
Electromagnetic aspect of Yang-Mills fields

Tosiaki Kori

A : the space of irreducible connections ( vector potentials)

over the principal bundle P = M × SU(n) .

A is an affine space modeled with the vector space Ω1(M,LieG).

TAA = Ω1(M, LieG))

G : The group of ( pointed ) gauge transformations:

G = Ω0(M,AdGP ) = Ω0(M,G).

A× G 3 (A, g) −→ g−1Ag + g−1dg .

A π−→ B = A/G; modulispace.
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1 Geometric pre-Quantization (Kostant-Souriou)

(i) Find a pre-symplectic form ω on B.

(ii) Give a line bundle with connection

(L, θ) −→ B

such that the curvature of θ is ω.

Example 1[(Atiyah-Bott, 1982)]

(i) Let Σ be a surface (2-dimensional manifold ).

TAA(Σ) ' T ∗AA(Σ) ' Ω1(Σ, LieG)

ωA(a, b) =

∫
Σ

tr(ba) −
∫

Σ

tr(ab) = 2

∫
Σ

tr(ba).

Then (A(Σ), ω ) is a symplectic manifold.

(ii) ∃ a line bundle with connection

(L, θ) −→ B

such that the curvature of θ is ω.

Jeffery-Weitsman, Meinrenken, · · ·
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Example 2(Kori, 2011)

(i) Let P = X×SU(n) be the trivial SU(n)−principal bundle

on a four-manifold X. There exists a pre-symplectic structure

on the space of irreducible connectionsA(X) given by the 2-form

σA(a, b) =
1

8π3

∫
X

tr[(ab−ba)F ]− 1

24π3

∫
M

tr[(ab−ba)A] . (1.1)

Where F = dA+ 1
2 [A,A].

(ii) ∃ a line bundle with connection

(L, θ) −→ B

such that the curvature of θ is σ. (Chern-Simons quantization)

For 3-dimensional manifolds there would be no presymplectic

structure on the space of connections A.

(Remark) There is a presymplectic form on the space of flat

connections A[(M)
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In the following we shall deal with the geometric pre-quantization

of the sapce of connections over 3-manifolds, where there would

be no presymplectic structure.

BUT

• A quantization would not be the quantizationof the space

of vector potentials A , but should be the space of fields ⊂ T ∗A.

• The cotangent sapce T ∗A is always symplectic.

• May be anticipated the theory of Bohr-Sommerfeld Quan-

tization ' semi-classical approximation over T ∗A

Today’s talk:

Hamiltonian formalism on TA⊕ T ∗A(M) with dimM = 3.

= Maxwell like equation of motion
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2 Revision: Maxwell equations

2.1 4-dimensional vector potentials =⇒
3-dimensional Maxwell field equations

AMax : The space of U(1)-connections on R4.

AMax 3 Â = A1dx
1 + A2dx

2 + A3dx
3 + φ dt

d̂: = the exterior differentiation on R4.

F = d̂ Â = B + Edt curvature

B = B1dx
2 ∧ dx3 +B2dx

3 ∧ dx1 +B3dx
1 ∧ dx2 ,

E = E1dx
1 + E2dx

2 + E3dx
3.

Bi =
∂

∂xj
Ak −

∂

∂xk
Aj, Ei =

∂

∂xi
φ− ∂

∂t
Ai .
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(1)

d̂F = d̂ d̂Â = 0 (2.1)

⇐⇒

3∑
i=1

∂

∂x1
Bi = 0,

∂

∂xj
Ek −

∂

∂xk
Ej + Ḃi = 0 .

i.e. div B = 0 , ∇× E + Ḃ = 0

⇐⇒
3-dim. expression: dB = 0 @ magnetic monopole

dE + Ḃ = 0 Faraday’s law
(2.2)

where d =
∑3

i=1
∂
∂xidx

i : = the exterior differentiation on R3.

(2.2) is invariant under the action of gauge group U(1).

That is, (2.2) is a field equation.
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(2)

? : Hodge operator on R4.

