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Abstract

Let H be the quaternion algebra. Let g be a complex Lie algebra and let U(g)

be the enveloping algebra of g. The quaternification gH = (H ⊗ U(g), [ , ]gH )

of g is defined by the bracket

[
z⊗X , w ⊗ Y

]
gH

= (w · z)⊗ (XY ) − (z ·w)⊗ (Y X) ,

for z, w ∈ H and X, Y ∈ U(g) . Let S3
H be the ( non-commutative ) algebra of

H-valued smooth mappings over S3 and let S3gH = S3
H⊗ U(g). The Lie algebra

structure on S3gH is induced naturally from that of gH. As a subalgebra of S3
H we

have the algebra of Laurent polynomial spinors C[φ±(m,l,k)] spanned by a complete

orthogonal system of eigen spinors {φ±(m,l,k)}m,l,k of the tangential Dirac operator

on S3. Then C[φ±(m,l,k)] ⊗ U(g) is a Lie subalgebra of S3gH. We introduce a 2-

cocycle on C[φ±(m,l,k)]⊗ U(g) by the aid of the radial vector field ∂
∂n

on S3 ⊂ C
2.

Then we have the corresponding central extension ĝ(a) = (C[φ±(m,l,k)] ⊗ U(g) ) ⊕
(Ca). Finally we have a Lie algebra ĝ which is obtained by adding to ĝ(a) a

derivation d which acts on ĝ(a) as the radial derivation ∂
∂n

. That is the C-vector

space ĝ =
(
C[φ±(m,l,k)]⊗ U(g)

)
⊕ (Ca)⊕ (Cd) endowed with the bracket

[
φ1 ⊗X1 + λ1a+ µ1d , φ2 ⊗X2 + λ2a+ µ2d

]
ĝ
= (φ1φ2)⊗ (X1 X2) − (φ2φ1)⊗ (X2X1)

+µ1
∂

∂n
φ2 ⊗X2 − µ2

∂

∂n
φ1 ⊗X1 + (X1|X2)c(φ1, φ2)a .
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When g is a simple Lie algebra with its Cartan subalgebra h we shall investigate

the weight space decomposition of ĝ with respect to the subalgebra ĥ = (φ+(0,0,1) ⊗
h)⊕ (Ca)⊕ (Cd).

The previous versions (v1-v6) of this arXiv text contained many incorrect asser-

tions and here we have corrected them.
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0 Introduction

The set of smooth mappings from a manifold to a Lie algebra has been a subject of

investigation both from a purely mathematical standpoint and from quantum field the-

ory. In quantum field theory they appear as a current algebra or an infinitesimal gauge

transformation group. Loop algebras are the simplest example. Loop algebras and their

representation theory have been fully worked out. A loop algebra valued in a simple Lie

algebra or its complexification turned out to behave like a simple Lie algebra and the

highly developed theory of finite dimensional Lie algebra was extended to such loop al-

gebras. Loop algebras appear in the simplified model of quantum field theory where the

space is one-dimensional and many important facts in the representation theory of loop

algebra were first discovered by physicists. We aim the three-dimensional generalization

of this theory. It turned out that in many applications to field theory one must deal with

certain extensions of the associated loop algebra rather than the loop algebra itself. The

central extension of a loop algebra is called an affine Lie algebra and the highest weight

theory of finite dimensional Lie algebra was extended to this case. [K], [K-W], [P-S] and

[W] are good references to study these subjects. In this paper we shall investigate a gen-

eralization of affine Lie algebras to the Lie algebra of mappings from three-sphere S3 to

a Lie algebra. As an affine Lie algebra is a central extension of the Lie algebra of smooth

mappings from S1 to the complexification of a Lie algebra, so our objective is an extension

of the Lie algebra of smooth mappings from S3 to the quaternification of a Lie algebra.

As for the higher dimensional generalization of loop groups, J. Mickelsson introduced an

abelian exension of current groups Map(S3, SU(N)) for N ≥ 3, [M]. It is related to the

Chern-Simons function on the space of SU(N)-connections and the associated current

algebra Map(S3, su(N)) has a abelian extension Map(S3, su(N))⊕A∗
3 by the affine dual
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of the space A∗
3 of connections over S3 [Ko4]. There does not exist non-trivial central

extension of a complex Lie algebra and we are led to consider the quaternification of Lie

algebras. Now we shall give a brief explanation of each section.

Let H be the quaternion numbers. In this paper we shall denote a quaternion a+ jb ∈

H by

(
a

b

)
. This comes from the identification of H with the matrix algebra

mj(2,C) =








a −b

b a


 : a, b ∈ C



 .

H becomes an associative algebra and the Lie algebra structure (H, [ , ]H ) is induced on

it. The trace of a =

(
a

b

)
∈ H is defined by tr a = a + a. For u,v,w ∈ H we have

tr ([u,v]H ·w ) = tr (u · [v,w]H ).

Let ( g ,
[

,
]
g
) be a complex Lie algebra. Let U(g) be the enveloping algebra. The

quaternification of g is defined as the vector space gH = H ⊗ U(g) endowed with the

bracket
[
z⊗X , w ⊗ Y

]
gH

= (z ·w)⊗ (XY ) − (w · z)⊗ (Y X) , (0.1)

for z, w ∈ H and X, Y ∈ U(g) . It extends the Lie algebra structure (g,
[

,
]
g
) to(

gH,
[

,
]
gH

)
. The quaternions H give also a half spinor representation of Spin(4).

That is, ∆ = H⊗C = H⊕H gives an irreducible complex representation of the Clifford

algebra Clif(R4): Clif(R4) ⊗ C ≃ End(∆), and ∆ decomposes into irreducible repre-

sentations ∆± = H of Spin(4). Let S± = C2 × ∆± be the trivial even ( respectively

odd ) spinor bundle. A section of spinor bundle is called a spinor. The space of even

half spinors C∞(S3, S+) is identified with the space S3H = Map(S3,H). Now the space

S3gH = S3H⊗ U(g) becomes a Lie algebra with respect to the bracket:

[φ⊗X , ψ ⊗ Y ]S3gH = (φψ)⊗ (XY ) − (ψφ) ⊗ (Y X), (0.2)

for X, Y ∈ U(g) and φ, ψ ∈ S3H . In the sequel we shall abbreviate the Lie bracket [ , ]H

simply to [ , ]. Such an abbreviation will be often adopted for other Lie algebras.

