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Self-Introduction

K Electric Devices: N

@ M. Okuda, Shigeki Matsutani,A. Asai, A. Yamano, K. Hatanaka, T.
Hara and T. Nakagiri, Electron trajectory analysis of surface condction
electron emitter displays(SEDs) (invited  talk), SID 98 Digest, (1998)
185-188

© S. Matsutani, M. Okuda and A. Asai, Dynamics of electrons in
half-space with cylindrical electro-static field, Jpn J. Ind. Appl. Math.,
18 (2001) 777-790,

J

Computational Fluid Dynamics:
[~ oom y )

@ S. Matsutani, K. Nakano, and K. Shinjo, Surface tension of multi-phase

flow with multiple junctions governed by the variational principle,
Math. Phys. Analy. Geom. 14 (3) (2011) 237-278

@ Shigeki Matsutani, Sheaf-theoretic investigation of CIP-method,
Appl. Math. Comp. 217  (2) (2010) 568-579
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Self-Introduction

( Nano Materials

© S. Matsutani, Y. Shimosako and Y.Wang, Fractal Structure of
Equipotential Curves on a Continuum Percolation Model
Physica A 391 (23) (2012) 5802-5809, Dec. 1, 2012,
arXiv:1107.2983.

@ S. Matsutani, Y. Shimosako and Y. Wang, Numerical Computations of
Conductivities over Agglomerated Continuum Percolation Models,

Applied Mathematical Modelling 39 (2015) 7227-7243

J
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Self-Introduction

~ Mathemtical Physics : Submanifold Quantum Mechanics —

© S. Matsutani, Quantum field theory on curved low dimensional space
embedded in three dimensional space Phys. Rev. A, 47 (1993)
686-689,.

@ S. Matsutani, The Physical meaning of the embedded effect in the
quantum submanifold system, J. Phys. A: Math. & Gen., 26 (19)
(1993) 5133-5143.

© S. Matsutani, Anomaly on a submanifold system: new index thoerem
related to a submanifold system, J. Phys. A: Math. & Gen., 28 (5)
(1995) 1399-1412.

© S. Matsutani and A. Suzuki, Hopping conductivity associated with
activation energy in disordered carbon, Phys. Lett A, 216 (1-5) (1996)
178-182.

© S. Matsutani and Akira Suzuki, Apparent metal-insulator transition in
disordered carbon, Phys. Rev. B, 62 (21) (2000) 13812-13815.
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Self-Introduction

e Mathemtical Physics: Submanifold Dirac operator ~

© S. Matsutani and H. Tsuru, Physical relation between quantum
mechanics andsoliton on a thin elastic rod, Phys. Rev. A, 46 (1992)
1144-1147.

@ S. Matsutani, Matsutani,Submanifold Dirac Operator with Torsion
Balkan Journal of Geometry and lts Applications 9 (2) (2004) 73-89,

© S. Matsutani, Generalized Weierstrass Relations and Frobenius
Reciprocity, Math Phys Anal Geom 9 (4) (2007) 353-369, Nov. 1, 2006.

© S. Matsutani, A generalized Weierstrass represetation for a submanifold
S in E" arising from the submanifold Dirac operator, Survery on
Geometry and Integrable Systems, eited by M. Guest, R. Miyaoka, Y.
Ohnita, Adv. Std, in Pure Math. 51 (2008)
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Self-Introduction

K Statasitical Mechanics of Elastica N

© S. Matsutani, Statistical mechanics of elastica on a plane: origin of the
MKdV hierarchy, J. Phys. A: Math. & Gen., 31 (11) (1998) 2705-2725.

@ S. Matsutani, On density of state of quantized Willmore surface :a way
to a quantized extrinsic string in R3, J. Phys. A, 31 (1998) 3595-3606.

© S. Matsutani and Y. Onishi, On the moduli of a quantized elastica in P
and KdV ows: study of hyperelliptic curves as an extension of Euler’s
perspective of elastica |, Rev. Math. Phys. 15 (6) (2003) 559-628.

