Recent progress of homogeneous Einstein metrics on generalized flag manifolds

Yusuke	Sakane

Kawanishi

March 6, 2013

Introduction

(M,g): Riemannian manifold

• (M, g) is called Einstein if the Ricci tensor r(g) of the metirc g satisfies r(g) = cg for some constant c.

We consider *G*-invariant Einstein metrics on a homogeneous space G/K.

- General Problem: Find G-invariant Einstein metrics on a homogeneous space G/K and classify them if it is not unique.
- Einstein homogeneous spaces can be diveded into three cases depending on Einstein constant c. Here we consider the case c > 0.

outline

Recent progress of homogeneous Einstein metri

Homogeneous Einstein metrics on generalized flag manifolds

based on joint works with A. Arvanitoyeorgos and I. Chrysikos

introduction

Yusuke Sakane (Kawanishi)

- generalized flag manifolds
- Ricci tensor of a compact homogeneous space
- structures of generalized flag manifolds
- t-roots of generalized flag manifolds
- decomposition associated to generalized flag manifolds (t-roots and decompositions)
- invariant Einstein metrics on a generalized flag manifold

March 6, 2013 2 / 44

March 6, 2013 1 / 44

Yusuke Sakane (Kawanishi)

Yusuke Sakane (Kawanishi)

March 6, 2013 3 / 44

Introduction

Recent progress of homogeneous Einstein metr

- 1. Examples of the case c > 0(G/K is compact and $\pi_1(G/K)$ is finite).
- Sphere $(S^n = SO(n + 1)/SO(n), g_0)$, Complex Projective space $(\mathbb{C}P^n = SU(n+1)/(S(U(1) \times U(n))))$, Symmetric spaces of compact type, isotropy irreducible spaces (in these cases G-invariant Einstein metrics is unique)
- Compact semi-simple Lie groups (bi-invariant metric (negative of Killing form))
- Generalized flag manifolds (Kähler C-spaces) (if we fix a complex structure, it admits a unique Kähler-Einstein metric, but complex structure may not be unique)

Introduction

• (Wang-Ziller [17] 1986) There exist compact homogeneous space *G*/*K* with no *G*-invariant Einstein metrics.

Example. Let G = SU(4), L = Sp(2), K = SU(2) (SU(2) is a maxmal subgroup of Sp(2)). Then G/K has no (G-)invariant Einstein metrics. Note that dim G/K = 12.

 (Böhm-Kerr (2006)) For a simply connected compact homogeneous space *G*/*K* of dim *G*/*K* ≤ 11, there exists at least one *G*-invariant Einstein metric on *G*/*K*.

Introduction

- Open problem : How many left-invariant Einstein metrics are there on compact simple Lie groups G (dim G ≥ 4)? (finite or infinite?)
- (Wang-Ziller (1990))

Yusuke Sakane (Kawanishi)

The principal S^1 -bundles over $\mathbb{C}P^1 \times \mathbb{C}P^1$ are all diffeomorphic to $S^2 \times S^3$, but as homogeneous spaces $(SU(2) \times SU(2))/S^1$ they are quite different. There are infinitely many ways to embed the group S^1 in $SU(2) \times SU(2)$. On $S^2 \times S^3$ the moduli space of Einstein metrics has infinitely many components.

Introduction

Recent progress of homogeneous Einstein metri

- Problem: Find all *G*-invariant Einstein metrics on a compact homogeneous space G/K.
- (Nikonorov, Rodionov (2003)) For a simply connected compact homogeneous space *G/K* of dim *G/K* ≤ 7, all *G*-invariant Einstein metrics has been determined on *G/K*, except for *SU*(2) × *SU*(2).
- For $SU(2) \times SU(2)$, there exist at least two left-invariant Einstein metrics. The first is the standard metric, and the other was found by Jensen.
- In 2003 Nikonorov and Rodionov computed the scalar curvature of left-invariant metrics on SU(2) × SU(2), but these depend on 14 parameters and it is difficult to find critical points (Einstein metrics).

Generalized flag manifolds

Recent progress of homogeneous Einstein metr

- A generalized flag manifold M is an adjoint orbit of a compact connected semi-simple Lie group G, and is a homogeneous space of the form M = G/C(S), where C(S) is the centralizer of a torus S in G.
- Generalized flag manifolds exhaust compact simply connected homogeneous Kähler manifolds.
- A generalized flag manifold admits a finite number of *G*-invariant complex structures. For each *G*-invariant complex structure there is a compatible Kähler-Einstein metric.
- Generalized flag manifolds can be classified by use of painted Dynkin diagrams.
- Generalized flag manifolds are also referred to as Kähler C-spaces.

Yusuke Sakane (Kawanishi)

March 6, 2013 5 / 44

March 6, 2013 7 / 44

Examples of Generalized flag manifolds

- Set G = SU(n + 1), K = S(U(n) × U(1)). Then G/K is a complex projective space CPⁿ.
- Set G = SU(n + m), $K = S(U(n) \times U(m))$. Then G/K is a Grassmann manifold $G_{m+n,n}(\mathbb{C})$.
- Set G = SU(n + m + ℓ), K = S(U(n) × U(m) × U(ℓ)). Then G/K is a generalized flag manifold.
- Set G = Sp(n + 1), $K = Sp(n) \times U(1)$. Then G/K is a complex projective space $\mathbb{C}P^{2n-1}$.