In section 2 we shall review the theory of spinor analysis after [Ko2, Ko3]. Let D : S+ −→
S− be the ( half spinor ) Dirac operator. LetD = γ+(

∂
∂n
−∂/) be the polar decomposition on

S3 ⊂ C2 of the Dirac operator, where ∂/ is the tangential Dirac operator on S3 and γ+ is the

Clifford multiplication of the unit normal derivative on S3. The eigenvalues of ∂/ are given
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by {m
2
, −m+3

2
; m = 0, 1, · · · }, with multiplicity (m + 1)(m + 2). We have an explicitly

written formula for eigenspinors
{
φ+(m,l,k), φ−(m,l,k)

}
0≤l≤m, 0≤k≤m+1

corresponding to the

eigenvalue m
2
and −m+3

2
respectively and they give rise to a complete orthogonal system

in L2(S3, S+). A spinor φ on a domain G ⊂ C2 is called harmonic spinor on G if Dφ = 0.

Each φ+(m,l,k) is extended to a harmonic spinor on C2, while each φ−(m,l,k) is extended to

a harmonic spinor on C2 \ {0}. Every harmonic spinor ϕ on C2 \ {0} has a Laurent series

expansion by the basis φ±(m,l,k):

ϕ(z) =
∑

m,l,k

C+(m,l,k)φ
+(m,l,k)(z) +

∑

m,l,k

C−(m,l,k)φ
−(m,l,k)(z). (0.3)

If only finitely many coefficients are non-zero it is called a spinor of Laurent polyno-

mial type. The algebra of spinors of Laurent polynomial type is denoted by C[φ±(m,l,k)].

C[φ±(m,l,k)] is a subspace of S3H that is algebraically generated by φ+(0,0,1) =

(
1

0

)
,

φ+(0,0,0) =

(
0

−1

)
, φ+(1,0,1) =

(
z2

−z1

)
and φ−(0,0,0) =

(
z2

z1

)
.

Recall that the central extension of a loop algebra Lg = C[z, z−1]⊗g is the Lie algebra

(Lg⊕Ca , [ , ]c ) given by the bracket

[P ⊗X,Q⊗ Y ]c = PQ⊗ [X, Y ] + (X|Y )c(P,Q)a ,

with the aid of the 2-cocycle c(P,Q) = resz=0(
d
dz
P · Q) = 1

2π

∫
S1

d
dz
P · Qdz. Here (·|·) is

a non-degenerate invariant symmetric bilinear form on g. We shall give in section 3 an

analogous 2-cocycle on C[φ±(m,l,k)]. For φ1, φ2 ∈ C[φ±(m,l,k)], we put

c(φ1, φ2) =
1

2π2

∫

S3

tr(
∂

∂n
φ1 · φ2 )dσ. (0.4)

Then c defines a 2-cocycle on the algebra C[φ±(m,l,k)] . That is, c satisfies the following

equations:

c(φ, ψ) = −c(ψ, φ)

and

c(φ1 · φ2 , φ3) + c(φ2 · φ3 , φ1) + c(φ3 · φ1 , φ2) = 0 .

Let a be an indefinite number. The C-vector space ĝ(a) = C[φ±(m,l,k)] ⊗ U(g) ⊕ Ca is

endowed with a Lie algebra structure by the following bracket: For X, Y ∈ U(g) and
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φ, ψ ∈ C[φ±(m,l,k)] we put

[φ⊗X , ψ ⊗ Y ]∧ = (φ · ψ)⊗ (X Y ) − (ψ · φ)⊗ (Y X) + c(φ, ψ)(X|Y ) · a ,

[a , φ⊗X ]∧ = 0 .

( ĝ(a) , [ , ]∧) becomes an extension of the Lie algebra ĝ(a) with 1-dimensional center

Ca. In section 4 we shall construct the Lie algebra which is obtained by adding to ĝ(a)

a derivation d which acts on ĝ(a) as radial derivation d0 = |z| ∂
∂n

on S3. The radial

derivation is defined by d0 = |z| ∂
∂n

= 1
2
(z1

∂
∂z1

+ z2
∂
∂z2

+ z1
∂

∂z1
+ z2

∂
∂z2

). We have the

following fundamental property of the cocycle c .

c( d0φ1 , φ2 ) + c(φ1 , d0φ2 ) = 0.

Let ĝ = (C[φ±(m,l,k)]⊗ U(g) )⊕ (Ca)⊕ (Cd). We endow ĝ with the bracket defined by

[φ⊗X , ψ ⊗ Y ]ĝ = [φ⊗X , ψ ⊗ Y ]∧ , [ a , φ⊗X ]ĝ = 0 ,

[ d, a ]ĝ = 0 , [ d, φ⊗X ]ĝ = d0φ⊗X .

Then ( ĝ , [ , ]ĝ ) is an extension of the Lie algebra ĝ(a) on which d acts as d0.

In section 5, when g is a simple Lie algebra with its Cartan subalgebra h , we shall

investigate the weight space decomposition of ĝ with respect to the subalgebra ĥ =

(φ+(0,0,1) ⊗ h) ⊕ (Ca) ⊕ (Cd), the latter is a commutative subalgebra such that ad(ĥ)

is diagoniable. For this purpose we look at the representation of the adjoint action of

h on the enveloping algebra U(g). Let g =
∑

α∈∆ gα be the root space decomposi-

tion of g. Let Π = {αi; i = 1, · · · , r = rank g} ⊂ h∗ be the set of simple roots and

{α∨
i ; i = 1, · · · , r } ⊂ h be the set of simple coroots. The Cartan matrix A = ( aij )i,j=1,··· ,r

is given by aij = 〈α∨
i , αj〉. Fix a standard set of generators Hi = α∨

i , Xi = Xαi
∈ gαi

,

Yi = X−αi
∈ g−αi

, so that [Xi, Yj] = Hjδij , [Hi, Xj] = −ajiXj and [Hi, Yj ] = ajiYj. We

see that the set of weights of the representation (U(g), ad(h)) becomes

Σ = {
r∑

i=1

kiαi ∈ h∗ ; ki ∈ Z, i = 1, · · · , r } (0.5)