© S. Matsutani, Relations in a quantized elastica
J. Phys. A: Math. Theor. 41 (7) (2008) 075201(12pp),

© S. Matsutani, Euler's Elastica and Beyond, J. Geom. Symm. Phys 17
(2010) 45-86,

@ S. Matsutani and E. Previato, From Euler's elastica to the mKdV
hierarchy, through the Faber polynomials,

J. Math. Phys. 57 (2016) 081519;
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Self-Introduction

e Algebraic Curve: ™

@ S. Matsutani, Hyperelliptic loop solitons with genus g: investigation of
a quantized elastica, J. Geom. Phys., 43 (2002) 146-162,

@ J.C. Eilbeck, V.Z. Enol'skii, S. Matsutani, Y. Onishi, and E. Previato,
Addition formulae over the Jacobian pre-image of hyperelliptic
Wirtinger varieties, Journal four die reine und angewandte Mathematik
(Crelles Journal), (2008) 2008 No. 619 37-48

© S. Matsutani, E. Previato A generalized Kiepert formula for Cab curves,
Israel J. Math., 171 (2009) 305-323,

@ S.Matsutani E. Previato, Jacobi inversion on strata of the Jacobian of
the Crs curve yr = f (x), Il, J. Math. Soc. Japan, 60 (2008) 1009-1044,
66 (2014) 647-691,

@ J. Komeda, S. Matsutani and E. Previato, The Riemann constant for a
non-symmetric Weierstrass semigroup, Archiv der Mathematik 2016
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Self-Introduction
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Elastica Problem

- Elastica Problem N
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Immersion of curve

s Immersion of Curve ™

Z : S — C smooth (|0sZ] = 1).
s is arclength.
Z(s) = X(s) +1Y(s),

t = 0.7 =9,
(6 € C(x~1S%, R))
= Ccos¢ +1ising
n=it=1i0s7.
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Elastica Problem

s Immersion of curve ™

Curvature & Frenet-Serret relation

t:=0:Z, Ost=kn, 9dsn=—kt, (0°Z =ikdsZ), (1)
k := Os¢ : curvature; k = 1/[curvature radius]. )
-~ Elastica Problem (James Bernoulli (1691)) ~
To find the shape of elastica (ideal thin elastic rod) in a plane. )

Shigeki Matsutani (NIT) Statistical Mechanics of Elastic Curves: beyo March 7, 2017



Elastica Problem

e Origin of Elastica ~

Leonardo da Vinci (1452-1519)
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Elastica Problem

- Origin of Elastica ~

Leonardo da Vinci (1452-1519) drew the pictures of bent beams
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Elastica Problem

- Origin of Elastica N

Galileo Galilei (1564-1654)

Shigeki Matsutani (NIT) Statistical Mechanics of Elastic Curves: beyo March 7, 2017 18 / 81



Elastica Problem

s Origin of Elastica ~

Galileo Galilei (1564-1654) investigated bent beams:
It is a problem of cantilever.
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Elastica Problem

s Elastica Problem ~

James Bernoulli (1654-1705) proposed the Elastica problem:
To find the shape of elastica (ideal thin elastic rod) in a plane.

James Bernoulli (1654-1705)
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Elastica Problem

e Elastica Problem B

James Bernoulli (1654-1705) found the fact that the elastic force is

Ldx
proportional to k and the Lemniscate integral: s = / —_—.
x V1-—X*
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Elastica Problem

e Lemniscate and Elastica N

James Bernoulli defined the Lemniscate curve of eight figure.

Lemniscate
(X2 +y2)2 — 232(X2 *}/2)

romnitangential angle Elastica of Eight-Figure

Pelas:tangential angle
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Elastica Problem

Lemniscate and Elastica
4 N

James Bernoulli defined the Lemniscate curve of eight figure.

Lemniscate
(x® +y?)? =22%(x* — y?) Perpendicular terminal
dlemni:tangential angle

3
(blemni - E(Zselas [M 1995]
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Elastica Problem

e Elastica Problem ™

Daniel Bernoulli (1700-1782)

Shigeki Matsutani (NIT) Statistical Mechanics of Elastic Curves: beyo March 7, 2017 24 /81



Elastica Problem

e Elastica Problem B

Daniel Bernoulli (1700-1782) discovered the least principle 1738 in a
letter to Euler (1707-1783).

