([

eα, eβ
]
, eγ
)
, so that

[
eα, eβ

]
=
∑

γ

Aγαβeγ, and

set
[
k
i j

]
=
∑

(Aγαβ)
2, where the sum is taken over all indices

α, β, γ with eα ∈ mi, eβ ∈ m j, eγ ∈ mk.

Notations
[
k
i j

]
are introduced by Wang and Ziller [17].
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Ricci tensor of a compact homogeneous space G/K

Then, the non-negative number
[
k
i j

]
is independent of the

B-orthonormal bases chosen for mi,m j,mk, and
[
k
i j

]
=

[
k
ji

]
=

[
j

ki

]
. (2)

Let dk = dimmk. Then we have ( cf. Park - S. [15] )

.

Lemma

.

.

.

. ..

. .

The components r1, · · · , rq of Ricci tensor r of the metric
< , >= x1B|m1 + · · · + xqB|mq on G/K are given by

rk =
1

2xk
+

1
4dk

∑

j,i

xk

x jxi

[
k
ji

]
− 1

2dk

∑

j,i

x j

xkxi

[
j

ki

]
(k = 1, · · · , q) (3)

where the sum is taken over i, j = 1, · · · , q.
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Structures of generalized flag manifolds

Let G be a compact semi-simple Lie group,
g the Lie algebra of G and h a maximal abelian subalgebra of g.
We denote by gC and hC the complexification of g and h
respectively.
We identify an element of the root system ∆ of gC relative to the
Cartan subalgebra hC with an element of h0 =

√
−1h by the

duality defined by the Killing form of gC. Let Π = {α1, · · · ,αl} be
a fundamental system of ∆ and {Λ1, · · · ,Λl} the fundamental
weights of gC corresponding to Π, that is

2(Λi,α j)
(α j,α j)

= δi j (1 ≤ i, j ≤ ").

Let Π0 be a subset of Π and Π − Π0 = {αi1 , · · · ,αir}
(1 ≤ αi1 < · · · < αir ≤ "). We put [Π0] = ∆ ∩ {Π0}Z, where {Π0}Z
denotes the subspace of h0 generated by Π0.

Yusuke Sakane (Kawanishi) Recent progress of homogeneous Einstein metrics on generalized flag manifoldsMarch 6, 2013 13 / 44

Structures of generalized flag manifolds

Consider the root space decomposition of gC relative to hC:

gC = hC +
∑

α∈∆
gCα .

For a subset Π0 of Π, we define a parabolic subalgebra u of gC

by

u = hC +
∑

α∈[Π0]∪∆+
gCα ,

where ∆+ is the set of all positive roots relative to Π.
Note that the nilradical n of u is given by

n =
∑

α∈∆+−[Π0]

gCα .

We put ∆+m = ∆+ − [Π0].
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Structures of generalized flag manifolds

Let GC be a simply connected complex semi-simple Lie group
whose Lie algebra is gC and U the parabolic subgroup of GC

generated by u. Then the complex homogeneous manifold
GC/U is compact simply connected and G acts transitively on
GC/U. Note also that K = G ∩ U is a connected closed
subgroup of G, GC/U = G/K as C∞-manifolds, and GC/U
admits a G-invariant Kähler metric.
Let k be the Lie algebra of K and kC the complexification of k.
Then we have a direct decomposition

u = kC ⊕ n, kC = hC +
∑

α∈[Π0]

gCα .

We put t =
{
H ∈ h0 | (H, Π0) = (0)

}
. Then {Λi1 , · · · ,Λir} is a

basis of t. Put s =
√
−1t. Then the Lie algebra k is given by

k = z(s) (the Lie algebra of centralizer of a torus S in G).
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t-roots of generalized flag manifolds

We consider the restriction map

κ : h∗0 → t∗ α .→ α|t
and set ∆t = κ(∆). The elements of ∆t are called t-roots.
(The notion of t-roots is introduced by Alekseevky and
Perelomov [2] around 1985 to study invariant Kähler-Einstein
metrics of generalized flag manifolds. )
There exists a 1-1 correspondence between t-roots ξ and
irreducible submodules mξ of the AdG(K)-module mC that is
given by

∆t / ξ .→ mξ =
∑

κ(α)=ξ

gCα .