The weight space of λ ∈ Σ is by definition

gUλ = {ξ ∈ U(g) ; ad(h)ξ = λ(h)ξ, ∀h ∈ h}, (0.6)
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when gUλ 6= 0. Then, given λ =
∑r

i=1 kiαi , we have

gUλ = C[Y q1
1 · · · Y qr

r H l1
1 · · ·H lr

r X
p1
1 · · ·Xpr

r ; pi, qi, li ∈ N ∪ 0, ki = pi − qi , i = 1, · · · , r ] .
(0.7)

The weight space decomposition becomes

U(g) = Σλ∈Σ gUλ , gU0 ⊃ U(h). (0.8)

Now we proceed to the representation ( ĝ, ad(ĥ) ). The dual space h∗ of h can be regarded

naturally as a subspace of ĥ ∗. So Σ ⊂ h∗ is seen to be a subset of ĥ ∗. we define δ,Λ0 ∈ ĥ ∗

by putting 〈Λ0, hi 〉 = 〈δ, hi 〉 = 〈Λ0, d〉 = 〈δ, a〉 = 0, 1 ≦ i ≦ r and 〈Λ0, a〉 = 〈δ, d〉 = 1.

Then the set of weights Σ̂ of ( ĝ, ad(ĥ) ) is

Σ̂ =
{m
2
δ + λ; λ ∈ Σ , m ∈ Z, m 6= −1,−2

}

⋃{m
2
δ; m ∈ Z, m 6= −1,−2

}
. (0.9)

The weight space decomposition of ĝ is given by

ĝ =
⊕

m6=−1,−2

ĝm
2
δ

⊕

λ∈Σ, m6=−1,−2

ĝm
2
δ+λ

⊕
(Ca)

⊕
(Cd) . (0.10)

Each weightt space is given as follows:

ĝm
2
δ+λ = C[φ+(m,l,k); 0 ≤ l ≤ m, 0 ≤ k ≤ m+ 1 ]⊗ gUλ , (0.11)

ĝ−m+3

2
δ+λ = C[φ−(m,l,k); 0 ≤ l ≤ m, 0 ≤ k ≤ m+ 1 ]⊗ gUλ , (0.12)

ĝm
2
δ = C[φ+(m,l,k); 0 ≤ l ≤ m, 0 ≤ k ≤ m+ 1 ]⊗ gU0 , (0.13)

ĝ−m+3

2
δ = C[φ−(m,l,k); 0 ≤ l ≤ m, 0 ≤ k ≤ m+ 1 ] ⊗ gU0 , (0.14)

for m ≥ 0.
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1 Quaternification of a Lie algebra

1.1 Quaternion algebra

The quaternionsH are formed from the real numbers R by adjoining three symbols i, j, k

satisfying the identities:

i2 = j2 = k2 = −1 ,

ij = −ji = k, jk = −kj = i, ki = −ik = j . (1.1)

A general quaternion is of the form x = x1 + x2i+ x3j + x4k with x1, x2, x3, x4 ∈ R. By

taking x3 = x4 = 0 the complex numbers C are contained in H if we identify i as the

usual complex number. Every quaternion x has a unique expression x = z1 + jz2 with

z1, z2 ∈ C. This identifies H with C2 as C-vector spaces. The quaternion multiplication

will be from the right x −→ xy where y = w1 + jw2 with w1, w2 ∈ C:

xy = (z1 + jz2 )(w1 + jw2 ) = (z1w1 − z2w2) + j(z1w2 + z2w1). (1.2)

The multiplication of a g = a + jb ∈ H to H from the left yields an endomorphism in

H: {x −→ gx} ∈ EndH(H). If we look on it under the identification H ≃ C2 mentioned

above we have the C-linear map

C2 ∋
(
z1

z2

)
−→




a −b

b a



(
z1

z2

)
∈ C2 . (1.3)

This establishes the R- linear isomorphism

H ∋ a + jb
≃−→


 a −b

b a


 ∈ mj(2,C), (1.4)

where we defined

mj(2,C) =








a −b

b a


 : a, b ∈ C



 . (1.5)
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The complex matrices corresponding to i, j, k ∈ H are

e3 =


 i 0

0 −i


 , e2 =


 0 −1

1 0


 , e1 =


 0 i

i 0


 .

These are the basis of the Lie algebra su(2). Thus we have the identification of the

following objects

H ≃ mj(2,C) ≃ R⊕ su(2). (1.6)

The correspondence between the elements is given by

a+ jb ≡
(
a

b

)
←→




a −b

b a


 ←→ s + pe1 + qe2 + re3 , (1.7)

where a = s+ ir, b = q + ip.

H becomes an associative algebra with the multiplication law defined by

(
z1

z2

)
·
(
w1

w2

)
=

(
z1w1 − z2w2

z1w2 + z2w1

)
, (1.8)

which is the rewritten formula of (1.2) and the right-hand side is the first row of the

matrix multiplication 
 z1 −z2

z2 z1




 w1 −w2

w2 w1


 .

It implies the Lie bracket of two vectors in H, that becomes

[(
z1

z2

)
,

(
w1

w2

)]
=

(
z2w2 − z2w2

(w1 − w1)z2 − (z1 − z1)w2

)
. (1.9)

These expressions are very convenient to develop the analysis on H, and give an

interpretation on the quaternion analysis by the language of spinor analysis.

Proposition 1.1. Let z =

(
z1

z2

)
, w =

(
w1

w2

)
∈ H . Then the trace of z ·w ∈ H ≃

mj(2,C) is given by

tr (z ·w) = 2Re(z1w1 − z2w2), (1.10)
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and we have, for z1, z2, z3 ∈ H,

tr ( [ z1, z2 ] · z3 ) = tr ( z1 · [ z2 , z3 ] ) . (1.11)

The center of the Lie algebra H is

{(
t

0

)
∈ H; t ∈ R

}
≃ R, and (1.6) says that

H is the trivial central extension of su(2).

R3 being a vector subspace of H:

R3 ∋




p

q

r


 ⇐⇒

(
ir

q + ip

)
= ir + j(q + ip) ∈ H, (1.12)

we have the action of H on R3.

1.2 Lie algebra structure on H⊗ U(g)
Let ( g ,

[
,
]
g
) be a complex Lie algebra. Let U(g) be the enveloping algebra of g.