We have

d̂ ? F = j ∧ dt+ ρ . (2.3)

for

∃ 2-form; j = j1dx
2 ∧ dx3 + j2dx

3 ∧ dx1 + j3dx
1 ∧ dx2 ,

∃ 3-form; ρ dx1dx2dx3 .

⇐⇒
3-dim. expression:

d ∗ E = ρdx1 ∧ dx2 ∧ dx3,

d ∗B + ∗Ė = j

where ∗ is the Hodge operator on R3.

That is, d∗E = ρ ⇐⇒ div E = ρ ; Gauss law

d∗B + Ė = ∗ j⇐⇒ ∇×B + Ė = j; Ampère’s law
(2.4)

Maxwell’s eqation consists of ;

• The field equation (2.2) , i,e, the defining equation of the

electro-magnetic field.

• The conserved quantities (2.4) , i.e. the momentum of

the action of the gauge transformation.
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(3)

Marsden-Weinstein introduced the Poisson bracket on the

electro-magnetic field; ( Vortex type Poisson bracket ):

{Φ , Ψ }(E,B) =

(
δΦ

δB
, curl

δΨ

δE

)
1

−
(
δΨ

δB
, curl

δΦ

δE

)
1

.

(2.5)

For the Hamiltonian function

H = H(E,B) =
1

2

(
||dE||2 + ||d∗B||2

)
, (2.6)

the equation of motion

Φ̇ = {Φ , H}(E,B)

is nothing but the the Maxwell equation (Faradey and Ampère

with 0-current:

Ė + d∗B = 0 , Ḃ + dE = 0 . (2.7)
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Why vortex formula?

We can look from Faraday’s equation and Ampère equation the

actual motion of the magnetmeter or the electricity in the coil.

By vorticity potentials are realized ( visible ) as fields.

•We glance over this fact in VORTICITY of fluid mechanics.

B ⊂ R3 simply connected.

• G = SV ect(B) : the divergent free vector fields on S3.

The space of vorticity vector fields is

∇× G = {ω = ∇× v; v ∈ G}.

• ∀u ∈ G, there is a unique ( mod. ∇f ) solution v ∈ G
of

∇× v = u .

That is given by the Biot-Savart’s formula:

v(y) = BS(u) = − 1

4π

∫
B

u(x)× (x− y)

|x− y|3
d3x,

Hence

∇× G BS'−→ G .

On the other hand G = SV ect(B) and ∇× G are in duality

by

(ω,v) =

∫
B

ω · v d3x

Hence

G∗ ' ∇× G. (2.8)
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G = SV ect(B)
A'−→ Ω1(B)/dΩ0(B) ' G∗

∇× ↓'↑ BS d ↓'↑ d∗G

G∗ = ∇× SV ect(B)
i · vol.'−→ Z2(B, ∂B)

(2.9)

Here, on the RHS

Ω1(B)/dΩ0(B)
d '−→ Z2(B, ∂B) = {β ∈ Ω2(B); dβ = 0, β|∂B = 0} ,

and the Green functionG gives the solution β = Gν ∈ Z2(B, ∂B)

of ∆β = ν for ν ∈ Z2(B, ∂B)

SV ect(B) 3 v −→ v[ = Av ∈ Ω1(B)/dΩ0(B)

∇× SV ect(B) 3 ∇× v = ω −→ dv[ = ω[ = iωvol ∈ Z2(B, ∂B),

SV ect(B) 3 v −→ ivvol ∈ Z2(B, ∂B),
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• Vortex representation

Euler equation for incompressible flow:

v̇ + (v · ∇)v +∇p = 0, ∃p, (2.10)

rewritten =⇒

v̇ = v × ω +∇q, q = −(p+ 1
2v · v),

Then

ω̇ = ∇× v̇ = ∇× (v × ω) +∇×∇q

= (ω · ∇)v − (v · ∇)ω − (div v)ω + (div ω)v

= (ω · ∇)v − (v · ∇)ω = Lvω.

ω̇ = Lvω : Vortex type Euler equation.