Thus we have a decomposition of the AdG(K)-module mC:

mC =
∑

ξ∈∆t
mξ.
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Decomposition associated to generalized flag manifolds

Denote by ∆+t the set of all positive t-roots, that is, the
restricton of the system ∆+. Then n =

∑

ξ∈∆+t

mξ.

Denote by τ the complex conjugation of gC with respect to g
(note that τ interchanges gCα and gC−α) and by vτ the set of fixed
points of τ in a (complex) vector subspace v of gC. Thus we
have a decomposition of AdG(K)-module m into irreducible
submodules:

m =
∑

ξ∈∆+t

(
mξ +m−ξ

)τ
.
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Decomposition associated to generalized flag manifolds

For integers j1, · · · , jr with ( j1, · · · , jr) ! (0, · · · , 0) , we put
∆( j1, · · · , jr) =

{ ∑"
j=1 mjα j ∈ ∆+

∣∣∣∣ mi1 = j1, · · · ,mir = jr

}
.

There exists a natural 1-1 correspondence between ∆+t and the
set {∆( j1, · · · , jr) ! ∅}
For a generalized flag manifold G/K, we have a decomposition
of m into mutually non-equivalent irreducible AdG(H)-modules :

m =
∑

ξ∈∆+t

(
mξ +m−ξ

)τ
=
∑

j1,··· , jr

m( j1, · · · , jr).

Thus a G-invariant metric g on G/K can be written as

g =
∑

ξ∈∆+t

xξB|(mξ+m−ξ)τ =
∑

j1,··· , jr
x j1··· jr B|m( j1,··· , jr) (4)

for positive real numbers xξ, x j1··· jr .
Yusuke Sakane (Kawanishi) Recent progress of homogeneous Einstein metrics on generalized flag manifoldsMarch 6, 2013 18 / 44

t-roots and decompositions

From now on we assume that the Lie group G is simple.
We denote by q the number of elements of ∆+t for a generalized
flag manifold G/K, that is, the number of irreducible
components of AdG(K)-module m.
If q = 1, then ∆+t = { ξ } and G/K is an irreducible Hermitian
symmetric space with the symmetric pair (g, k).
If q = 2, then we see that r = b2(G/K) = 1 and
m = m(1) ⊕m(2), that is, ∆+t = { ξ, 2ξ }. We say this case that
t-roots system is of type A1(2).
Example. CP2n−1 = Sp(n)/(Sp(n − 1)×U(1))

!α1

2
"α2

2
. . . "

2

αp
. . . "αn−1

2
< "αn

1
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Ricci tensor for case q = 2

Note that only
[

2
11

]
is non-zero.

Put d1 = dimm(1) and d2 = dimm(2).
For a G-invariant metric < , >= x1 · B|m(1) + x2 · B|m(2),
components r1, r2 of Ricci tensor r of the metric < , > are
given by




r1 =
1

2x1
− x2

2 d1 x1
2

[
2

11

]

r2 =
1

2x2
− 1

2 d2 x2

[
1

21

]
+

x2

4 d2 x1
2

[
2

11

]
.

Note that Kähler-Einstein metric is given by
< , >= 1 · B|m(1) + 2 · B|m(2) and thus we can determine the

value
[

2
11

]
and find 2 Einstein metrics.
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The case q = 3

If q = 3, then we see that either r = b2(G/K) = 1 or
r = b2(G/K) = 2.
Einstein metrics of case q = 3 was studied by Masahiro Kimura
[13] and A. Arvanitoyeorgos [3] independently (around 1990).
We say the case of r = b2(G/K) = 1 and q = 3 that t-roots
system is of type A1(3), that is, ∆+t = { ξ, 2ξ, 3ξ }. There are 7
cases and the Lie group G is always exceptional, that is, E6,
E7, E8, F4 and G2 ( for E7, E8, there are 2 cases. )
We say the case of r = b2(G/K) = 2 and q = 3 that t-roots
system is of type A2, that is, ∆+t = { ξ1, ξ2, ξ1 + ξ2 }. There are 3
cases.
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The case q = 3 and b2(G/K) = 1