An elastica is realized as the least point of the energy, i.e.,
Euler-Bernoulli energy

£12] = /S K(s)ds = /S (0:6(5)) ds
:/{Z, S}SDdS
:/Slgldg*gldg, geUu(1)

{Z, s}sp:Schwarz derivative
Elastica problem is the oldest harmonic map problem.
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Elastica Problem

s Elastica Problem N

Leonhard Euler (1707-1783)
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Elastica Problem

~ Euler’s solution N

By discovering the variational principle,
he published the book "Method" 1744.
In its Appendix, he completely solved
the problems in terms of

1. Elliptic integrals,

2. Moduli of elliptic curves,

3. Numerical computations.
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Elastica Problem

Euler’ lution
( uler's solutio \

/X N2dX
S = y
VA = (a+ BX + 7X2)2
X

B (a+ BX +4X?)dX
) /X (a+ BX +X2)2

1
ak + §k3 + 92k = 0.
Euler relation (M-Previato 2014)
X(s)=Xo = zk(s)

affine coordinate o affine connection

N J
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Elastica Problem

s Euler’s list of Elastica ™
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Statistical Mechanics of Elastica

~Statistical Mechanics of Elastica~
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Statistical Mechanics of Elastica

e Statistical Mechanics of Elastica N
Pictures of DNAs by atomic force microscopes shows the super-
coils.

L Pictures of DNAs by atomic force microscopes )
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Statistical Mechanics of Elastica

e Statistical Mechanics of Elastica ~

These shapes are super-coils
rather than double coils.
Super-coil is weakly governed
by the elastic force!

But it is not realized as the
least point of the Euler-
Bernoulli energy, It is out of

Euler’s list
maybe due to the thermal ef-
fect!
N J
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Statistical Mechanics of Elastica

s Statistical Mechanics of Elastica B

Statistical Mechanics of Elastica is to evaluate the state with the Boltz-
mann weight e €1Z1%(3 > 0), i.e., the partition function,

23] = | Dz exp(-5E(2)
Here M is the set of the loops in the plane,
M:={zZ:St—C|Zec¥(ShC),|dZ/ds| =1},

pry: M — M= M/ ~,

where ~ means the equivalence coming from the eulidean move.
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Statistical Mechanics of Elastica

~ Purpose of Statistical Mechanics of Elastica

To find the natural topology and measure of M using the Boltzmann
weight e €215,
As its first step, we consider the geometrical structure of M.

-~ Approach in Statistical Mechanics of Elastica ~

To find the geometrical structure of M,

1) we consider the geometrical structure of its tangent space Tz M at
Z € M as an infinitesimal deformation

2) using the data of TzM and its orbit, we classify M itself.
(M-Onishi 2003, M-Previato 2016)

J
. Notations ~
AP(K) : K-valued analytic p-form over St
(KisRorC. )

Y- ST RS SURE SUNS LY
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Menu:Statistical Mechanics of Elastica (Quantized

Elastica)

@ Infinitesimal isometric deformation
@ Infinitesimal isoenergy deformation
© MKAdV flow

© Hyperelliptic Curves

© Topological Properties

@ Final Remarks
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Statistical Mechanics of Elastica

—— Infinitesimal Isometric Deformation —
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Infinitesimal Isometric Deformation

e Tangent space Ty M (= infinitesimal deformation) —

To observe T M at Z € M, we consider the deformation of the
deformation parameter t € [0,¢) (¢ > 0),

0:Z(s) = v(s)dsZ(s), se St ve AC),

(V — () iy ) 0 ¢ AO(R)>
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Infinitesimal Isometric Deformation

-~ Tangent space T, M ~N

At Z € M, the isometric deformation
([0s,0¢]Z = 0) is reduced to two equations
(Goldstein-Petrichi)

ek = QUDY), (2)
kv = g, (3)
where
QU .= 92 + 95(kd; k),
\ y
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Infinitesimal Isometric Deformation