The above vortex type Euler’s equation shows that the vortic-

ity vector fields are always on the flow of velocity vector fields;

(Lord Kelvin’s theorem)
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THIS LECTURE provides the following subjects.

M : a compact 3-dimensional manifold X.

A : the space of irreducible connections ( vector potentials )

over the principal bundle M × SU(n) .

♣
T = TA×A T ∗A : Whittney’s direct sum of the tangent and

cotangent bundles of A.

The symplectic structure on T is given by the 2-form:

Ω(E,B)

((
e1

β1

)
,

(
e2

β2

))
= ( e2 , d

∗
Aβ1 )1 − ( e1 , d

∗
Aβ2 )1 ,

for

(
ei

βi

)
∈ T(E,B)T , i = 1, 2.
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♦
(1)

The Yang-Mills field F is defined as a subspace of (T, Ω ).

F is rather a symplectic reduction, or a horizontal lift of the

reduced space.

We shall prove the Maxwell equations on F : d∗AB + Ė = 0 , dAE − Ḃ = 0,

dAB = 0 , d∗AE = 0 .
(2.11)

The first two equations are the Hamilton equations of motion

derived from the symplectic structure on T,

The second equations come from the action of the group of gauge

transformations G on A,

The second equations are the defining equations of F .

(2)

The corresponding Poisson bracket on F is

{Φ , Ψ }T(E,B) = Ω(E,B) (XΦ , XΨ ) (2.12)

=

(
δΦ

δB
, d∗A

δΨ

δE

)
1

−
(
δΨ

δB
, d∗A

δΦ

δE

)
1

.(2.13)
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This is a parallel formula of Marsden-Weinstein in case of

the electric-magnetic field.

{Φ , Ψ }(E,B) =

(
δΦ

δB
, curl

δΨ

δE

)
1

−
(
δΨ

δB
, curl

δΦ

δE

)
1

.

(2.14)

For the Hamiltonian function

H = H(E,B) =
1

2

(
||dE||2 + ||d∗B||2

)
, (2.15)

the equation of motion

Φ̇ = {Φ , H}(E,B)

is nothing but the the Maxwell equation (Faradey and Ampère

with 0-current:

Ė + d∗B = 0 , Ḃ + dE = 0 . (2.16)
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♥
(1)

We show that the action of G on (F ,Ω) is Hamiltonian with

the moment map

J(E, B ) = [ dAE , ∗B ] .

This gives a conserved quantity
∫
M [ dAE , ∗B ] that is due to

the non-commutativity of the gauge group.

(2)

There is a symplectic parametrization ( Clebsch variables ) of

F by the tangent space of the moduli space T (A/G).
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3 Canonical structure on T ∗A

M : compact, connected and oriented m-dimensional rieman-

nian manifold.

P
π−→M : a principal G-bundle, G = SU(N), N ≥ 2.

( In the sequel, mostly supposed to be trivial: P = M ×G.)

A = A(M): the space of irreducible L2
s−1 connections over P .

(s will be abbreviated); An affine space modeled by Ω1
s−1(M,LieG).

Tangent space of A at A ∈ A is

TAA = Ω1
s−1(M,LieG) . (3.1)

Cotangent space of A at A is

T ∗AA = Ωm−1
s−1 (M,LieG) ), (3.2)

The pairing 〈a, α〉A =
∫
M tr( a∧α ) of α ∈ T ∗AA and a ∈ TAA

is given by

〈φ⊗X,ψ ⊗ Y 〉 = (φ , ψ )s−1 tr(XY ),

for ψ ∈ Ωm−1(M), φ ∈ Ω1(M), and X, Y ∈ LieG.
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[Notation]

Tangent bundle R = TA,

Cotangent bundle S = T ∗A .
The point of S is denoted by

S 3 (A, λ) with A ∈ A and λ ∈ T ∗AA.

The tangent space to the cotangent space S at the point

(A, λ) ∈ S :

T(A,λ)S ≡ TAA⊕ T ∗AA = Ω1(M, LieG)⊕ Ωm−1(M.LieG).