Ricci tensor of a compact homogeneous space G/K

- Note that *G*-invariant symmetric covariant 2-tensors on *G/K* are the same form as the metrics.
 In particular, the Ricci tensor *r* of a *G*-invariant Riemannian metric on *G/K* is of the same form as (1).
- Let {e_α} be a *B*-orthonormal basis adapted to the decomposition of m, i.e., e_α ∈ m_i for some *i*, and α < β if *i* < *j* (with e_α ∈ m_i and e_β ∈ m_j).
- We put $A_{\alpha\beta}^{\gamma} = B([e_{\alpha}, e_{\beta}], e_{\gamma})$, so that $[e_{\alpha}, e_{\beta}] = \sum_{\gamma} A_{\alpha\beta}^{\gamma} e_{\gamma}$, and
 - set $\begin{bmatrix} k \\ ij \end{bmatrix} = \sum (A_{\alpha\beta}^{\gamma})^2$, where the sum is taken over all indices α, β, γ with $e_{\alpha} \in \mathfrak{m}_i, \ e_{\beta} \in \mathfrak{m}_j, \ e_{\gamma} \in \mathfrak{m}_k$.
- Notations $\begin{bmatrix} k \\ i \\ i \end{bmatrix}$ are introduced by Wang and Ziller [17].

Ricci tensor of a compact homogeneous space G/K

Recent progress of homogeneous Einstein metr

• Let *G* be a compact semi-simple Lie group and *K* a connected closed subgroup of *G*.

Let \mathfrak{m} be the orthogonal complement of \mathfrak{k} in \mathfrak{g} with respect to $B (= - \text{Killing form of } \mathfrak{g})$. Then we have $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}, [\mathfrak{k}, \mathfrak{m}] \subset \mathfrak{m}$ and a decomposition of \mathfrak{m} into irreducible Ad(K)-modules:

$$\mathfrak{m} = \mathfrak{m}_1 \oplus \cdots \oplus \mathfrak{m}_q.$$

 We assume that Ad(K)-modules m_j (j = 1, · · · , q) are mutually non-equivalent.

Then a *G*-invariant metric on G/K can be written as

$$<, >= x_1 B|_{\mathfrak{m}_1} + \dots + x_q B|_{\mathfrak{m}_q},$$
 (1)

for positive real numbers x_1, \dots, x_q .

Yusuke Sakane (Kawanishi)

March 6, 2013 10 / 44

March 6, 2013 9 / 44

Ricci tensor of a compact homogeneous space G/K

Recent progress of homogeneous Einstein metr

• Then, the non-negative number $\begin{bmatrix} k \\ ij \end{bmatrix}$ is independent of the *B*-orthonormal bases chosen for $\mathfrak{m}_i, \mathfrak{m}_j, \mathfrak{m}_k$, and

 $\begin{bmatrix} k\\ ij \end{bmatrix} = \begin{bmatrix} k\\ ji \end{bmatrix} = \begin{bmatrix} j\\ ki \end{bmatrix}.$ (2)

• Let $d_k = \dim \mathfrak{m}_k$. Then we have (cf. Park - S. [15])

Lemma

Yusuke Sakane (Kawanishi)

Yusuke Sakane (Kawanishi)

The components r_1, \dots, r_q of Ricci tensor r of the metric $<, >= x_1 B|_{\mathfrak{m}_1} + \dots + x_q B|_{\mathfrak{m}_q}$ on G/K are given by

$$r_{k} = \frac{1}{2x_{k}} + \frac{1}{4d_{k}} \sum_{j,i} \frac{x_{k}}{x_{j}x_{i}} {k \choose ji} - \frac{1}{2d_{k}} \sum_{j,i} \frac{x_{j}}{x_{k}x_{i}} {j \choose ki} \quad (k = 1, \dots, q) \quad (3)$$

where the sum is taken over $i, j = 1, \cdots, q$.

Recent progress of homogeneous Einstein metri

March 6, 2013 12 / 44

March 6, 2013

Structures of generalized flag manifolds

- Let G be a compact semi-simple Lie group,
 g the Lie algebra of G and h a maximal abelian subalgebra of g.
 We denote by g^C and h^C the complexification of g and h respectively.
- We identify an element of the root system Δ of g^C relative to the Cartan subalgebra b^C with an element of b₀ = √-1b by the duality defined by the Killing form of g^C. Let Π = {α₁, ··· , α_l} be a fundamental system of Δ and {Λ₁, ··· , Λ_l} the fundamental weights of g^C corresponding to Π, that is

$$\frac{2(\Lambda_i,\alpha_j)}{(\alpha_j,\alpha_j)} = \delta_{ij} \qquad (1 \le i,j \le \ell).$$

• Let Π_0 be a subset of Π and $\Pi - \Pi_0 = \{\alpha_{i_1}, \cdots, \alpha_{i_r}\}$ $(1 \le \alpha_{i_1} < \cdots < \alpha_{i_r} \le \ell)$. We put $[\Pi_0] = \Delta \cap \{\Pi_0\}_{\mathbb{Z}}$, where $\{\Pi_0\}_{\mathbb{Z}}$ denotes the subspace of \mathfrak{h}_0 generated by Π_0 .

Structures of generalized flag manifolds

Recent progress of homogeneous Einstein metri

• Consider the root space decomposition of $\mathfrak{g}^{\mathbb{C}}$ relative to $\mathfrak{h}^{\mathbb{C}}$:

$$\mathfrak{g}^{\mathbb{C}} = \mathfrak{h}^{\mathbb{C}} + \sum_{\alpha \in \Delta} \mathfrak{g}^{\mathbb{C}}_{\alpha}.$$

For a subset Π_0 of $\Pi,$ we define a parabolic subalgebra $\mathfrak u$ of $\mathfrak g^{\mathbb C}$ by

$$\mathfrak{u} = \mathfrak{h}^{\mathbb{C}} + \sum_{\alpha \in [\Pi_0] \cup \Delta^+} \mathfrak{g}_{\alpha}^{\mathbb{C}},$$

where Δ^+ is the set of all positive roots relative to Π .