E6

"α1

1
"α2

2
!α3

3
"α4

2
"α5

1"
α62

E7

"α1

1
"α2

2
"α3

3
"α4

4
!α5

3
"α6

2"
α72

E7

"α1

1
"α2

2
!α3

3
"α4

4
"α5

3
"α6

2"
α72

E8
"α1

2
!α2

3
"α3

4
"α4

5
"α5

6
"α6

4
"α7

2"
α83

E8
"α1

2
"α2

3
"α3

4
"α4

5
"α5

6
"α6

4
"α7

2!
α83

F4 "α1

2
!α2

3
> "α3

4
"α4

2

G2
"α1

2
>!α2

3

Kähler Einstein 1
non-Kähler Einstein 2

The system of equations r1 = r2 = r3 reduces to a polynomial
equation of degree 5.
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The case q = 3 and b2(G/K) = 2

Flag manifold Painted Dynkin diagram
number of

Einstein metrics
up to isometry

S U(n)/
S (U(")×U(m)×U(k))

(n = " + m + k)
"α1

1
. . . !

1
α" " . . . !

1
αm " . . . "

1
αn

　
Kähler 3∗)

non-Kähler 1

SO(2n)/(U(n − 1)×U(1)) !α1

1
"α2

2
"α3

2
. . . "αn−2

2
!
"

!1αn−1"
1
αn

Kähler 2
non-Kähler 1

E6/(SO(8)×U(1)×U(1))
!α1

1
"α2

2
"α3

3
"α4

2
!α5

1"α62 　

Kähler 1
non-Kähler 1
(normal metric)

∗) If ", m and k are mutually different, there exist 3 different complex
strucutres.
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The case q = 4 and b2(G/K) = 1

The case q = 4 has started to study by A. Arvanitoyeorgos and
I. Chrysikos around 2009 [4].
We see that either r = b2(G/K) = 1 or r = b2(G/K) = 2 also
occur in this case and we divide into 2 cases.
We call the case of r = b2(G/K) = 1 that t-roots system is of
type A1(4), that is, ∆+t = { ξ, 2ξ, 3ξ, 4ξ }. There are 4 cases and
G is always exceptional Lie group.
We call the case of r = b2(G/K) = 2 that t-roots system is of
type B2, that is, ∆+t = { ξ1, ξ2, ξ1 + ξ2, ξ1 + 2ξ2 }. There are 6
cases.
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The case q = 4 and b2(G/K) = 1

Flag manifold Painted Dynkin diagram
number of

Einstein metrics
up to isometry

F4/
(SU(3) × SU(2) × U(1))

"α1

2
"α2

3
> !α3

4
"α4

2 　
Kähler 1

non-Kähler 2

E7/(SU(4)×SU(3)
×SU(2)×U(1))

"α1

1
"α2

2
"α3

3
!α4

4
"α5

3
"α6

2"
α72

Kähler 1
non-Kähler 2

E8/
(SO(10)×SU(3)×U(1))

"α1

2
"α2

3
!α3

4
"α4

5
"α5

6
"α6

4
"α7

2"
α83 　

Kähler 1
non-Kähler 2

E8/
(SU(7)×SU(2)×U(1))

"α1

2
"α2

3
"α3

4
"α4

5
"α5

6
!α6

4
"α7

2"
α83 　

Kähler 1
non-Kähler 4
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The case q = 4 and b2(G/K) = 2 ( B2 )

Flag manifold Painted Dynkin diagram
number of

Einstein metrics
up to isometry

SO(2n + 1)/
(SO(2n − 3)×U(1)×U(1))