(3.3)

Any tangent vector a ∈ T(A,λ)S has the form a =

(
a

α

)
with

a ∈ TAA and α ∈ T ∗AA.
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The canonical 1-form θ on the cotangent space S is defined

as follows:

θ(A,λ)(

(
a

α

)
) = 〈λ, π∗

(
a

α

)
〉A =

∫
M

tr a ∧ λ, (3.4)

for any tangent vector

(
a

α

)
∈ T(A,λ)S.

Let φ be a 1-form on A. We have the following characteristic

property:

φ∗θ = φ. (3.5)

The canonical 2-form ω on S is defind by

ω = d̃θ. (3.6)

ω is a non-degenerate closed 2-form on the cotangent space S.

The exterior differential d̃ on A will be explained in the

following.
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canonical 1-form θ :

θ(A,λ)(

(
a

α

)
) = 〈λ, π∗

(
a

α

)
〉A =

∫
M

tr a ∧ λ,

Lemma 3.1. The derivation of the 1-form θ ; is given by

(∂(A,λ) θ)

(
a

α

)
=

∫
M

tr a ∧ α , for ∀

(
a

α

)
∈ T(A,λ)S .

In fact (∂(A,λ)θ)(

(
a

α

)
) = lim

t−→0

1

t

∫
M

( tr a∧(λ+tα)− tr a∧λ ) =

∫
M

tr a∧α.

Proposition 3.2.

ω(A,λ) (

(
a

α

)
,

(
b

β

)
) =

∫
M

tr[ b ∧ α− a ∧ β , ]

for

(
a

α

)
,

(
b

β

)
∈ T(A,λ)S

Proposition follows from Lemma 1.1 and (3.6).

Canonical 2-form ω is a symplectic form on S
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Let Φ = Φ(A, λ) be a function on the cotangent space S.

The Hamitonian vector field XΦ of Φ is defined by the formula:

( d̃Φ )(A,λ) = ω( · , XΦ(A, λ) ). (3.7)

We look for XΦ(A, λ) =

(
b

β

)
by compairing

(1) ( d̃Φ )(A,λ)

(
a

α

)
= 〈 a , δΦ

δA
〉A + 〈 δΦ

δλ
, α 〉A

=

∫
M

tr[ a ∧ δΦ

δA
] +

∫
M

tr[
δΦ

δλ
∧ α ]

and

(2) ω(A,λ) (

(
a

α

)
,

(
b

β

)
) =

∫
M

tr[ b ∧ α− a ∧ β ]

Then we have

XΦ =

 δΦ
δλ

− δΦ
δA

 . (3.8)
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3.1 Tangent space of A

We assume that P is a trivial bundle P = M ×G .

A being an affine space modelled by the vector space

Ω1(M, adP = Ω1(M, su(n)),

the tangent space at the point A ∈ A is

TAA = Ω1(M, su(n)) .

The inner product on TAA ?F

( a , b )1 =

∫
M

Tr a ∧ ∗b ∀a, b ∈ TAA .

Denote a point of R = TA by

(A, p) ∈ R with A ∈ A and p ∈ TAA.

The tangent space of R is

T(A,p)R = TAA⊕ TAA.

a tangent vector a ∈ T(A,p)R is given by

a =

(
a

x

)
with a, x ∈ TAA.

The symplectic structure on R is defined by the formula

σ(A,p)

((
a

x

)
,

(
b

y

))
= ( b , x )1 − ( a , y )1 ,

for all

(
a

x

)
,

(
b

y

)
∈ T(A,p)R .
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3.2 The action of the group of gauge transformations

G on R = TA and S = T ∗A, and the corresponding

moment maps

G(M) = Ω0(M,AdGP ) = Ω0
s(M, AdG) acts on A by

g · A = g−1Ag + g−1dg, A ∈ A, g ∈ G

• G(M) acts on R = TAA by

a −→ Adg−1 a = g−1ag

and on S = T ∗AA by its dual

α −→ g−1αg .