Let gH = H⊗ U(g) and define the following bracket on gH:

[
· , ·
]
gH

: (H⊗ g) × (H⊗ g) −→ H⊗ U(g) . (1.13)

by
[
z⊗X , w⊗ Y

]
gH

= (z ·w)⊗ [X, Y ]g + [z , w] ⊗ (Y X) , (1.14)

for z, w ∈ H and X, Y ∈ g .
[
· , ·
]
gH

is extended naturally to H ⊗ U(g) . Thus, for

X, Y ∈ U(g) and z, w ∈ H , we have

[ z⊗X , w ⊗ Y ]gH = (z ·w)⊗ (XY )− (w · z)⊗ (Y X) . (1.15)

By the quaternion number notation every element of H⊗g may be written as X+ jY

with X, Y ∈ g. Then the above definition is equivalent to

[
X1 + jY1 , X2 + jY2

]
gH

= [X1, X2]g − ( Y 1Y2 − Y 2Y1 )

+ j
(
X1Y2 − Y2X1 + Y1X2 −X2Y1

)
, (1.16)

where X is the complex conjugate of X .

9



Proposition 1.2. The bracket
[
· , ·
]
gH

defines a Lie algebra structure on H⊗ U(g) .

In fact the bracket defined in (1.15) satisfies the antisymmetry equation and the Jacobi

identity.

Definition 1.3. The Lie algebra
(
gH = H⊗ U(g) ,

[
,
]
gH

)
is called the quaternifi-

cation of the Lie algebra g .

2 Analysis on H

In this section we shall review the analysis of the Dirac operator on H ≃ C2. The general

references are [B-D-S] and [G-M], and we follow the calculations developed in [Ko1], [Ko2]

and [Ko3].

2.1 Harmonic polynomials

The Lie group SU(2) acts on C2 both from the right and from the left. Let dR(g) and

dL(g) denote respectively the right and the left infinitesimal actions of the Lie algebra

su(2). We define the following vector fields on C2:

θi = dR

(
1

2
ei

)
, τi = dL

(
1

2
ei

)
, i = 1, 2, 3, (2.1)

where {ei; i = 1, 2, 3} is the normal basis of R3. Each of the triple θi(z), i = 1, 2, 3, and

τi(z), i = 1, 2, 3, gives a basis of the vector fields on the three sphere {|z| = 1} ≃ S3.

It is more convenient to introduce the following vector fields:

e+ = −z2
∂

∂z̄1
+ z1

∂

∂z̄2
= θ1 −

√
−1θ2, (2.2)

e− = −z̄2
∂

∂z1
+ z̄1

∂

∂z2
= θ1 +

√
−1θ2, (2.3)

θ = z1
∂

∂z1
+ z2

∂

∂z2
− z̄1

∂

∂z̄1
− z̄2

∂

∂z̄2
= 2
√
−1 θ3. (2.4)

ê+ = −z̄1
∂

∂z̄2
+ z2

∂

∂z1
= τ1 −

√
−1τ2, (2.5)

ê− = z̄2
∂

∂z̄1
− z1

∂

∂z2
= τ1 +

√
−1τ2, (2.6)

θ̂ = z2
∂

∂z2
+ z̄1

∂

∂z̄1
− z̄2

∂

∂z̄2
− z1

∂

∂z1
= 2
√
−1 τ3. (2.7)
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We have the commutation relations;

[θ, e+] = 2e+, [θ, e−] = −2e−, [e+, e−] = −θ. (2.8)

[θ̂, ê+] = 2ê+, [θ̂, ê−] = −2ê−, [ê+, ê−] = −θ̂. (2.9)

Both Lie algebras spanned by (e+, e−, θ) and (ê+, ê−, θ̂) are isomorphic to sl(2,C).

In the following we denote a function f(z, z̄) of variables z, z̄ simply by f(z). For

m = 0, 1, 2, · · ·, and l, k = 0, 1, · · · , m, we define the polynomials:

vk(l,m−l) = (e−)
kzl1z

m−l
2 . (2.10)

wk
(l,m−l) = (ê−)

kzl2z̄
m−l
1 . (2.11)

Then vk(l,m−l) and w
k
(l,m−l) are harmonic polynomials on C2;

∆vk(l,m−l) = ∆wk
(l,m−l) = 0 ,

where ∆ = ∂2

∂z1∂z̄1
+ ∂2

∂z2∂z̄2
.{

1√
2π
vk(l,m−l) ; m = 0, 1, · · · , 0 ≤ k, l ≤ m

}
forms a complete orthonormal basis of the

space of harmonic polynomials, as well as
{

1√
2π
wk

(l,m−l) ; m = 0, 1, · · · , 0 ≤ k, l ≤ m
}
.

Proposition 2.1.

e+v
k
(l,m−l) = −k(m− k + 1)vk−1

(l,m−l),

e−v
k
(l,m−l) = vk+1

(l,m−l), (2.12)

θvk(l,m−l) = (m− 2k)vk(l,m−l) .

ê+w
k
(l,m−l) = −k(m− k + 1)wk−1

(l,m−l),

ê−w
k
(l,m−l) = wk+1

(l,m−l), (2.13)

θ̂wk
(l,m−l) = (m− 2k)wk

(l,m−l).

Therefore the space of harmonic polynomials on C2 is decomposed by the right action

of SU(2) into
∑

m

∑m
l=0Hm,l. Each Hm,l =

∑m
k=0Cv

k
(l,m−l) gives an (m+1) dimensional

irreducible representation of SU(2) with the highest weight m
2
.
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We have the following relations.

wk
(l,m−l) = (−1)k l!

(m− k)! v
m−l
(k,m−k) , (2.14)

vk(l,m−l) = (−1)m−l−k k!

(m− k)!v
m−k
(m−l,l) . (2.15)

2.2 Harmonic spinors

∆ = H⊗C = H⊕H gives an irreducible complex representation of the Clifford algebra

Clif(R4):

Clif(R4)⊗C ≃ End(∆) .

∆ decomposes into irreducible representations ∆± = H of Spin(4). Let S = C2 × ∆

be the trivial spinor bundle on C2. The corresponding bundle S+ = C2 × ∆+ ( resp.