!α1

1
!α2

2
"α3

2
. . . "αn−1

2
> "αn

2

Kähler 1

non-Kähler 3

SO(2n)/
(SO(2n − 4)×U(1)×U(1))

!α1

1
!α2

2
"α3

2
. . . "αn−2

2
!
"

"1αn−1"
1
αn

Kähler 1

non-Kähler 3

E6/(SU(5)×U(1)×U(1))
!α1

1
!α2

2
"α3

3
"α4

2
"α5

1"
α62 　

Kähler 2

non-Kähler 4

E7/(SO(10))×U(1)×U(1))
!α1

1
!α2

2
"α3

3
"α4

4
"α5

3
"α6

2"
α72 　

Kähler 2

non-Kähler 4
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The case q = 4 B2

SO(2n)/(U(p)×U(n − p)) "α1

1
"α2

2
. . . !

2

αp
. . . "αn−2

2
!
"

"1αn−1!
1
αn

(2 ≤ p ≤ n − 2) 　

Kähler 2
(n ! 2p)

non-Kähler 2

Sp(n)/(U(p)×U(n − p)) "α1

2
"α2

2
. . . !

2

αp
. . . "αn−1

2
< !αn

1
(1 ≤ p ≤ n − 1) 　

Kähler 2
(n ! 2p)

non-Kähler 1

Einstein metrics for the case of r = b2(G/K) = 1 has been
studied by A. Arvanitoyeorgos and I. Chrysikos [4]. Einstein
metrics for the case of r = b2(G/K) = 2, that is, t-roots system
is of type B2, has been studied by A. Arvanitoyeorgos and I.
Chrysikos [4] and A. Arvanitoyeorgos, I. Chrysikos and Y. S.
[5], [6], [7].
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The case q = 5

For the case q = 5 we also see that either r = b2(G/K) = 1 or
r = b2(G/K) = 2.
We call the case of r = b2(G/K) = 1 that t-roots system is of
type A1(5), that is, ∆+t = { ξ, 2ξ, 3ξ, 4ξ, 5ξ}. There is only one
case, G = E8 and K = SU(4) × SU(5) × U(1) is the case.
We call the cases of r = b2(G/K) = 2 that t-roots system is of
“extended” type B2, that is,
type A : ∆+t = { ξ1, ξ2, 2ξ2, ξ1 + ξ2, 2ξ1 + ξ2 }, or
type B : ∆+t = { ξ1, ξ2, ξ1 + ξ2, 2ξ1 + ξ2, 2ξ1 + 2ξ2 }.
There are 4 cases for each. We can show there is an isometry
between homogeneous spaces of type A and of type B.
Einstein metrics for the case of r = b2(G/K) = 1 is studied by
I. Chrysikos and Y. S. [11], and for the case of r = b2(G/K) = 2
is studied by A. Arvanitoyeorgos, I. Chrysikos and Y. S. [10]
recently.
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The case q = 6

For the case q = 6 we also see that either r = b2(G/K) = 1,
r = b2(G/K) = 2 or r = b2(G/K) = 3.
We call the case of r = b2(G/K) = 1 that t-roots system is of
type A1(6), that is, ∆+t = { ξ, 2ξ, 3ξ, 4ξ, 5ξ, 6ξ}. There is only
one case, G = E8 and K = SU(5) × SU(3) × SU(2) × U(1).
For r = b2(G/K) = 2, we have 4 cases:
∆+t = { ξ1, ξ2, 2ξ1, ξ1 + ξ2, 2ξ1 + ξ2, 2ξ1 + 2ξ2}, of type BC2,
∆+t = { ξ1, ξ2, ξ1 + ξ2, 2ξ1 + ξ2, 3ξ1 + ξ2, 3ξ1 + 2ξ2 }, of type G2,
∆+t = { ξ1, ξ2, ξ1 + ξ2, 2ξ1 + ξ2, 2ξ1 + 2ξ2, 3ξ1 + 2ξ2 },
∆+t = { ξ1, ξ2, ξ1 + ξ2, 2ξ2, ξ1 + 2ξ2, ξ1 + 3ξ2 },
∆+t = { ξ1, ξ2, ξ1 + ξ2, 2ξ1 + ξ2, ξ1 + 2ξ2, 2ξ1 + 2ξ2 }.
For r = b2(G/K) = 3, we have only one case of t-roots system
with q = 6, that is, of type A3.
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The case of G2/T