-~ proof of Proposition ~N

[0s, 0t]Z = 0 means
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Infinitesimal Isometric Deformation

-~ proof of Proposition ~N

8:0:Z = 0s(vOs2)
(0sv + ikv)0sZ
0:0sZ = 0Oy(e?>))

= 1(8t80)asz

[0s, 0t]Z = 0 means
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Infinitesimal Isometric Deformation

-~ proof of Proposition ~N

8:0:Z = 0s(vOs2)
(0sv + ikv)0sZ
0:0sZ = 0Oy(e?>))

= 1(8t80)asz

[0s, 0t]Z = 0 means

Thus idrp = (9sv + ikv) = (sv(") — kv(D) +i(9sv() 4 kv(1)

Shigeki Matsutani (NIT) Statistical Mechanics of Elastic Curves: beyo March 7, 2017 39 /81



Infinitesimal Isometric Deformation

-~ proof of Proposition ~N

8:0:Z = 0s(vOs2)

= (0sv +ikv)0sZ
0:0sZ = 0Oy(e?>))

= 1(8t80)asz

[0s, 0t]Z = 0 means

Thus idrp = (9sv + ikv) = (sv() — kv(D) +i(9sv() 4 kv(1)
Real part: 9sv() — kv() =0 — v = 97 1ky())
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Infinitesimal Isometric Deformation

-~ proof of Proposition ~N

8:0:Z = 0s(vOs2)

= (0sv +ikv)0sZ
0:0sZ = 0Oy(e?>))

= 1(8t80)asz

[0s, 0t]Z = 0 means

Thus idrp = (9sv + ikv) = (sv() — kv(D) +i(9sv() 4 kv(1)
Real part: 9sv() — kv() =0 = v(1) = 97 1ky()
imaginary part: d:k = 0s0:¢ = Gs(asv(i) + kv(’))
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Infinitesimal Isometric Deformation

-~ proof of Proposition ~N

8:0:Z = 0s(vOs2)

= (0sv +ikv)0sZ
0:0sZ = 0Oy(e?>))

= 1(8t80)asz

[0s, 0t]Z = 0 means

Thus idrp = (9sv + ikv) = (sv() — kv(D) +i(9sv() 4 kv(1)
Real part: 9sv() — kv() =0 = v(1) = 97 1ky()
imaginary part: d:k = 0s0:¢ = Gs(asv(i) + kv(’))

Otk = 05(0s + kO Lk)v()
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Infinitesimal Isometric Deformation

-~ proof of Proposition ~

8:0:Z = 0s(vOs2)

= (0sv +ikv)0sZ
0:0sZ = 0Oy(e?>))

= 1(8t80)asz

[0s, 0t]Z = 0 means

Thus idrp = (9sv + ikv) = (sv() — kv(D) +i(9sv() 4 kv(1)
Real part: 9sv() — kv() =0 = v(1) = 97 1ky()
imaginary part: d:k = 0s0:¢ = Gs(asv(i) + kv(’))
Otk = 05(0s + kO Lk)v()
N J
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Infinitesimal Isometric Deformation

e Tangent space T M ~

At Z € M, the isometric deformation ([0s,0¢]Z = 0) is reduced to
two equations (Goldstein-Petrichi)

ok = QU (2
kv = 9N, (3)

where

QU .= 92 + 9,(kd; k),
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Infinitesimal Isometric Deformation

() = ky()
e Eq. (3) Osv kv ~
@ In order to find the space satisfying Eq.(3), we consider the map
la,

lg: A°(R) — AY(R), Lq(vD) = kv(Dds,

@ Let the inverse image of dA°(R) C AY(R) by ¢4 be
A°(R) := ¢;'d A°(R), which is the space statisfying Eq. (3).