• Note that the nilradical n of u is given by

$$\mathfrak{n} = \sum_{\alpha \in \Delta^+ - [\Pi_0]} \mathfrak{g}_\alpha^{\mathbb{C}}$$

We put $\Delta_{\mathfrak{m}}^{+} = \Delta^{+} - [\Pi_{0}].$

Yusuke Sakane (Kawanishi)

March 6, 2013

Structures of generalized flag manifolds

Let G^C be a simply connected complex semi-simple Lie group whose Lie algebra is g^C and U the parabolic subgroup of G^C generated by u. Then the complex homogeneous manifold G^C/U is compact simply connected and G acts transitively on G^C/U. Note also that K = G ∩ U is a connected closed subgroup of G, G^C/U = G/K as C[∞]-manifolds, and G^C/U admits a G-invariant Kähler metric.

Let \mathfrak{k} be the Lie algebra of K and $\mathfrak{k}^{\mathbb{C}}$ the complexification of \mathfrak{k} . Then we have a direct decomposition

$$\mathfrak{u}=\mathfrak{k}^{\mathbb{C}}\oplus\mathfrak{n},\qquad \mathfrak{k}^{\mathbb{C}}=\mathfrak{h}^{\mathbb{C}}+\sum_{\alpha\in[\Pi_0]}\mathfrak{g}_{\alpha}^{\mathbb{C}}.$$

• We put $t = \{H \in \mathfrak{h}_0 \mid (H, \Pi_0) = (0)\}$. Then $\{\Lambda_{i_1}, \dots, \Lambda_{i_r}\}$ is a basis of t. Put $\mathfrak{s} = \sqrt{-1}\mathfrak{t}$. Then the Lie algebra \mathfrak{t} is given by $\mathfrak{t} = \mathfrak{z}(\mathfrak{s})$ (the Lie algebra of centralizer of a torus *S* in *G*).

Recent progress of homogeneous Einstein metri

t-roots of generalized flag manifolds

• We consider the restriction map

Yusuke Sakane (Kawanishi)

$$\kappa: \mathfrak{h}_0^* \to \mathfrak{t}^* \quad \alpha \mapsto \alpha|_\mathfrak{t}$$

and set $\Delta_t = \kappa(\Delta)$. The elements of Δ_t are called t-roots. (The notion of t-roots is introduced by Alekseevky and Perelomov [2] around 1985 to study invariant Kähler-Einstein metrics of generalized flag manifolds.)

There exists a 1-1 correspondence between t-roots *ξ* and irreducible submodules m_ξ of the Ad_G(K)-module m^C that is given by

$$\Delta_{\mathfrak{t}} \ni \boldsymbol{\xi} \mapsto \mathfrak{m}_{\boldsymbol{\xi}} = \sum_{\boldsymbol{\kappa}(\alpha) = \boldsymbol{\xi}} \mathfrak{g}_{\alpha}^{\mathbb{C}}.$$

• Thus we have a decomposition of the $Ad_G(K)$ -module $\mathfrak{m}^{\mathbb{C}}$:

$$\mathfrak{m}^{\mathbb{C}} = \sum_{\xi \in \Delta_{\mathfrak{t}}} \mathfrak{m}_{\xi}.$$

March 6, 2013 15 / 44

- Denote by Δ_{+}^{+} the set of all positive t-roots, that is, the restricton of the system Δ^+ . Then $\mathfrak{n} = \sum_{\xi = \pm \pm} \mathfrak{m}_{\xi}$.
- Denote by τ the complex conjugation of $g^{\mathbb{C}}$ with respect to g (note that τ interchanges $\mathfrak{g}^{\mathbb{C}}_{\alpha}$ and $\mathfrak{g}^{\mathbb{C}}_{-\alpha}$) and by \mathfrak{v}^{τ} the set of fixed points of τ in a (complex) vector subspace v of $g^{\mathbb{C}}$. Thus we have a decomposition of $Ad_G(K)$ -module m into irreducible submodules:

$$\mathfrak{m} = \sum_{\xi \in \Delta_t^+} \left(\mathfrak{m}_{\xi} + \mathfrak{m}_{-\xi} \right)^{\tau}.$$

Yusuke Sakane (Kawanishi)

Decomposition associated to generalized flag manifolds

Recent progress of homogeneous Einstein metr

• For integers j_1, \dots, j_r with $(j_1, \dots, j_r) \neq (0, \dots, 0)$, we put $\Delta(j_1,\cdots,j_r) = \left\{ \sum_{j=1}^{\ell} m_j \alpha_j \in \Delta^+ \mid m_{i_1} = j_1,\cdots,m_{i_r} = j_r \right\}.$

There exists a natural 1-1 correspondence between Δ_{t}^{+} and the set { $\Delta(j_1, \cdots, j_r) \neq \emptyset$ }

• For a generalized flag manifold G/K, we have a decomposition of m into mutually non-equivalent irreducible $Ad_G(H)$ -modules :

$$\mathfrak{m} = \sum_{\xi \in \Delta_{\mathfrak{l}}^+} \left(\mathfrak{m}_{\xi} + \mathfrak{m}_{-\xi} \right)^{\tau} = \sum_{j_1, \cdots, j_r} \mathfrak{m}(j_1, \cdots, j_r).$$

Thus a *G*-invariant metric g on G/K can be written as

$$g = \sum_{\xi \in \Delta_t^+} x_{\xi} B|_{\left(\mathfrak{m}_{\xi} + \mathfrak{m}_{-\xi}\right)^{\tau}} = \sum_{j_1, \cdots, j_r} x_{j_1 \cdots j_r} B|_{\mathfrak{m}(j_1, \cdots, j_r)}$$
(4)

for positive real numbers x_{ξ} , $x_{i_1 \cdots i_r}$.