The canonical 1-form θ and 2-form ω on S = T ∗A are G-

invariant.

• LieG = Ω0(M,LieG).

For ξ ∈ LieG, the fundamental vector field ξS on S is given by

ξS(A, λ) =
d

dt
exp tξ ·

 A

λ

 =

 dAξ

[λ, ξ]

 .

• The dual space of LieG is

(LieG)∗ = Ωm(M,LieG)

with the dual pairing:

〈µ, ξ〉 =

∫
M

tr (µ ξ ) , ∀ξ ∈ G0 , µ ∈ Ωm(M,LieG).
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3.3 moment map on S

The moment map of the action of G on (S , ω)

K : S −→ (LieG)∗ ' Ωm(M, LieG) ,

is defined as follows:

Put

Kξ(A, λ) = 〈K(A, λ), ξ 〉 for ξ ∈ LieG .
Then K is the moment map

def⇐⇒

1. Kξ is Ad∗G-equivariant:

KAdgξ(g · A, g · λ ) = Kξ(A, λ) ,

2. The Hamilton vector field Kξ is equal to the fundamental

vector field ξS:

XKξ = ξS , that is,

d̃ Kξ = ω ( · , ξS ) . (3.9)
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Proposition 3.3.

The action of the group of gauge transformations G(M) on the

symplectic space (S , ω ) is an hamiltonian action with the mo-

ment map given by

K(A, λ) = − dA λ . (3.10)

Proof

The equivariance of Kξ follows easily. We shall verify the

condition (3.9).

Stokes’ theorem yields

Kξ(A, λ) = 〈K(A, λ), ξ 〉 = −
∫
M

tr (dAλ) ξ =

∫
M

tr ( dAξ∧ λ) .

Since

lim
t−→0

1

t

∫
M

tr (dA+taξ ∧ (λ+ tα)− dAξ ∧ λ) =

∫
M

tr (a∧[ ξ , λ ]+ dAξ∧α ,

(c.f. (??)), we have(
d̃ Kξ

)
(A,λ)

(
a

α

)
= ω(A,λ)

((
a

α

)
,

(
dAξ

[λ , ξ]

))
.
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3.4 moment map on R

G = Aut0(P ) = Ω0(M,AdGP ) acts on the symplectic manifold

(R,ω):

g · (A, p) = (A+ g−1dAg , g
−1pg ) , g ∈ G, (A, p) ∈ R.

Proposition 3.4. The action of G on the symplectic space

(R = TA, σ ) is an hamiltonian action with the moment map

J : R −→ (LieG)∗ ' LieG given by

J(A, p) = d∗A p . (3.11)
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3.5 Duality

Proposition 3.5. (S , ω ) and (R , σ ) are isomorphic by the

Hodge dual :

∗ : TAA ' Ω1(M, su(n)) −→ T ∗AA ' Ωm−1(M, su(n)) , A ∈ A.

∃ the symplectic isomorphism:

σ(A,p)

((
a

x

)
,

(
b

y

))
= ( b , x )1− ( a , y )1 = ω(A,∗p)

((
a

∗x

)
,

(
b

∗y

))
.
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We have the following two dual descriptions:

Proposition 3.6. Let A ∈ A.

1. (a) Orthogonal decomposition of TAA?@:

TAA = dA LieG ⊕ HA ,

with HA = {x ∈ Ω1(M, LieG); d∗Ax = 0 }.

(b) Put

R0 = ∪A∈AHA .

Then R0 is isomorphic to the symplectic reduction of

R by the moment map J ,(3.11):

J−1(0)/G ' R0 . (3.12)

2. (a) Orthogonal decomposition of T ∗AA:

T ∗AA = d∗A(LieG)∗ ⊕H∗A ,

with H∗A = {w ∈ Ωm−1(M, LieG); dAw = 0 }.

(b) Put

S0 = ∪A∈AH∗A (3.13)

Then S0 is isomorphic to the symplectic reduction of S

by the moment map K,(3.9):

K−1(0)/G ' S0 . (3.14)
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4 Electronic Magnetic paradigm of Yang-Mills

fields

4.1 Symplectic structure over TA×A T ∗A

R = TA , S = T ∗A .