S− = C2×∆− ) is called the even ( resp. odd ) spinor bundle and the sections are called

even ( resp. odd ) spinors. The set of even spinors or odd spinors on a set M ⊂ C2 is

nothing but the smooth functions on M valued in H:

Map(M,H) = C∞(M,S+) . (2.16)

The Dirac operator is defined by

D = c ◦ d (2.17)

where d : S → S ⊗ T ∗C2 ≃ S ⊗ TC2 is the exterior differential and c : S ⊗ TC2 → S

is the bundle homomorphism coming from the Clifford multiplication. By means of the

decomposition S = S+ ⊕ S− the Dirac operator has the chiral decomposition:

D =

(
0 D†

D 0

)
: C∞(C2, S+ ⊕ S−)→ C∞(C2, S+ ⊕ S−). (2.18)

We find that D and D† have the following coordinate expressions;

D =




∂
∂z1

− ∂
∂z̄2

∂
∂z2

∂
∂z̄1


 , D† =




∂
∂z̄1

∂
∂z̄2

− ∂
∂z2

∂
∂z1


 . (2.19)

An even (resp. odd) spinor ϕ is called a harmonic spinor if Dϕ = 0 ( resp. D†ϕ = 0 ).
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We shall introduce a set of harmonic spinors which forms a complete orthonormal

basis of L2(S3, S+) .

Let ν and µ be vector fields on C2 defined by

ν = z1
∂

∂z1
+ z2

∂

∂z2
, µ = z2

∂

∂z2
+ z̄1

∂

∂z̄1
. (2.20)

Then the radial vector field is defined by

∂

∂n
=

1

2|z|(ν + ν̄) =
1

2|z|(µ+ µ̄). (2.21)

The vector field θ in (2.4) is also written by θ = 1
2
√
−1

(ν − ν̄).
We shall denote by γ the Clifford multiplication of the radial vector ∂

∂n
, (2.21). γ

changes the chirality:

γ : S+ ⊕ S− −→ S− ⊕ S+; γ2 = 1.

The matrix expression of γ becomes as follows:

γ|S+ =
1

|z|

(
z̄1 −z2
z̄2 z1

)
, γ|S− =

1

|z|

(
z1 z2

−z̄2 z̄1

)
. (2.22)

In the sequel we shall write γ+ (resp. γ−) for γ|S+ (resp. γ|S+).

Proposition 2.2. The Dirac operators D and D† have the following polar decompositions:

D = γ+

(
∂

∂n
− ∂/
)
,

D† =

(
∂

∂n
+ ∂/+

3

2|z|

)
γ− ,

where the tangential (nonchiral) Dirac operator ∂/ is given by

∂/ = −
[

3∑

i=1

(
1

|z|θi
)
· ∇ 1

|z|
θi

]
=

1

|z|



−1

2
θ e+

−e− 1
2
θ


 .

Proof. In the matrix expression (2.19) of D and D†, we have ∂
∂z1

= 1
|z|2 (z̄1ν − z2e−) etc.,

and we have the desired formulas.
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The tangential Dirac operator on the sphere S3 = {|z| = 1};

∂/|S3 : C∞(S3, S+) −→ C∞(S3, S+)

is a self adjoint elliptic differential operator.

We put, for m = 0, 1, 2, · · · ; l = 0, 1, · · · , m and k = 0, 1, · · · , m+ 1,

φ+(m,l,k)(z) =

√
(m+ 1− k)!
k!l!(m− l)!




kvk−1
(l,m−l)

−vk(l,m−l)


 , (2.23)

φ−(m,l,k)(z) =

√
(m+ 1− k)!
k!l!(m− l)!

(
1

|z|2
)m+2




wk
(m+1−l,l)

wk
(m−l,l+1)


 . (2.24)

From Proposition 2.1 we have the following

Proposition 2.3. On S3 = {|z| = 1} we have:

∂/φ+(m,l,k) =
m

2
φ+(m,l,k) , (2.25)

∂/φ−(m,l,k) = −m+ 3

2
φ−(m,l,k) . (2.26)

The eigenvalues of ∂/ are

m

2
, −m+ 3

2
; m = 0, 1, · · · , (2.27)

and the multiplicity of each eigenvalue is equal to (m+ 1)(m+ 2).

The set of eigenspinors

{
1√
2π
φ+(m,l,k),

1√
2π
φ−(m,l,k) ; m = 0, 1, · · · , 0 ≤ l ≤ m, 0 ≤ k ≤ m+ 1

}
(2.28)

forms a complete orthonormal system of L2(S3, S+).

The constant for normalization of φ±(m,l,k) is determined by the integral:

∫

S3

|za1zb2|2dσ = 2π2 a!b!

(a+ b+ 1)!
, (2.29)
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where σ is the surface measure of the unit sphere S3 = {|z| = 1}:
∫

S3

dσ3 = 2π2. (2.30)

φ+(m,l,k) is a harmonic spinor on C2 and φ−(m,l,k) is a harmonic spinor on C2\{0} that
is regular at infinity. If ϕ is a harmonic spinor on C2 \ {0} then we have the expansion

ϕ(z) =
∑

m,l,k

C+(m,l,k)φ
+(m,l,k)(z) +

∑

m,l,k

C−(m,l,k)φ
−(m,l,k)(z), (2.31)

that is uniformly convergent on any compact subset of C2 \ {0}. The coefficients C±(m,l,k)

are given by the formula:

C±(m,l,k) =
1

3π2

∫

S3

〈ϕ, φ±(m,l,k)〉 dσ, (2.32)

where 〈 , 〉 is the inner product of S+. In particular, since φ+(0,0,1) =

(
1

0

)
and J =

φ+(0,0,0) =

(
0

−1

)
,

∫

S3

tr ϕ dσ = 4π2Re.C+(0,0,1), (2.33)

∫

S3

tr Jϕ dσ = 4π2Re.C+(0,0,0).

Definition 2.4. 1. We call the series (2.31) a spinor of Laurent polynomial type if

only finitely many coefficients C±(m,l,k) are non-zero . The vector space of spinors

of Laurent polynomial type is denoted by C[φ±(m,l,k)].

2. For a spinor of Laurent polynomial type ϕ we call the vector resϕ =

(
−C−(0,0,1)

C−(0,0,0)

)

the residue at 0 of ϕ.

We shall see later that C[φ±(m,l,k)] with the multiplication law coming from (1.8)

becomes an associative algebra.

We have the residue formula. See, for example, Proposition 4.2 of [Ko3].

resϕ =
1

2π2

∫

S3

γ+(z)ϕ(z)σ(dz). (2.34)
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2.3 Algebraic generators of C[φ±(m,l,k)]

We investigate the generators of the algebra C[φ±(m,l,k)]. First we observe the following

facts.