March 6, 2013

17/44

- From now on we assume that the Lie group G is simple. We denote by *q* the number of elements of Δ_{t}^{+} for a generalized flag manifold G/K, that is, the number of irreducible components of $Ad_G(K)$ -module m.
- If q = 1, then $\Delta_t^+ = \{\xi\}$ and G/K is an irreducible Hermitian symmetric space with the symmetric pair (g, f).
- If q = 2, then we see that $r = b_2(G/K) = 1$ and $\mathfrak{m} = \mathfrak{m}(1) \oplus \mathfrak{m}(2)$, that is, $\Delta_{\mathfrak{t}}^+ = \{\xi, 2\xi\}$. We say this case that t-roots system is of type $A_1(2)$.
- Example. $\mathbb{C}P^{2n-1} = Sp(n)/(Sp(n-1) \times U(1))$

$$\overset{\alpha_1}{\underbrace{\circ}} \begin{array}{c} \alpha_2 \\ \bullet \\ 2 \end{array} \begin{array}{c} \alpha_p \\ \bullet \\ 2 \end{array} \begin{array}{c} \alpha_{p-1} \\ \bullet \\ 2 \end{array} \begin{array}{c} \alpha_{n-1} \\ \bullet \\ 2 \end{array} \begin{array}{c} \alpha_n \\ \bullet \\ 2 \end{array}$$

Yusuke Sakane (Kawanishi)

Ricci tensor for case q = 2

Recent progress of homogeneous Einstein metr

• Note that only
$$\begin{bmatrix} 2\\ 11 \end{bmatrix}$$
 is non-zero.
Put $d_1 = \dim \mathfrak{m}(1)$ and $d_2 = \dim \mathfrak{m}(2)$.
For a *G*-invariant metric < , >= $x_1 \cdot B|_{\mathfrak{m}(1)} + x_2 \cdot B|_{\mathfrak{m}(2)}$,
components r_1, r_2 of Ricci tensor *r* of the metric < , > are
given by

$$\begin{cases} r_1 = \frac{1}{2x_1} - \frac{x_2}{2d_1x_1^2} \begin{bmatrix} 2\\11 \end{bmatrix} \\ r_2 = \frac{1}{2x_2} - \frac{1}{2d_2x_2} \begin{bmatrix} 1\\21 \end{bmatrix} + \frac{x_2}{4d_2x_1^2} \begin{bmatrix} 2\\11 \end{bmatrix}. \end{cases}$$

Note that K\u00e4hler-Einstein metric is given by $\langle , \rangle = 1 \cdot B|_{\mathfrak{m}(1)} + 2 \cdot B|_{\mathfrak{m}(2)}$ and thus we can determine the value $\begin{bmatrix} 2\\11 \end{bmatrix}$ and find 2 Einstein metrics. Yusuke Sakane (Kawanishi) Recent progress of homogeneous Einstein metr

March 6, 2013 20 / 44

March 6, 2013 19 / 44

The case q = 3

- If q = 3, then we see that either $r = b_2(G/K) = 1$ or $r = b_2(G/K) = 2$.
- Einstein metrics of case *q* = 3 was studied by Masahiro Kimura [13] and A. Arvanitoyeorgos [3] independently (around 1990).
- We say the case of $r = b_2(G/K) = 1$ and q = 3 that t-roots system is of type $A_1(3)$, that is, $\Delta_t^+ = \{\xi, 2\xi, 3\xi\}$. There are 7 cases and the Lie group *G* is always exceptional, that is, E_6 , E_7 , E_8 , F_4 and G_2 (for E_7 , E_8 , there are 2 cases.)
- We say the case of r = b₂(G/K) = 2 and q = 3 that t-roots system is of type A₂, that is, Δ⁺_t = {ξ₁, ξ₂, ξ₁ + ξ₂}. There are 3 cases.

Recent progress of homogeneous Einstein metri

The case a = 3 and $b_2(G/K) =$

$\frac{1}{2} = \frac{1}{2} \operatorname{dia} \frac{1}{2} 1$			
E_6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E_8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
E_7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F_4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
<i>E</i> ₇	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>G</i> ₂	$\overset{\alpha_1 \alpha_2}{\underset{2}{\overset{\mathbf{\sigma}}{\Rightarrow}} 3}$
E_8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Kähler Einstein 1 non-Kähler Einstein 2	
•	The system of equations r_1	$= r_2 =$	r_3 reduces to a polynomia

The case q = 3 and $b_2(G/K) = 2$

Flag manifold	Painted Dynkin diagram	number of Einstein metrics up to isometry
$SU(n)/S(U(\ell) \times U(m) \times U(k))(n = \ell + m + k)$	$ \begin{array}{c} \alpha_1 & \alpha_\ell & \alpha_m & \alpha_n \\ \circ & \cdots & \bullet & \circ \\ 1 & 1 & 1 & 1 \end{array} $	Kähler 3 ^{*)} non-Kähler 1
$SO(2n)/(U(n-1)\times U(1))$	$ \begin{array}{c} \alpha_1 & \alpha_2 & \alpha_3 \\ \bullet & \bullet & \bullet \\ 1 & 2 & 2 \end{array} \cdots \begin{array}{c} \alpha_{n-2} & \bullet & \alpha_{n-1} \\ \bullet & \bullet & \bullet \\ 2 & \bullet & \alpha_n \end{array} $	Kähler 2 non-Kähler 1
$E_6/(SO(8) \times U(1) \times U(1))$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Kähler 1 non-Kähler 1 (normal metric)

*) If ℓ , *m* and *k* are mutually different, there exist 3 different complex strucutres.