-

- Eq. (3) 9sv() = kv(D, v = v() 43y ~N
0 AOR) — AOR) : (v) = v(") because of dsv(") = kv(),

S S
A0 = (0 = / vl ds — / vV ds
0 0

\e - A(R) — A%(C) ; (v = v = v() 4 iv(D) = O(v(D) 4 iv(D). )
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Infinitesimal Isometric Deformation

r Tangent space Tz M (Space of infinitesimal isometric deformation) ™
For a point Z € M, we have
¢: AOR) — A°C) ; (£(vD) = v = v() 4 iv(D))
pr; : M — M:= M/ ~,

~ means the equivalence coming from the eulidean move.

N J
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Infinitesimal Isometric Deformation

r Tangent space Tz M (Space of infinitesimal isometric deformation) ™

For a point Z € M, we have
¢: A(R) — A%C) ; (£(v)) = v = v +iv(D)

(Brylinski) For a point Z € M, we have the map ¢ induces the
bijection ¢* and the surjection (°

A(R)/R = AO(R) £ T2(M)

b
\ Lprl*

Tor,(2)(M)
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Infinitesimal Isometric Deformation

e Tangent space Tz M (Space of infinitesimal isometric deformation) ™

@ Translation of SE(2)
Since 0;Z = ¢ = ¢; + i, € C means the translation,

if v= 5.7 = €1COS ¢ + Cpsing — icy sin ¢ + icp cos ¢,
S
it vanishes at M.
In fact v() = —¢; sin ¢ + ¢, cos ¢ corresponds to

s .
v(n :/ kvds = ¢; cos ¢ + cosin ¢,
0

81_-22 <V—|—

@ Rotation of SE(2)
0+Z = c'0sZ, ¢ € R means the rotation.
It implies Z = Z(s + ct) or 9sZ = l#(s+¢'t) — ¢ld(s)+ido
It corresponds to v(7) — V(D" = () 4 ¢! of 0.

c
0<Z means translation
asz> °
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Infinitesimal Isometric Deformation

-~ Tangent space Tz M (Space of infinitesimal isometric deformation) ™

Proposition

For a point Z € M, the map * induces the bijection ’ :

A°(R)/(R & (Rcos ¢ + Rsin ¢)) = T, (7)(M)
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Statistical Mechanics of Elastica

— Infinitesimal Isoenergy Deformation —
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Infinitesimal Isoenergy Deformation

isoenergy deformation
- &Y ' )

@ To consider the effect of energy E(> 0), we introduce
Mg ={ZeM|E[Z] = E}.

Q pryp: Mg — Mg = Mg/ ~

To investigate this geometric structure, we consider the subset of T M
which preseves the energy, i.e., infinitesimal isoenergy deformation :
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Infinitesimal Isoenergy Deformation

~ isoenergy deformation ~

Proposition

At Z € M, the deformation is isoenergy, i.e., 0:E(Z) = 0, if and only
if Ock € A°(R).
- J

e proof ~N
0:£(2) = 8t/k2ds = 2/k8tkds = /853fds =0

because from the condition d:k € A%(R), kd;kds € dA°(R), i.e.,
kork = 05°f /2, (f € A°(R))

J
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Infinitesimal Isoenergy Deformation

@ 0:Z isometric deformation in t
s i) vl e A(R)
i) 9.k = QUN ()
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Infinitesimal Isoenergy Deformation

@ 0:Z isometric deformation in t
s i) vl e A(R)
i) 9.k = QUN ()

@ 0:Z isometric and isoenergy deformation in ¢t
s i) viD e A(R)
i) 9:k = QUN ()
i) dck € A°(R)

Shigeki Matsutani (NIT) Statistical Mechanics of Elastic Curves: beyo March 7, 2017 49 / 81



Infinitesimal Isoenergy Deformation

@ 0:Z isometric deformation in t
s i) vl e A(R)
i) 9.k = QUN ()

@ 0:Z isometric and isoenergy deformation in ¢t
s i) viD e A(R)
i) 9:k = QUN ()
i) dck € A°(R)
© = there might be another isometric deformation in another time t’
& ) 8k € AO(R)
i) dpk = QN k
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Infinitesimal Isoenergy Deformation

@ 0:Z isometric deformation in t
s i) vl e A(R)
i) 9.k = QUN ()