We first consider the case of full flag manifold G2/T . Note that
the highest root α̃ of gC2 is given by α̃ = 3α1 + 2α2 and G2/T has
a t-roots system of type G2.
Note that G2/T has only one complex strucure and thus, up to
isometry, there exist only one Kähler-Einstein metric. There
exits exactly two non-Kähler Einstein metrics up to isometry.
These are obtained from solutions of polynomial of degree 14.
(A. Arvanitoyeorgos, I. Chrysikos and Y. S. [9] )
There is four other generalized flag manifolds ( all exceptional
Lie groups, F4, E6, E7, E8 ) with t-roots of type G2. There are
only one Kähler-Einstein metric and 6 non-Kähler Einstein
metrics up to isometry. Recently M. Graev [12] has studied
also these cases and he obtained one non-Kähler Einstein
metric by a different method.
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The case of t-roots of type G2

Flag manifold Painted Dynkin diagram
number of

Einstein metrics
up to isometry

F4/(U(3)×U(1)) !α1

2
!α2

3
> "α3

4
"α4

2 　
Kähler 1

non-Kähler 6

E6/(U(3)×U(3)) "α1

1
"α2

2
!α3

3
"α4

2
"α5

1!
α62

Kähler 1
non-Kähler 6

E7/(U(6)× U(1) "α1

1
"α2

2
"α3

3
"α4

4
!α5

3
!α6

2"
α72

Kähler 1
non-Kähler 6

E8/(E6×U(1)×U(1)) !α1

2
!α2

3
"α3

4
"α4

5
"α5

6
"α6

4
"α7

2"
α83 　

Kähler 1
non-Kähler 6
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The case of flag manifold S U(4)/T and
S U(10)/S (U(1) × U(2) × U(3) × U(4))

Note that for these cases q = 6 and the system of t-roots is of
type A3.
For the case S U(4)/T , there is only one complex strucure and
thus, up to isometry, there exist only one Kähler-Einstein
metric. There exits 3 non-Kähler Einstein metrics up to
isometry, one of them is normal. (cf. Sakane [16] Lobachevskii
J. Math. 4 (1999) )
For the case S U(10)/S (U(1) × U(2) × U(3) × U(4)), There are
12 complex strucure and thus, up to isometry, there exist 12
Kähler-Einstein metrics. There exits 12 non-Kähler Einstein
metrics up to isometry. These are obtained from solutions of
polynomial of degree 68.
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Kähler-Einstein metric of a generalized flag manifold

Put Zt =
{
Λ ∈ t

∣∣∣∣
2(Λ, α)
(α, α)

∈ Z for each α ∈ ∆
}

.

Then Zt is a lattice of t generated by {Λi1 , · · · ,Λir}.
Put Z+t =

{
λ ∈ Zt

∣∣∣ (λ,α) > 0 for α ∈ Π − Π0

}
. Then we have

Z+t =
∑

α∈Π−Π0

Z+Λα. We define an element δm ∈ h0 =
√
−1h by

δm =
1
2

∑

α∈∆+m

α.

Let c1(M) be the first Chern class of M. Then 2δm ∈ Z+t
corresponds to c1(M).
Note that 2nd Betti number b2(M) of M is given by

b2(M) = dim t = the cardinality of Π − Π0 = r.
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Kähler-Einstein metric of a generalized flag manifold

Put kα =
2(2δm,α)

(α,α)
for α ∈ Π − Π0. Then

2δm =
∑

α∈Π−Π0

kαΛα = kαi1
Λαi1
+ · · · + kαir

Λαir

and each kαis
is a positive integer.