Recent progress of homogeneous Einstein metr

The case q = 4 and $b_2(G/K) = 1$

- The case q = 4 has started to study by A. Arvanitoyeorgos and I. Chrysikos around 2009 [4].
 We see that either r = b₂(G/K) = 1 or r = b₂(G/K) = 2 also occur in this case and we divide into 2 cases.
- We call the case of $r = b_2(G/K) = 1$ that t-roots system is of type $A_1(4)$, that is, $\Delta_t^+ = \{\xi, 2\xi, 3\xi, 4\xi\}$. There are 4 cases and *G* is always exceptional Lie group.
- We call the case of r = b₂(G/K) = 2 that t-roots system is of type B₂, that is, Δ⁺_t = {ξ₁, ξ₂, ξ₁ + ξ₂, ξ₁ + 2ξ₂}. There are 6 cases.

equation of degree 5.

Yusuke Sakane (Kawanishi)

March 6, 2013 21 / 44

Yusuke Sakane (Kawanishi)

March 6, 2013 23 / 44

Flag manifold	Painted Dynkin diagram	number of Einstein metrics up to isometry
$F_4/ (SU(3) \times SU(2) \times U(1))$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Kähler 1 non-Kähler 2
$E_7/(SU(4)\times SU(3))$ $\times SU(2)\times U(1))$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Kähler 1 non-Kähler 2
$\frac{E_8}{(SO(10)\times SU(3)\times U(1))}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Kähler 1 non-Kähler 2
$\frac{E_8}{(SU(7)\times SU(2)\times U(1))}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Kähler 1 non-Kähler 4

The case q = 4 and $b_2(G/K) = 1$

The case q = 4 and $b_2(G/K) = 2$ (B_2)

Flag manifold	Painted Dynkin diagram	number of Einstein metrics up to isometry
$SO(2n+1)/(SO(2n-3)\times U(1)\times U(1))$	$ \overbrace{1}^{\alpha_1} \overbrace{2}^{\alpha_2} \overbrace{2}^{\alpha_3} \cdots \overbrace{2}^{\alpha_{n-1}} \overbrace{2}^{\alpha_n} $	Kähler 1 non-Kähler 3
$\frac{SO(2n)/}{(SO(2n-4)\times U(1)\times U(1))}$	$ \begin{array}{c} \alpha_1 & \alpha_2 & \alpha_3 \\ \bullet & 1 & 2 & 2 \end{array} \cdots \begin{array}{c} \alpha_{n-2} & \bullet & \alpha_{n-1} \\ \bullet & 2 & \circ & \alpha_n \\ 1 & 1 & 2 & 2 \end{array} $	Kähler 1 non-Kähler 3
$E_6/(SU(5)\times U(1)\times U(1))$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Kähler 2 non-Kähler 4
$E_7/(SO(10)) \times U(1) \times U(1))$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Kähler 2 non-Kähler 4
Yusuke Sakane (Kawanishi) Recent p	rogress of homogeneous Einstein metri	March 6, 2013 26 / 44

The case q = 4 B_2

$SO(2n)/(U(p) \times U(n-p))$	$ \begin{array}{c} \alpha_1 \ \alpha_2 \\ \circ \\ $	Kähler 2 $(n \neq 2p)$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	non-Kähler 2
$Sp(n)/(U(p) \times U(n-p))$	$\begin{array}{cccc} \alpha_1 & \alpha_2 & \alpha_p & \alpha_{n-1} & \alpha_n \\ \circ & & \circ & \bullet \\ 2 & 2 & 2 & & \circ \\ & & (1 \le p \le n-1) & & \end{array}$	Kähler 2 $(n \neq 2p)$ non-Kähler 1

Einstein metrics for the case of r = b₂(G/K) = 1 has been studied by A. Arvanitoyeorgos and I. Chrysikos [4]. Einstein metrics for the case of r = b₂(G/K) = 2, that is, t-roots system is of type B₂, has been studied by A. Arvanitoyeorgos and I. Chrysikos [4] and A. Arvanitoyeorgos, I. Chrysikos and Y. S. [5], [6], [7].

The case q = 5

Recent progress of homogeneous Einstein metri

- For the case q = 5 we also see that either $r = b_2(G/K) = 1$ or $r = b_2(G/K) = 2$.
- We call the case of $r = b_2(G/K) = 1$ that t-roots system is of type $A_1(5)$, that is, $\Delta_t^+ = \{\xi, 2\xi, 3\xi, 4\xi, 5\xi\}$. There is only one case, $G = E_8$ and $K = SU(4) \times SU(5) \times U(1)$ is the case.
- We call the cases of r = b₂(G/K) = 2 that t-roots system is of "extended" type B₂, that is,
 - type A : $\Delta_t^+ = \{\xi_1, \xi_2, 2\xi_2, \xi_1 + \xi_2, 2\xi_1 + \xi_2\}$, or
 - type B : $\Delta_{+}^{+} = \{\xi_1, \xi_2, \xi_1 + \xi_2, 2\xi_1 + \xi_2, 2\xi_1 + 2\xi_2\}.$
 - There are 4 cases for each. We can show there is an isometry between homogeneous spaces of type A and of type B.
- Einstein metrics for the case of $r = b_2(G/K) = 1$ is studied by I. Chrysikos and Y. S. [11], and for the case of $r = b_2(G/K) = 2$ is studied by A. Arvanitoyeorgos, I. Chrysikos and Y. S. [10] recently.