@ 0:Z isometric and isoenergy deformation in ¢t
s i) viD e A(R)
i) 9:k = QUN ()
i) dck € A°(R)
© = there might be another isometric deformation in another time t’
& ) 8k € AO(R)
i) 0k = QUNGk = QUN?y ()
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Infinitesimal Isoenergy Deformation

@ 0:Z isometric deformation in t
s i) vl e A(R)
i) 9.k = QUN ()

@ 0:Z isometric and isoenergy deformation in ¢t
s i) viD e A(R)
i) 9:k = QUN ()
i) dck € A°(R)
© = there might be another isometric deformation in another time t’
& ) 8k € AO(R)
i) 0k = QUNGk = QUN?y ()

= These induce a certain hirarchy.
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Infinitesimal Isoenergy Deformation

-~ Tangent space T, M ~N

If for v € AO(R), {QUN"v(DY, o1, . beloing to A°(R) the
parameters (t1, ta,...) € [0,€), preserves the induced metric and the
energy, and we have a sequence

By k = QUDV),

B5 k = QN a; k = QN0

9k = Qo k = 9(11)23%1,( — Un3,0),
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Statistical Mechanics of Elastica
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Infinitesimal Isoenergy Deformation

-~ Tangent space Ty M ~

Lemma

For c € R and Z € M, the static (trivial) deformation, Z(s + ct), is

generatated by
81-2 = C852,<:> 81_-/( = Cask.

For the static deformation, M/U(1) is stable, and the static
deformation in M is isometric and isoenergy .

N J
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MKdV flow

For Z € Ml and k := k[Z], we cosndier static deformation,
Oy k = Osk,
and then we have the following isometric and isoenergy relations:

Ok = QMo k = QD ok,

Bk = Qg k = QN5 k = QUN?o,k,

Bk = Qg k = QN9 k = QUD*o,k,

These agree with the MKdV hierarchy.
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MKdV flow

~ Orbital decompositon of M ~N

Since the MKdV hierarchy is integrable, we can consider the orbits in
M, M, ME and ME:

© These orbits induce their orbital decomposition.

@ These orbits are described by hyperelliptic functions and
moduli space of hyperelliptic curves.

= We partially find their geometrical structure.

Shigeki Matsutani (NIT) Statistical Mechanics of Elastic Curves: beyo March 7, 2017 54 / 81



Solutions space

~ Open problems ~

1) The solution space contains
Euler’s results as genus one.
2) The solution of MKdV hi-
erarchy is given by the hyper-
elliptic curves including oo
genus.
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Statistical Mechanics of Elastica

e Abelian Function Thoery ~

Shigeki Matsutani (NIT) Statistical Mechanics of Elastic Curves: beyo March 7, 2017 56 / 81



Abelian Function Thoery

Ellipti Function Thoery :

”The elliptic function theory is to study the algebraic prop-
erties of elliptic curves, the analytic properties of their
abelian functions (=elliptic functions), and these relations.”

y? = (x — bo)(x — b1)(x — b2) Torus
standard form & | o-func / entire func over C
Algebraic Properties Analytic Properties
-~ Aim of the study of Ableian Functions N

As the elliptic function theory has a power to various fields of
mathematics, physics, engineer as concrete thoery of functions,
we want to construct the Abelian function theory which has con-
crete and abstract expressions in order that it has a power to
various fields.

J
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Weierstrass Normal Form

s Weierstrass Normal Form ™

(X, P):Pointed Riemann surface P = oo

(X, P) is characterized by the Wierstrass gap sequence, whih is given
by the numericl semi-group.

(X,00): (r,s) =1,

YA+ A )y T+ 4+ A (x)y + A(x) =0

where Aj(x) (j = 1,...,r — 1) whose order is j < js/r) A-(x) is a
s-order polynomial.

J
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Jacobi inversion formulae

4 A
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Abelian Function Theory

e Abelian function theory for Hyperelliptic curves ~N

As the Euler’s elastica is related to elliptic function,

the quantized elastica is related to the hyperelliptic function,
(2003 MO, 2001, 2002 M), and naturally contains the Euler’s
elastica.