1. We have the following product formula for the harmonic polynomials vk(a.b), (2.10).

vk1(a1,b1)v
k2
(a2,b2)

=

a1+a2+b1+b2∑

j=0

Cj |z|2j vk1+k2−j

(a1+a2−j, b1+b2−j) (2.35)

for some rational numbers Cj = Cj(a1, a2, b1, b2, k1, k2), see Lemma 4.1 of [Ko1].

2. Let k = k1+k2, a = a1+a2 and b = b1+ b2. The harmonic polynomial vk(a,b) is equal

to a constant multiple of vk1(a1,b1)v
k2
(a2,b2)

modulo a linear combination of polynomials

vk−j

(a−j,b−j) , 1 ≤ j ≤ min(k, a, b).

3.

(
vk(l,m−l)

0

)
and

(
0

vk+1
(l,m−l)

)
are written by linear combinations of φ+(m,l,k+1) and

φ−(m−1,k,l).

4. Therefore the product of two spinors φ±(m1,l1,k1) · φ±(m2,l2,k2) belongs to C[φ±(m,l,k)].

C[φ±(m,l,k)] becomes an associative algebra and the Lie algebra structure follows

from it.

5. φ±(m,l,k) is written by a linear combination of the products φ±(m1,l1,k1) · φ±(m2,l2,k2)

for 0 ≤ m1 +m2 ≤ m− 1 , 0 ≤ l1 + l2 ≤ l and 0 ≤ k1 + k2 ≤ k .

Hence we find that the algebra C[φ±(m,l,k)] is generated by the following I, J, κ, µ:

I = φ+(0,0,1) =

(
1

0

)
, J = φ+(0,0,0) =

(
0

−1

)
,

κ = φ+(1,0,1) =

(
z2

−z1

)
, µ = φ−(0,0,0) =

(
z2

z1

)
. (2.36)
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The others are generated by these basis, For example,

λ = φ+(1,1,1) =

(
z1

z2

)
= −κJ , ν = φ−(0,0,1) =

(
−z1
z2

)
= −µJ,

φ+(1,0,0) =
√
2

(
0

−z2

)
=

1√
2
J(κ + µ), φ+(1,0,2) =

√
2

(
z1

0

)
=

1√
2
J(µ− κ) ,

φ+(1,1,2) =
√
2

(
−z2
0

)
= − 1√

2
J(λ+ ν), φ+(1,1,0) =

√
2

(
0

−z1

)
=

1√
2
J(λ− ν),

φ−(1,0,0) =
√
2

(
z22

z2z1

)
=

1√
2
νJ(κ + µ), φ−(1,1,0) =

√
2

(
z2z1

z21

)
=

1√
2
µJ(µ− κ),

φ−(1,1,2) =
√
2

(
−z1z2
z22

)
=

1√
2
νJ(λ + ν), φ−(1,0,2) =

√
2

(
z21

−z1z2

)
=

1√
2
µJ(λ− ν)

φ−(1,0,1) =

(
−2z1z2
|z2|2 − |z1|2

)
=
ν

2
(κ + µ+ J(λ− ν)),

φ−(1,1,1) =

(
|z2|2 − |z1|2

2z1z2

)
=
µ

2
(−κ + µ+ J(λ + ν)) .

2.4 2-cocycle on C[φ±(m,l,k)]

Let S3H = Map(S3,H) = C∞(S3, S+) be the set of smooth even spinors on S3. We

define the Lie algebra structure on S3H after (1.9), that is, for even spinors φ1 =

(
u1

v1

)

and φ2 =

(
u2

v2

)
, we have the Lie bracket

[
φ1 , φ2

]
=


 v1v̄2 − v̄1v2

(u2 − ū2)v1 − (u1 − ū1)v2


 . (2.37)
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Let ∂
∂n

be the radial vector field (2.21). For ϕ =

(
u

v

)
∈ S3H we put

∂

∂n
ϕ =




∂
∂n
u

∂
∂n
v


 .

We have the following Leibnitz rule.

∂

∂n
(φ1 · φ2) = (

∂

∂n
φ1) · φ2 + φ1 · (

∂

∂n
φ2) , (2.38)

Lemma 2.5. 1.

∂

∂n
φ+(m,l,k) =

m

2|z| φ
+(m,l,k),

∂

∂n
φ−(m,l,k) = −m+ 3

2|z| φ−(m,l,k). (2.39)

2. Let ϕ be a Laurent polynomial spinor:

ϕ(z) =
∑

m,l,k

C+(m,l,k)φ
+(m,l,k)(z) +

∑

m,l,k

C−(m,l,k)φ
−(m,l,k)(z).

Then ∫

S3

tr
∂

∂n
ϕdσ = 0. (2.40)

The formula (2.39) follows from the definition (2.23). If ϕ is a spinor of Laurent

Polynomial type then |z| ∂
∂n
ϕ is also a spinor of Laurent polynomial type and, since the

coefficient of φ+(0,0,1) in the Laurent expansion of |z| ∂
∂n
ϕ vanishes, the formula (2.40)

follows from (2.33).

Definition 2.6. For φ1 and φ2 ∈ C[φ±(m,l,k)] , we put

c(φ1, φ2) =
1

2π2

∫

S3

tr[ (
∂

∂n
φ1) · φ2 ]dσ. (2.41)

Proposition 2.7. c defines a 2-cocycle on the algebra C[φ±(m,l,k)]. That is, c satisfies

the following equations:

c(φ1 φ2) = − c(φ2, φ1) , (2.42)

c(φ1 · φ2 , φ3) + c(φ2 · φ3 , φ1 ) + c(φ3 · φ1 , φ2 ) = 0. (2.43)
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In fact (2.40) and the Leibnitz rule (2.38) imply (2.42). The following calculation

proves (2.43).

c(φ1 · φ2 , φ3) =
1

2π2

∫

S3

tr(
∂

∂n
(φ1 · φ2) · φ3 )dσ

=
1

2π2

∫

S3

tr(
∂

∂n
φ1 · (φ2 · φ3) )dσ +

1

2π2

∫

S3

tr(
∂

∂n
φ2 · (φ3 · φ1) )dσ

= c(φ1 , φ2 · φ3 ) + c(φ2 , φ3 · φ1 ) = −c(φ2 · φ3 , φ1 ) − c(φ3 · φ1 , φ2).

The last equality follows from (2.42).