Yusuke Sakane (Kawanishi)

March 6, 2013 27 / 44

The case q = 6

- For the case q = 6 we also see that either r = b₂(G/K) = 1, r = b₂(G/K) = 2 or r = b₂(G/K) = 3.
- We call the case of $r = b_2(G/K) = 1$ that t-roots system is of type $A_1(6)$, that is, $\Delta_t^+ = \{\xi, 2\xi, 3\xi, 4\xi, 5\xi, 6\xi\}$. There is only one case, $G = E_8$ and $K = SU(5) \times SU(3) \times SU(2) \times U(1)$.
- For $r = b_2(G/K) = 2$, we have 4 cases: $\Delta_t^+ = \{\xi_1, \xi_2, 2\xi_1, \xi_1 + \xi_2, 2\xi_1 + \xi_2, 2\xi_1 + 2\xi_2\}$, of type BC_2 ,
 - $\Delta_{t}^{+} = \{\xi_{1}, \xi_{2}, \xi_{1} + \xi_{2}, 2\xi_{1} + \xi_{2}, 2\xi_{1} + \xi_{2}, 3\xi_{1} + 2\xi_{2}, 3\xi_{1} + 2\xi_{2}, \}, \text{ of type } G_{2}, \\ \Delta_{t}^{+} = \{\xi_{1}, \xi_{2}, \xi_{1} + \xi_{2}, 2\xi_{1} + \xi_{2}, 2\xi_{1} + 2\xi_{2}, 3\xi_{1} + 2\xi_{2}, \}, \\ \Delta_{t}^{+} = \{\xi_{1}, \xi_{2}, \xi_{1} + \xi_{2}, 2\xi_{2}, \xi_{1} + 2\xi_{2}, \xi_{2$
 - $\Delta_{t}^{+} = \{\xi_{1}, \xi_{2}, \xi_{1} + \xi_{2}, 2\xi_{1} + \xi_{2}, \xi_{1} + 2\xi_{2}, 2\xi_{1} + 2\xi_{2}\}.$
- For $r = b_2(G/K) = 3$, we have only one case of t-roots system with q = 6, that is, of type A_3 .

Recent progress of homogeneous Einstein metri

The case of G_2/T

- We first consider the case of full flag manifold G_2/T . Note that the highest root $\tilde{\alpha}$ of $\mathfrak{g}_2^{\mathbb{C}}$ is given by $\tilde{\alpha} = 3\alpha_1 + 2\alpha_2$ and G_2/T has a t-roots system of type G_2 .
- Note that G₂/T has only one complex strucure and thus, up to isometry, there exist only one Kähler-Einstein metric. There exits exactly two non-Kähler Einstein metrics up to isometry. These are obtained from solutions of polynomial of degree 14. (A. Arvanitoyeorgos, I. Chrysikos and Y. S. [9])
- There is four other generalized flag manifolds (all exceptional Lie groups, F₄, E₆, E₇, E₈) with t-roots of type G₂. There are only one Kähler-Einstein metric and 6 non-Kähler Einstein metrics up to isometry. Recently M. Graev [12] has studied also these cases and he obtained one non-Kähler Einstein metric by a different method.

The case of t-roots of type G_2

Flag manifold	Painted Dynkin diagram	number of Einstein metrics up to isometry
$F_4/(U(3)\times U(1))$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Kähler 1 non-Kähler 6
$E_6/(U(3)\times U(3))$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Kähler 1 non-Kähler 6
$E_7/(U(6)\times U(1))$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Kähler 1 non-Kähler 6
$E_8/(E_6 \times U(1) \times U(1))$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Kähler 1 non-Kähler 6

The case of flag manifold SU(4)/T and $SU(10)/S(U(1) \times U(2) \times U(3) \times U(4))$

Recent progress of homogeneous Einstein metr

- Note that for these cases q = 6 and the system of t-roots is of type A₃.
- For the case SU(4)/T, there is only one complex strucure and thus, up to isometry, there exist only one Kähler-Einstein metric. There exits 3 non-Kähler Einstein metrics up to isometry, one of them is normal. (cf. Sakane [16] Lobachevskii J. Math. 4 (1999))
- For the case $SU(10)/S(U(1) \times U(2) \times U(3) \times U(4))$, There are 12 complex strucure and thus, up to isometry, there exist 12 Kähler-Einstein metrics. There exits 12 non-Kähler Einstein metrics up to isometry. These are obtained from solutions of polynomial of degree 68.

Yusuke Sakane (Kawanishi)

March 6, 2013 29 / 44

Yusuke Sakane (Kawanishi)

March 6, 2013 31 / 44

Kähler-Einstein metric of a generalized flag manifold

- Put $Z_t = \left\{ \Lambda \in t \mid \frac{2(\Lambda, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z} \text{ for each } \alpha \in \Delta \right\}$. Then Z_t is a lattice of t generated by $\{\Lambda_{i_1}, \dots, \Lambda_{i_n}\}$.
- Put $Z_t^+ = \{\lambda \in Z_t \mid (\lambda, \alpha) > 0 \text{ for } \alpha \in \Pi \Pi_0\}$. Then we have $Z_t^+ = \sum_{\alpha \in \Pi \Pi_0} \mathbb{Z}^+ \Lambda_\alpha$. We define an element $\delta_{\mathfrak{m}} \in \mathfrak{h}_0 = \sqrt{-1}\mathfrak{h}$ by

$$\delta_{\mathfrak{m}} = \frac{1}{2} \sum_{\alpha \in \Delta_{\mathfrak{m}}^+} \alpha.$$

- Let $c_1(M)$ be the first Chern class of M. Then $2\delta_{\mathfrak{m}} \in Z_t^+$ corresponds to $c_1(M)$.
- Note that 2^{nd} Betti number $b_2(M)$ of M is given by

 $b_2(M) = \dim t =$ the cardinality of $\Pi - \Pi_0 = r$.