Whitteney’s direct sum of tangent and cotangent bundles:

T = R×A S −→ A .

T = R×A S −→ (S , ω)

π∗ ↓ π ↓

(R , σ) −→ A .

(4.1)

Denote by (A,E,B) any point in T ( often abbreviated to

(E,B) ) :

T 3 (A,E,B) with A ∈ A, E ∈ TAA and B ∈ T ∗AA.

The tangent space to T at (E,B) ∈ T ( over A ∈ A) is

T(E,B)T = TAA⊕ T ∗AA.

Every tangent vector in T(E,B)T is written as

a =

(
e

β

)
by e ∈ TAA and β ∈ T ∗AA .

Define the following inner product on each fiber T(E,B)T ?F((
e1

β1

)
,

(
e2

β2

))
T

= (e2, d
∗
Aβ1 )1 + (e1, d

∗
Aβ2 )1 . (4.2)
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————– Differential calculation on T ——————

The directional derivative (∂Φ)(E,B)

(
e

0

)
of a function Φ =

Φ(E,B) on T to the direction e ∈ TA is defined by the Frechet

derivative.

Then the partial derivative δΦ
δE ∈ T

∗
AA is defined by

(∂Φ)(E,B)

(
e

0

)
=

((
e

0

)
,

(
0
δΦ
δE

))
T

= (e, d∗A
δΦ

δE
)1 , ∀e ∈ TAA,

where A = π∗(E,B).

Similarly the partial derivative δΦ
δB ∈ TAA is defined by

(∂Φ)(E,B)

(
0

β

)
= (

δΦ

δB
, d∗Aβ )1 , ∀β ∈ T ∗AA.

Where the left hand side is the Frechet directional derivative to

the direction β ∈ T ∗A .

The exterior differentiation is given by

(d̃Φ)(E,B)

(
e

β

)
=

 δΦ
δB

δΦ
δE

 ,

 e

β


T

(4.3)

Example

Let H = H(E,B); Hamiltonian function on T be given by

H(E,B) =
1

2

((
E

B

)
,

(
d∗AB

dAE

))
T

=
1

2
(dAE, dAE)1 +

1

2
(d∗AB, d

∗
AB)1.

Then
δH

δB
= d∗AB ,

δH

δE
= dAE . (4.4)
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The symplectic structure on T and F

Definition 4.1. The 2-form Ω on T is defined by the following

formula:

Ω(E,B)

((
e1

β1

)
,

(
e2

β2

))
= ( e2 , d

∗
Aβ1 )1 − ( e1 , d

∗
Aβ2 )1

(4.5)

for any

(
ei

βi

)
∈ T(E,B)T , i = 1, 2.

Ω is a non-degenerate skew-symmetric and

d̃Ω = 0 .

Theorem 4.1.

(T = TA×A T ∗A , Ω ) is a symplectic manifold.

Proposition 4.2.

Let Φ = Φ(E,B) be a function on the fields T. Then the Hamil-

tonian vector field XΦ of Φ is given by

XΦ(E,B) =

 − δΦ
δB

δΦ
δE

 . (4.6)

The formulae (4.3) and (4.5) imply (4.6) yield the proposi-

tion.
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Definition 4.2.

The Poisson bracket on T is defined by the formula

{Φ , Ψ }T(E,B) = Ω(E,B) (XΦ , XΨ ) , (4.7)

for Φ, Ψ ∈ C∞(T).

The following formula is our counterpart to the Marsden-

Weinsrein’s vortex formula for the Poisson baracket of Maxwell’s

fields .

Proposition 4.3.

{Φ , Ψ }T(E,B) =

(
δΦ

δB
, d∗A

δΨ

δE

)
1

−
(
δΨ

δB
, d∗A

δΦ

δE

)
1

=

(
dA
δΦ

δB
,
δΨ

δE

)
2

−
(
dA
δΨ

δB
,
δΦ

δE

)
2

(4.8)

Proposition follows from (4.6).