Example.

c(φ+(1,1,1) , φ+(1,0,2) − 1√
2
φ+(1,1,1) − 1√

2
φ−(0,0,1) ) = 2

√
2. (2.44)

We introduce the derivation d0 =
1
2
( ν+ν ) = |z| ∂

∂n
acting on the algebra C[φ±(m,l,k)]:

d0(φ1 · φ2 ) = d0φ1 · φ2 + φ1 · d0φ2 . (2.45)

Lemma 2.8.

c( d0φ1 , φ2 ) + c(φ1 , d0φ2 ) = 0 . (2.46)

In fact, we have d0φ|S3 = ∂
∂n
φ|S3. Hence

c(φ1 , d0φ2 ) =
1

2π2

∫

S3

tr (
∂

∂n
φ1 · d0φ2 )dσ = c(φ2 , d0φ1 ) .

3 Extensions of the Lie algebra C[φ±(m,l,k)]⊗ U(g)

3.1 Extension of C[φ±(m,l,k)]⊗ U(g) by a 1-dimensional center

From Proposition 1.2 we see that S3gH = S3H⊗U(g) endowed with the following bracket

[ , ]S3gH becomes a Lie algebra.

[φ⊗X , ψ ⊗ Y ]S3gH = (φ · ψ)⊗ (XY ) − (ψ · φ)⊗ (Y X), (3.1)

for X, Y ∈ U(g) and φ, ψ ∈ S3H . And C[φ±(m,l,k)]⊗ U(g) is a Lie subalgebra of S3gH.

We take the non-degenerate invariant symmetric bilinear C-valued form ( · | · ) on g

and extend it to U(g): forX = X l1
1 · · ·X ln

n and Y = Y k1
1 · · ·Y km

m written by the basisi of g ,
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(X|Y ) is defined by (X|Y ) = tr(ad(X l1
1 ) · · · ad(X ln

n )ad(Y k1
1 ) · · · ad(Y km

m )) . We extend this

form by linearity to a C[φ±(m,l,k)]-valued bilinear form on the Lie algebra C[φ±(m,l,k)] ⊗
U(g). Then we can define a C-valued 2-cocycle on the Lie algebra C[φ±(m,l,k)]⊗ U(g) by

c(φ1 ⊗X1 , φ2 ⊗X2 ) = (X|Y ) c(φ1, φ2). (3.2)

The 2-cocycle property follows from the fact (XY |Z) = (Y Z|X) and Proposition 2.7.

Let a be an indefinite element. Denote by ĝ(a) the extension of the Lie algebra

C[φ±(m,l,k)] ⊗ U(g) by a 1-dimensional center, associated to the cocycle c. Explicitly we

have the following theorem.

Theorem 3.1.

ĝ(a) = (C[φ±(m,l,k)]⊗ U(g) )⊕ (Ca), (3.3)

and the bracket is given by

[φ⊗X , ψ ⊗ Y ]̂ = (φ · ψ)⊗ (XY )− (ψ · φ)⊗ (Y X) + (X|Y ) c(φ, ψ) a , (3.4)

[ a , φ⊗X ]̂ = 0 , (3.5)

for X, Y ∈ U(g) and φ, ψ ∈ C[φ±(m,l,k)] .

3.2 Extension of ĝ(a) by a derivation

The derivation d0 on C[φ±(m,l,k)] is extended to a derivation of the Lie algebra ĝ(a). In

fact , if we define the action of d0 on ĝ(a) by

[ d0 , φ⊗X ]̂ = (d0φ )⊗X , (3.6)

[ d0 , a ]
̂ = 0 , (3.7)

then we have from (2.45)

d0
(
[φ1 ⊗X1 + t1a , φ2 ×X2 + t2a ]

̂
)
= d0 ( (φ1φ2) ⊗ (X1X2) − (φ2φ1)⊗ (X2X1) )

= (d0φ1 · φ2)⊗ (X1X2) − (φ2 · d0φ1)⊗ (X2X1) + (φ1 · d0φ2)⊗ (X1X2) − (d0φ2 · φ1)⊗ (X2X1) ,
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for φ1 ⊗X1 + t1a ∈ ĝ(a) and φ2 ⊗X2 + t2a ∈ ĝ(a) . On the other hand

[ d0(φ1 ⊗X1 + t1a) , φ2 ⊗X2 + t2a ]
̂ + [φ1 ⊗X1 + t1a , d0(φ2 ×X2 + t2a) ]

̂

= (d0φ1 · φ2)⊗ (X1X2) − (φ2 · d0φ1)⊗ (X2X1) + (φ1 · d0φ2)⊗ (X1X2) − (d0φ2 · φ1)⊗ (X2X1)

+ (X1|X2) ( c(d0φ1, φ2) + c(φ1, d0φ2)) a .

Since c(d0φ1, φ2) + c(φ1, d0φ2) = 0 from Lemma 2.8 we have

d0
(
[φ1 ⊗X1 + t1a , φ2 ×X2 + t2a ]

̂
)

= [ d0(φ1 ⊗X1 + t1a) , φ2 ⊗X2 + t2a ]
̂ + [φ1 ⊗X1 + t1a , d0(φ2 ×X2 + t2a) ]

̂ .

Thus d0 is a derivation that acts on the Lie algebra ĝ(a).

We denote by ĝ the Lie algebra that is obtained by adjoining a derivation d to ĝ(a)

which acts on ĝ(a) as d0 and which kills a. More explicitly we have the following

Theorem 3.2. Let a and d be indefinite numbers. We consider the C vector space:

ĝ =
(
C[φ±(m,l,k)]⊗ U(g)

)
⊕ (C a)⊕ (Cd) , (3.8)

and define the following bracket on ĝ. For X, Y ∈ U(g) and φ, ψ ∈ C[φ±(m,l,k)] , we put

[φ⊗X , ψ ⊗ Y ]ĝ = [φ⊗X , ψ ⊗ Y ]̂ (3.9)

= (φ · ψ)⊗ (XY )− (ψ · φ)⊗ (Y X) + (X|Y ) c(φ, ψ) · a ,

[ a , φ⊗X ]ĝ = 0, [ d, φ⊗X ]ĝ = d0φ⊗X , (3.10)

[ a , d ]ĝ = 0 . (3.11)

Then ( ĝ , [ ·, · ]ĝ ) becomes a Lie algebra.