A hyperelliptic curve Cg

of genus g (g > 0) is

given by,

y? =(x = b1)(x = by) ---
- (X = baga),

where bj's are complex g =1 case g = 2 case
numbers.
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Abelian function theory for Hyperelliptic curves

e Hyperelliptic Integrals ~

Hyperelliptic complete integrals :

o / "o.__ / s

WU / l/J', UJU / I/j, 171*17"'7g7
aj i

o 1 "o __ 1 -

T]U —/ Vj, 77’./ —/ Vj) I,J_la“'7g7
a Bi

i i

where hyperelliptic differentials, 1st and 2nd kinds:

- +i-1 g+i—2
. si=1ex V” B (Xg + Zj:l a,JXJ)dX

2y ) 1 2y

for certain ajj of bi's, (i =1,...,g).

N J
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Abelian function theory for Hyperelliptic curves

e Symplectic structure as Legendre relations ~N

Legendre relations as the symplectic structure:
1 "o 71'\/7
wn —w'n = > -1l

This is the same as a part of Galois's letter to A. Chevalier:
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Abelian function theory for Hyperelliptic curves

-~ Hyperelliptic Jacobian ~

For a symmetric product space of Cg, S8(Cg), the Abelian map is
defined by

u:=(uy, - ,ug): S8(C) — C8&,

i/(xhyi) Xk_ldX
i=1v> 2y '

Te =CE/N, N=<u " >y.

N J

<Uk((X1,)/1)7 t 7(Xgayg)) =

The hyperelliptic Jacobian:
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Abelian function theory for Hyperelliptic curves

theta function and sigma function
r & N

T =o'~ 'w”. | The 6 function | on C& with modulus T and characteris-
tics Ta+ b is given by

o - e
— Z exp {27ri {; (n+a)T(n+a)+ (n+a)(z+ b)H

nezs

for g-dimensional complex vectors a and b.
The o-function ‘ is given by

1"
o(u) = o exp {—; tun’w/_lu} 19{((55,] (%w’_lu;’]I‘)

where § and ¢’ are half-integer characteristics.
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Abelian function theory for Hyperelliptic curves

rpfunction )
82
i = — log o(u),
v Ou;iOu;
0
G = o log o(u)
T e ot w)
ol i (b =B =)+ (b —xg) = 2625
. J
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Euler’s results from a modern point of view

e Euler’s elastica and symplectic structure ~

| 2(s) = (=¢(s) + (3/6)s) /i, |

The symplectic structure in Jacobian is given by

(ds,((s)ds) =1

and -
I/ ! .
wn =Wy = 51.

It means that for the space
G :={(s,Z(s))|s € S'} c S* x Z(S")

T,.G has the "symplectic structure” ds A dZ.
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Beyond Euler’s elastica

-~ Hyperelliptic Solutions and Quantized Elastica ~

Theorem (2002, 2010 M) 1) For the hyperelliptic curve C,, by
lettings := u,, Z, e M5, (r=1,2,--- ,2g + 1) is given by

elas,E

Z.(s) = al,(s)?, Z(s _bgs—Zg, )bi~L.

2) Z.(u € Jg) is isoenergy flows!!!
3) The energy is given by the hyperelliptic integrals:

7{ k?ds = —4nog + 2(Nag + br)wiy,

4) Vol(Mg,, g) is the volume of the real subspace in the Jacobi
variety 7.

J
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Beyond Euler’s elastica

r Hyperelliptic Solutions and Quantized Elastica ~

Remark 1) The shape of quantized elastica is
Z,(s) = bfs — 3% 1 Gi(s)b,
whereas that of Euler’s elastica is

Z'(s) = (a/6)s — ((s) for (Z'(s) = Z(s)/vV-1).

2) The energy of quantized elastica is

k2d5 = _477;g + 2(/\2g + br)wlaga

whereas that of Euler’s elastica is
j{k2ds = —4n +2(e1)w’.
3) The generalization of Euler’s relation is
Z(u)—Z(u—w) =Y ¢b"19;logdy, Z.
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Beyond Euler’s elastica

-~ Hyperelliptic Solutions and Quantized Elastica

Remark
4) The shape of quantized elastica is

Z b BETT bET? . b 1) /s
2 b§  bETT BETP . by 1] | ¢
Zg1 be, bEL BET o bea 1) \G

(Crdtg_r, dt,) = 0, means (Y 7, i Zidty_,, dt,) =6,

]

C

which is a “symplectic structure” in M, .