The G-invariant metric g2δm on G/K corresponding to 2δm,
which is a Kähler-Einstein metric, is given by

g2δm =
∑

ξ∈∆+t

(2δm, ξ)B|(mξ+m−ξ)τ =
∑

j1,··· , jr




r∑

"=1

ki" j"
(αi" ,αi")

2


 B|m( j1,··· , jr).
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Riemannian submersion

Let G be a compact semi-simple Lie group and K, L two closed
subgroups of G with K ⊂ L. Then we have a natural fibration
π : G/K → G/L with fiber L/K.
With respect to B (- Killing form of g),
p = l⊥ in g: the orthogonal complement of l in g,
n = k⊥ in l : the orthogonal complement of k in l.
Then g = l ⊕ p = k ⊕ n ⊕ p.
Denote
a G-invariant metric ǧ on G/L defined by an AdG(L)-invariant
scalar product on p,
an L-invariant metric ĝ on L/K defined by an AdL(K)-invariant
scalar product on n and
a G-invariant metric g on G/K defined by the orthogonal direct
sum for these scalar products on n ⊕ p.
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Riemannian submersion

.

Theorem

.

.

.

. ..

.

.

The map π is a Riemannian submersion from (G/K, g) to (G/L, ǧ)
with totally geodesic fibers isometric to (L/K, ĝ).

Note that n is the vertical subspace of the submersion and p is the
horizontal subspace.
For a Riemannian submersion, O’Neill [14] has introduced two
tensors A and T . In our case we have T = 0, because the fibers are
totally geodesic. We also have

AXY =
1
2

[X, Y]n for X,Y ∈ p.

Yusuke Sakane (Kawanishi) Recent progress of homogeneous Einstein metrics on generalized flag manifoldsMarch 6, 2013 36 / 44



Riemannian submersion

Let {Xi} be an orthonormal basis of p and {U j} an orthonormal basis
of n. We put for X, Y ∈ p, g(AX, AY) =

∑

i

g(AXXi, AY Xi). Then we

have
g(AX, AY) =

1
4

∑

i

ĝ([X, Xi]n, [Y, Xi]n).

Let r, ř be the Ricci tensor of the metric g, ǧ respectively. Then we
have

r(X,Y) = ř(X,Y) − 2g(AX, AY) for X,Y ∈ p.
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Riemannian submersion

p = p1 ⊕ · · · ⊕ p" : a decomposition of p into irreducible
Ad(L)-modules
n = n1 ⊕ · · · ⊕ ns : a decomposition of n into irreducible
Ad(K)-modules
Note that each irreducible component p j ( as Ad(L)-module )
can be decomposed into irreducible Ad(K)-modules.
We consider a G-invariant metric on G/K defined by a
Riemannian submersion π : (G/K, g)→ (G/L, ǧ) of the form

g = y1B|p1 + · · · + y"B|p" + z1B|n1 + · · · + zsB|ns (5)

for positive real numbers y1, · · · , y", z1, · · · , zs.
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Riemannian submersion

We decompose each irreducible component p j into irreducible
Ad(K)-modules:

p j = m j,1 ⊕ · · · ⊕m j, k j .

As before we assume that Ad(K)-modules m j,t

( j = 1, · · · , ", t = 1, · · · , k j) are mutually non-equivalent. Note that
the metric of the form (5) can be written as

g = y1

k1∑

t=1

B|m1,t + · · · + y"
k"∑

t=1

B|m",t + z1B|n1 + · · · + zsB|ns (6)

and this is a special case of the metric of the form (1).
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Riemannian submersion

.

Lemma

.

.

.

. ..

.

.

Let dj,t = dimm j,t. The components r( j, t) ( j = 1, · · · , ", t = 1, · · · , k j)
of Ricci tensor r for the metric (6) on G/K are given by

r( j, t) = ř j −
1

2dj, t

∑

i

∑

j′, t′

zi

y jy j′

[
i

( j, t) ( j′, t′)

]
, (7)

where ř j are the components of Ricci tensor ř for the metric ǧ on
G/L.
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