The equation of motion for the Hamiltonian H is written in

the form

Φ̇ = {Φ , H}T(E,B) . (4.9)
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Let H = H(E,B) be the Hamiltonian function of (4.1):

H(E,B) =
1

2

((
E

B

)
,

(
d∗AB

dAE

))
T

=
1

2
(dAE, dAE)1 +

1

2
(d∗AB, d

∗
AB)1.

Then the Hamiltonian equation of motion of H is

Ė = −d∗AB , Ḃ = dAE . (4.10)

This is the Maxwell electro-Magnetic aspect of our Yang-Mills

field.

These equations correpond to the Faraday’s quation (2.2) and

Ampère’s equation (2.4) respectively.
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The equations for the nonexsistence of magnetic monopole

and for the Gauss’s law are deduced from the symplectic reduc-

tion by the group of gauge transformations G.

These are already observed:

J−1(0)/G ' R0 = {(A,E) ∈ R = TA; E ∈ TAA d∗E = 0}

K−1(0)/G ' S0 = {(A,B) ∈ S = T ∗A; B ∈ T ∗AA dB = 0}

Writing these in (T,Ω), we have the definiiton of the following

Yang-Mills fields.

33



4.2 Yang-Mills fields

Definition 4.3.

The Yang-Mills field is the subspace of T defined by

F = {(E,B) ∈ T : dAB = 0, d∗AE = 0 with π∗(E,B) = A }
(4.11)

The Yang-Mills field F is a symplectic subspace of (T,Ω)

and G-invariant because of

dg·A(g ·B) = g · (dAB) , dg·A(g · E) = g · (dAE) .

F = R0 ×A/G S0 −→ S0

π∗ ↓ π ↓

R0 −→ A/G .

(4.12)

On Yang-Mills field F hold the counterpart of Maxwell’s

equations:

d∗AB + Ė = 0 , d∗AE = 0 , (4.13)

dAE − Ḃ = 0 , dAB = 0 . (4.14)
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The group of gauge transformations G acts on F by

g · (A,E,B) = (g · A, Adg E , Ad∗g−1B ) (4.15)

= (g−1Ag + g−1dg, g−1Eg , g−1Bg ) .(4.16)

It is a symplectic action because of(
g · e , d∗g·A(g · β)

)
1

= ( g · e , g · (d∗Aβ )1 = (e , d∗Aβ ) ,

for any (e, β) ∈ T(E,B)T.

The Lie algebra of infinitesimal gauge transformations LieG =

Ω0(M,LieG) acts on T by

ξ ·


A

E

B

 =


dAξ

[E, ξ ]

[B, ξ ]

 , (4.17)

that is, the fundamental vector field on T corresponding to

ξ ∈ LieG becomes

ξT (E,B) =


dAξ

[E, ξ ]

[B, ξ ]

 . (4.18)
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Now we shall investigate the Hamiltonian action of G on the

Yang-Mills field F .

A map

J : F −→ (LieG)∗ = Ω3(M, LieG) (4.19)

is by definition a moment map for the symplectic action of G
on F provided

1. If we put Jξ(E,B) = 〈J(E,B) , ξ〉, the Hamiltonian vector

fields of Jξ coincides with the fundamental vector field ξT,

(4.2).

2. J is Ad∗-equivariant:

Jξ(g−1Eg , g−1Bg ) = JAdg−1ξ(E,B) .

In this case we say that the action of G is Hamiltonian.

Proposition 4.4. The action of G on F is Hamiltonian with

the moment map

J(E, B ) = [ dAE , ∗B ] . (4.20)

Proof

We have

Jξ(E,B) = ( dAE , [B, ξ ] )2 = − ( d∗AB , [E, ξ ] )1, ∀ξ ∈ LieG ,
(4.21)

and

(d̃ Jξ)(E,B)

(
e

β

)
= (e, d∗A[B, ξ] )1 − (d∗Aβ, [E, ξ] )1

=

 −[E, ξ]

[B, ξ]

 ,

 e

β


T

.
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By (4.6) the Hamiltonian vector field of Jξ becomes

XJξ =

 [E, ξ]

[B, ξ]

 = ξT(E,B) .