N

~
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Statistical Mechanics of Elastica

- Topological Properties ~
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Topological Properties of Moduli of Quantized Elastica

~ Lemma (Maclachlan) ~
The modulus space of conformal equivalence classes of compact
Riemann surfaces of genus g is simply connected. y
~ MKdV hierarchy N
For Mgasyg — Melas,g, (Z(T8) — pt), we have
Motasg € Miuypg,  Miyp,g ~ PL.
N\ J
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Topological Properties of Moduli of Quantized Elastica

- Lemma (MO 2003) ~
Due to the relations ./\/lglasg \ M. g1 ™ T&—1 and
pt St T2 T3 s T4 s TS s o |
we have
Mglas,l — MgasQ — Mglas,3 o
- J
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Topological Properties of Moduli of Quantized Elastica

-~ Theorem (Bott-Tu) ~N

The cohomology of the loop space Q25" over S” is given by
HP(Q5™,R) = R0 mod (n-1)0-

For n = 2 case, the ring structure is given by
H(QS%, B) = R[x|/(x?) - Rle],

where degree(e) = 2 and degree(x) = 1.

L H*(Q5?,R) = R + Rx + Re 4+ Rxe + Re? + Rxe? + - - - . )
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Topological Properties of Moduli of Quantized Elastica

~ A loop space N

Since Melas is topologically decomposed by genus, we have:

- Theorem (MO 2003)

For the forgetful functor for : Diff — Top, we have
H*(Q5% R) = H* (for(Mj,s), R)

ie., for H*(QS%,R) = R[x]/(x?) - Rle], H*(for(M§,.),R) =
Ar[dti, €], where Ag[dt1, €] is a ring generated by dt; and

e = dty + dty A (dtiis,) + dtz A (dtrip,) +
with the wedge product and the degree: degree(dt;) =1

H*(for(MS,.),R) = R+Rdt; + Re+ Redt; + Re? +Re?dt; + - - -
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Topological Properties of Moduli of Quantized Elastica

~ Proof: N
Sincee-1=dt;, and " 1-dt; =€"-1 =dt, Adthp_1 A--- Adto Adty,
we have

Ar[dti, €] = R+ Rdt; + Re + Redt; + Re? 4+ Redty + - --
=R+ Rdt; + Rdt; Adtr + Rdt; Adto Adtz +--- .

Due to the Backlund transformation, Mgas is topologically given as

a telescopic type space related to these genera. Hence we have

H*(for(MS,.), R) = Ar[dti, €].

N J
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Statistical Mechanics of Elastica

- Final Remark N
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Final Remark

~ Open problems ~
Z(p) — Z(q)

© These relations are closely related to log , Which is

also related to replicable functions in Monster group by John
McKay.
Investigate this fact!!!!
@ Show the explicit expression of quantized elastica or quantized
elastica of genus g > 1 in terms of computer graphic and so on.
© Show the degenerate limit from the quantized elasticas of g to

—1.
¢ Y,
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Final Remark

e Open problems ~

@ A quantized elastica in (p, g)-dimensional Minkswski space with
so(p, g) and generalized MKdV equation.

@ Willmore surface (Polynakov extrinsic string) and MNV
hierarchy (M 1999),

© A geometrical object expressed by generalized Weierstrass
representation of submanifold Dirac operator (M 2008, 2009),

O Diff/SDiff for a manifold which B. Khesin (Arnold-Khesin)
considers, or fluid dynamics. )

Shigeki Matsutani (NIT) Statistical Mechanics of Elastic Curves: beyo March 7, 2017 78 / 81



Reference

open problems

Since we partially have the hyperelliptic solutions of loop solitons (M
2002), we will consider the moduli space.
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Thank you!!
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