Yusuke Sakane (Kawanishi)

Kähler-Einstein metric of a generalized flag manifold

Recent progress of homogeneous Einstein metr

• Put
$$k_{\alpha} = \frac{2(2\delta_{\mathfrak{m}}, \alpha)}{(\alpha, \alpha)}$$
 for $\alpha \in \Pi - \Pi_0$. Then

$$2\delta_{\mathfrak{m}} = \sum_{\alpha \in \Pi - \Pi_0} k_{\alpha} \Lambda_{\alpha} = k_{\alpha_{i_1}} \Lambda_{\alpha_{i_1}} + \dots + k_{\alpha_{i_r}} \Lambda_{\alpha_{i_r}}$$

and each $k_{\alpha_{i_s}}$ is a positive integer.

• The *G*-invariant metric $g_{2\delta_m}$ on G/K corresponding to $2\delta_m$, which is a Kähler-Einstein metric, is given by

$$g_{2\delta_{\mathfrak{m}}} = \sum_{\xi \in \Delta_{\mathfrak{t}}^+} (2\delta_{\mathfrak{m}}, \xi) B|_{\left(\mathfrak{m}_{\xi} + \mathfrak{m}_{-\xi}\right)^r} = \sum_{j_1, \cdots, j_r} \left(\sum_{\ell=1}^r k_{i_\ell} j_\ell \frac{(\alpha_{i_\ell}, \alpha_{i_\ell})}{2}\right) B|_{\mathfrak{m}(j_1, \cdots, j_r)}.$$

Riemannian submersion

- Let G be a compact semi-simple Lie group and K, L two closed subgroups of G with K ⊂ L. Then we have a natural fibration π : G/K → G/L with fiber L/K.
- With respect to B (- Killing form of g),
 p = l[⊥] in g: the orthogonal complement of l in g,
 n = t[⊥] in l: the orthogonal complement of t in l.
 Then g = l ⊕ p = t ⊕ n ⊕ p.
- Denote

Yusuke Sakane (Kawanishi)

a *G*-invariant metric \check{g} on G/L defined by an Ad_{*G*}(*L*)-invariant scalar product on \mathfrak{p} ,

an *L*-invariant metric \hat{g} on L/K defined by an Ad_{*L*}(*K*)-invariant scalar product on n and

a *G*-invariant metric *g* on G/K defined by the orthogonal direct sum for these scalar products on $n \oplus p$.

Riemannian submersion

Recent progress of homogeneous Einstein metr

Theorem

The map π is a Riemannian submersion from (G/K, g) to $(G/L, \check{g})$ with totally geodesic fibers isometric to $(L/K, \hat{g})$.

Note that π is the vertical subspace of the submersion and \mathfrak{p} is the horizontal subspace.

For a Riemannian submersion, O'Neill [14] has introduced two tensors A and T. In our case we have T = 0, because the fibers are totally geodesic. We also have

$$A_X Y = \frac{1}{2} [X, Y]_{\mathfrak{n}}$$
 for $X, Y \in \mathfrak{p}$.

March 6, 2013

33 / 44

March 6, 2013 35 / 44

Riemannian submersion

Let {*X_i*} be an orthonormal basis of \mathfrak{p} and {*U_j*} an orthonormal basis of \mathfrak{n} . We put for *X*, *Y* $\in \mathfrak{p}$, $g(A_X, A_Y) = \sum_i g(A_X X_i, A_Y X_i)$. Then we

have

$$g(A_X, A_Y) = \frac{1}{4} \sum_i \hat{g}([X, X_i]_n, [Y, X_i]_n).$$

Let r, \check{r} be the Ricci tensor of the metric g, \check{g} respectively. Then we have

$$r(X, Y) = \check{r}(X, Y) - 2g(A_X, A_Y)$$
 for $X, Y \in \mathfrak{p}$.

Riemannian submersion

We decompose each irreducible component p_j into irreducible Ad(*K*)-modules:

$$\mathfrak{p}_j = \mathfrak{m}_{j,1} \oplus \cdots \oplus \mathfrak{m}_{j,k_j}$$

As before we assume that Ad(K)-modules $\mathfrak{m}_{j,t}$ $(j = 1, \dots, \ell, t = 1, \dots, k_j)$ are mutually non-equivalent. Note that the metric of the form (5) can be written as

$$g = y_1 \sum_{t=1}^{k_1} B|_{\mathfrak{m}_{1,t}} + \dots + y_\ell \sum_{t=1}^{k_\ell} B|_{\mathfrak{m}_{\ell,t}} + z_1 B|_{\mathfrak{n}_1} + \dots + z_s B|_{\mathfrak{n}_s}$$
(6)

and this is a special case of the metric of the form (1).