The equivariance of J is easy to verify.

Corollary 4.5. On the G-orbit passing through a solution of

equation (4.13) we have J(E,B) = [Ḃ, ∗B].

4.3 Symplectic variable γ : R −→ F

Since any A ∈ A is an irreducible connection we have the Green

operator GA defined on Ωk((M,LieG), k = 1, 2,

( dAd
∗
A + d∗AdA )GAα = α , ∀α ∈ Ωk((M,LieG).

GA is a self adjoint operator; (GAu, v)k = (u,GAv)k for any

u, v ∈ Ωk(M,LieG), k = 1, 2. We note also the fact that GA

commutes with dA and d∗A :

dAGA = GAdA , d∗AGA = GAd
∗
A .

Restricted to the space F we have

dAd
∗
AGAβ = β, d∗AdAGAe = e, (4.22)

for e ∈ TAA and β ∈ T ∗AA.

Definition 4.4.

1. φ : R −→ F ⊂ T is the map defined by

φ (A , p) = (E = −p , B = FA ) . (4.23)
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2. Let φ∗ : TR −→ TT be the tangent map of φ :

(φ∗)(A,p)

(
a

x

)
=

(
−x
dAa

)
,

and let GA : TAA −→ TAA be the Green operator.

We define the modified tangent map γ : TR −→ TT of φ

as follows

γ = φ∗ ◦

 1 0

0 GA

 =

 0 −GA

dA 0

 , (4.24)

that is,

T(A,p)R 3

(
a

x

)
−→ γ(A,p)

(
a

x

)
=

(
−GAx

dAa

)
∈ Tφ(A,p)T .

Lemma 4.6.

γ∗Ω = σ . (4.25)

In fact, we have, for any

(
ai

xi

)
∈ T(A,p)R, i = 1, 2,

(γ∗Ω)(A,p)

((
a1

x1

)
,

(
a2

x2

))
= Ω(E,B)

(
γ

(
a1

x1

)
, γ

(
a2

x2

))
=

Ω(E,B)

((
−GAx1

dAa1

)
,

(
−GAx2

dAa2

))
= (−GAx2 , d

∗
AdAa1 )1 − (−GAx1 , d

∗
AdAa2 )1

= (x1 , GAd
∗
AdAa2 )1 − (x2 , GAd

∗
AdAa1 )1 = (x1, a2)1 − (x2, a1)

= σ(A,p)

((
a1

x1

)
,

(
a2

x2

))
.
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Let R0 = ∪A∈AH0
A be the reduction of R , (3.12). Remenber

that the symplectic reduction of R by the moment map J is

isomorphic to R0, Proposition 3.6 .

Theorem 4.7. (R0, σ) is symplectomorph to (F ,Ω).

Proof

Since d∗A(−p) = 0 and dAFA = 0 for (A, p) ∈ R0, φ maps

the subspace R0 into F . The tangent space of H0
A consist of

those vectors

(
a

x

)
∈ T(A,p)R such that d∗Ax = 0, and the

tangent space TF consists of those vectors

(
e

β

)
∈ TT such

that d∗Ae = 0 and dAβ = 0. If

(
a

x

)
is tangent to H0

A then

d∗AGAx = 0 and dA(dAa) = 0, ( the latter follows from the

derivation of dAFA = 0). So γ maps TR0 into TF . Moreover γ

is a bijective map of TR0 onto TF . In fact we have the inverse

map given by

TF 3

(
e

β

)
−→ (−d∗A ◦ γ)

(
e

β

)
=

(
d∗AGAβ

−d∗AdAe

)
∈ TR0.

By virtue of the implicit function theorem in Banach space the

vector spaces R and F are diffeomorphic. Let γ̃ : R0 −→ F be

the diffeomorphism. Lemma 4.6 implies that γ̃ is a symplecto-

morphism.
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