The electromagnetic aspect for Yang-Mills fields

Tosiaki Kori Yamato, Japan. e-mail: filsmalin@gmail.com

Abstract

Let \mathcal{A} be the space of irreducible connections (vector potentials) over the principal bundle $M \times SU(n)$ on a compact three-dimensional manifold M. The cotangent bundle $T^*\mathcal{A}$ has a canonical symplectic structure and there is a Hamiltonian action of the group of gauge transformations \mathcal{G} on it with the moment map

$$\mathbf{J}^*(A,B) = -d_A B, \qquad A \in \mathcal{A}, \ B \in T^*_A \mathcal{A}.$$

Dually, if we give the tangent space $T_A\mathcal{A}, A \in \mathcal{A}$, the riemannian metric $(a, b)_A = \int_M Tr \, a \wedge *b$, $a, b \in T_A \simeq \Omega^1(M, su(n))$, then, by virtue of the Hodge *-operator the tangent space also has a symplectic structure coming from that of the cotangent space, and there is a Hamiltonian action of \mathcal{G} on it with the moment map

$$\mathbf{J}(A, E) = d_A^* E, \qquad A \in \mathcal{A}, \ E \in T_A \mathcal{A}.$$

The Yang-Mills field \mathcal{F} is defined as the subspace of the direct sum $\mathbb{T} = T\mathcal{A} \times_{\mathcal{A}} T^*\mathcal{A}$ of the tangent and cotangent bundles of \mathcal{A} where we have $d_A^* E = d_A B = 0$. The symplectic structure on \mathbb{T} is given by the 2-form:

$$\begin{split} \Omega_{(E,B)}\left(\left(\begin{array}{c} e_1\\ \beta_1\end{array}\right), \left(\begin{array}{c} e_2\\ \beta_2\end{array}\right)\right) &= (e_2, d_A^*\beta_1)_1 - (e_1, d_A^*\beta_2)_1, \\ \\ \text{for } \left(\begin{array}{c} e_i\\ \beta_i\end{array}\right) \in T_{(E,B)}\mathbb{T}, \ i = 1, 2. \end{split}$$

Let H = H(E, B) be the Hamiltonian function on \mathcal{F} ;

$$H(E,B) = \frac{1}{2} \{ (d_A E, d_A E)_1 + (d_A^* B, d_A^* B)_1 \}.$$

Then Hamilton's equation of motion on (\mathcal{F}, Ω) is written in the form:

$$d_A^*B + \dot{E} = 0$$
 , $d_A E - \dot{B} = 0$,
 $d_A B = 0$, $d_A^* E = 0$.

The corresponding Poisson bracket on ${\mathcal F}$ is

$$\{\Phi,\Psi\}_{(E,B)}^{\mathbb{T}} = \left(\frac{\delta\Phi}{\delta B}, d_A^*\frac{\delta\Psi}{\delta E}\right)_1 - \left(\frac{\delta\Psi}{\delta B}, d_A^*\frac{\delta\Phi}{\delta E}\right)_1.$$

This is a parallel formula of Marsden-Weinstein in case of the electricmagnetic field. We shall investigate the Clebsch parametrization of the Yang-Mills field (\mathcal{F}, Ω) . We show that the action of \mathcal{G} on (\mathcal{F}, Ω) is Hamiltonian with the moment map $\mathbb{J}(E, B) = [d_A E, *B]$. This gives a conserved quantity $\int_M [d_A E, *B]$ which is due to the noncommutativity of the gauge group.

arXiv:1707.00977 [math.SG]