Riemannian submersion

Recent progress of homogeneous Einstein metri

 p = p₁ ⊕ · · · ⊕ pℓ : a decomposition of p into irreducible Ad(L)-modules

 $\mathfrak{n} = \mathfrak{n}_1 \oplus \cdots \oplus \mathfrak{n}_s$: a decomposition of \mathfrak{n} into irreducible $\mathsf{Ad}(K)$ -modules

- Note that each irreducible component p_j (as Ad(L)-module) can be decomposed into irreducible Ad(K)-modules.
- We consider a *G*-invariant metric on G/K defined by a Riemannian submersion $\pi : (G/K, g) \rightarrow (G/L, \check{g})$ of the form

$$g = y_1 B|_{\mathfrak{p}_1} + \dots + y_\ell B|_{\mathfrak{p}_\ell} + z_1 B|_{\mathfrak{n}_1} + \dots + z_s B|_{\mathfrak{n}_s}$$
(5)

for positive real numbers $y_1, \dots, y_{\ell}, z_1, \dots, z_s$.

Riemannian submersion

Recent progress of homogeneous Einstein metr

Lemma

Yusuke Sakane (Kawanishi)

Let $d_{j,t} = \dim \mathfrak{m}_{j,t}$. The components $r_{(j,t)}$ $(j = 1, \dots, \ell, t = 1, \dots, k_j)$ of Ricci tensor *r* for the metric (6) on *G*/*K* are given by

$$r_{(j,t)} = \check{r}_j - \frac{1}{2d_{j,t}} \sum_i \sum_{j',t'} \frac{z_i}{y_j y_{j'}} \begin{bmatrix} i\\ (j,t) \ (j',t') \end{bmatrix},$$
(7)

where \check{r}_j are the components of Ricci tensor \check{r} for the metric \check{g} on G/L.

Yusuke Sakane (Kawanishi)

March 6, 2013 37 / 44

March 6, 2013 39 / 44

References

- 1. D. V. Alekseevsky: Homogeneous Einstein metrics, Differential Geometry and its Applications (Proccedings of the Conference),
- 1-21. Univ. of. J. E. Purkyne, Chechoslovakia (1987).
- 2. D. V. Alekseevsky and A. M. Perelomov: Invariant

Kähler-Einstein metrics on compact homogeneous spaces, Funct. Anal. Appl. 20 (3) (1986) 171–182.

3. A. Arvanitoyeorgos: New invariant Einstein metrics on generalized flag manifolds, Trans. Am. Math. Soc. 337(2) (1993) 981–995.

4. A. Arvanitoyeorgos and I. Chrysikos: Invariant Einstein metrics on flag manifolds with four isotropy summands, Ann. Glob. Anal. Geom. 37 (2) (2010) 185–219.

5. A. Arvanitoyeorgos, I. Chrysikos and Y. Sakane: Complete description of invariant Einstein metrics on the generalized flag manifold $SO(2n)/U(p) \times U(n-p)$, Ann. Glob. Anal. Geom. 38 (4) (2010) 413 –438. Yusuke Sakane (Kawanishi) Recent progress of homogeneous Einstein metri March 6, 2013 41/44

References

6. A. Arvanitoyeorgos, I. Chrysikos and Y. Sakane: Homogeneous Einstein metrics on the generalized flag manifold $Sp(n)/(U(p) \times U(n-p))$, Differential Geom. Appl., 29 (2011), S16 – S27.

7. A. Arvanitoyeorgos, I. Chrysikos and Y. Sakane: Proving isometry for homogeneous Einstein metrics on flag manifolds by symbolic computation, to appear in Journal of Symbolic Computation.

8. A. Arvanitoyeorgos, I. Chrysikos and Y. Sakane: Homogeneous Einstein Metrics on Generalized Flag Manifolds

 $Sp(n)/(U(p) \times U(q) \times Sp(n - p - q))$, Recent Progress in Differential Geometry and Its Related Fields, Proceedings of the 2nd International Colloquium on Differential Geometry and Its Related Fields, World Scientific Pub. Co., Singapore, (2011), 1 – 24.

References

9. A. Arvanitoyeorgos, I. Chrysikos and Y. Sakane: Homogeneous Einstein metrics on G_2/T , to appear in Proceedings of the American Mathematical Society, (math.arXiv: 1010.3661).

10. A. Arvanitoyeorgos, I. Chrysikos and Y. Sakane: Homogeneous Einstein metrics on generalized flag manifolds with five isotropy summands, math.arXiv: 1207.2897.

11. I. Chrysikos and Y. Sakane: On the classification of homogeneous Einstein metrics on generalized flag manifolds with $b_2(M) = 1$, math.arXiv: 1206.1306.

12. M. Graev: On invariant Einstein metrics on Kähler homogeneous spaces SU_4/T^3 , G_2/T^2 , $E_6/T^2 \cdot (A_2)^2$, $E_7/T^2 \cdot A_5$, $E_8/T^2 \cdot E_6$, $F_4/T^2 \cdot A_2$, math.arXiv: 1111.0639.

References

Recent progress of homogeneous Einstein metr

13. M. Kimura: Homogeneous Einstein metrics on certain Kähler C-spaces, Adv. Stud. Pure Math. 18 (1) (1990) 303–320.

14. B. O'Neill: The fundamental equation of a submersion, Michigan Math. J. 13 (1966) 459–469.

15. J-S. Park and Y. Sakane: Invariant Einstein metrics on certain homogeneous spaces, Tokyo J. Math. 20 (1) (1997) 51–61.

16. Y. Sakane: Homogeneous Einstein metrics on flag manifolds, Towards 100 years after Sophus Lie (Kazan, 1998). Lobachevskii J. Math. 4 (1999), 71–87.

17. M. Wang and W. Ziller: Existence and non-excistence of homogeneous Einstein metrics, Invent. Math. 84 (1986) 177–194.

Yusuke Sakane (Kawanishi)

March 6, 2013 43 / 44