Proof

It is enough to prove the following Jacobi identity:

[ [ d , φ1 ⊗X1 ]ĝ , φ2 ⊗X2 ]ĝ + [ [φ1 ⊗X1, φ2 ⊗X2 ]ĝ , d ]ĝ + [ [φ2 ⊗X2, d ]ĝ, φ1 ⊗X1 ]ĝ = 0.
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In the following we shall abbreviate the bracket [ , ]ĝ simply to [ , ]. We have

[ [ d , φ1 ⊗X1 ] , φ2 ⊗X2 ] =[ d0φ1 ⊗X1, φ2 ⊗X2 ]

= ( d0φ1 · φ2)⊗ (X1X2)− (φ2 · d0φ1 )⊗ (X2X1)

+ (X1|X2)c( d0φ1 , φ2) · a .

Similarly

[ [φ2 ⊗X2, d ], φ1 ⊗X1 ] =(φ1 · d0φ2)⊗ (X1X2)− ( d0φ2 · φ1)⊗ (X2X1)

+ (X1|X2) c(φ1, d0φ2 ) a .

[ [φ1 ⊗X1, φ2 ⊗X2 ] , d ] =−
[
d , (φ1 · φ2)⊗ (X1X2)− (φ2 · φ1)⊗ (X2X1) + (X1|X2)c(φ1 , φ2) a

]

=− d0(φ1 · φ2)⊗ (X1X2) + d0(φ2 · φ1)⊗ (X2X1) .

The sum of three equations vanishes by virtue of (2.45) and Lemma 2.8.

4 Structure of ĝ

4.1 The weight space decomposition of U(g)

Let ( g , [ , ]g ) be a simple Lie algebra. Let h be a Cartan subalgebra of g and g = h ⊕
∑

α∈∆ gα be the root space decomposition with the root space gα = {X ∈ g; ad(h)X =

< α, h > X, ∀h ∈ h} . ∆ = ∆(g, h) is the set of roots and dim gα = 1. In the following

we summarize the known results on the representation (ad(h), U(g) ), [D, Ma]. Let Π =

{αi; i = 1, · · · , r = rank g} ⊂ h∗ be the set of simple roots and {α∨
i ; i = 1, · · · , r } ⊂ h be

the set of simple coroots. The Cartan matrix A = ( aij )i,j=1,··· ,r is given by aij = 〈α∨
i , αj〉.

Fix a standard set of generators Hi = α∨
i , Xi ≡ Xαi

∈ gαi
, Yi ≡ X−αi

∈ g−αi
, so that

[Xi, Yj] = Hjδij , [Hi, Xj] = ajiXj and [Hi, Yj] = −ajiYj. Let ∆± be the set of positive (

respectively negative ) roots of g and put

n± =
∑

α∈∆±

gα .
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Then g = n+⊕h⊕n−. The enveloping algebra U(g) of g has the direct sum decomposition:

U(g) = U(n−) · U(h) · U(n+) . (4.1)

The set

{ Ym1
· · · Ymq

H l1
1 · · ·H lr

r Xn1
· · ·Xnp

; 1 ≤ mi, ni ≤ r , li ≥ 0 }.

forms a basis of the enveloping algebra U(g). The adjoint action of h is extended to that

on U(g):

ad(h)(x · y) = ( ad(h)x ) · y + x · ( ad(h)y ) .

λ ∈ h∗ is called a weight of the representation (U(g), ad(h) ) if there exists a non-zero

x ∈ U(g) such that ad(h)x = hx− xh = λ(h)x for all h ∈ h . Let Σ be the set of weights

of the representation (U(g), ad(h) ). The weight space for the weight λ is by definition

gUλ = {x ∈ U(g) ; ad(h)x = λ(h)x, ∀h ∈ h}.

Let λ = αn1
+ · · ·+αnp

−αm1
− · · ·−αmq

∈ h∗, 1 ≤ ni, mi ≤ r. We can easily verify that

Xλ = Ym1
· · · Ymq

H l1
1 · · ·H lr

r Xn1
· · ·Xnp

∈ gUλ

Therefore λ =
∑p

i=1 αni
−
∑q

i=1 αmi
is a weight of the representation (U(g), ad(h)) with

the weight vetor Xλ. Conversely any weight λ may be written in the form λ =
∑p

i=1 αni
−

∑q

i=1 αmi
. We note that this λ may be written also in the form λ = (

∑p

i=1 αni
+ αk)−

(
∑q

i=1 αmi
+ αk) for an αk ∈ Π, and that it is written in the form λ =

∑r
i=1 piαi −∑r

i=1 qiαi, though pi qi are not uniquely determined.

Lemma 4.1. 1. The set of weights of the adjoint representation (U(g), ad(h)) is

Σ = {
∑

kiαi ; αi ∈ Π, ki ∈ Z }. (4.2)

If we denote

Σ± = {±
∑

niαi ∈ Σ ; ni > 0 } (4.3)

then Σ± ∩∆ = ∆±.

2. If λ ∈ Σ then −λ ∈ Σ.
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3. For each λ =
∑q

i=1 kiαi ∈ Σ , gUλ is generated by the basis

Xλ = Y q1
1 · · · Y qr

r H l1
1 · · ·H lr

r X
p1
1 · · ·Xpr

r

with pi, qi, li ∈ N ∪ 0 such that ki = pi − qi , i = 1, · · · , r .
In particular gU0 is generated by the basis

Xλ = Y p1
1 · · · Y pr

r H l1
1 · · ·H lr

r X
p1
1 · · ·Xpr

r

with pi, li ∈ N ∪ 0 , i = 1, · · · , r , and

U(h) ⊂ gU0 .

4.

[ gUλ , g
U
µ ] ⊂ gUλ+µ , (4.4)

4.2 Weight space decomposition of ĝ

In the following we shall investigate the Lie algebra structure of

ĝ =
(
C[φ±(m,l,k)]⊗ U(g)

)
⊕ (C a)⊕ (Cd) . (4.5)

Recall that the Lie bracket was given by the formulas:

[φ⊗X , ψ ⊗ Y ]ĝ = (φψ)⊗ (XY )− (ψφ)⊗ (Y X) + (X|Y ) c(φ, ψ) a ,

[ a , φ⊗X ]ĝ = 0 , [ a, d ] = 0 ,

[ d, φ⊗X ]ĝ = d0φ⊗X ,

for X, Y ∈ U(g). Since φ+(0,0,1) =

(
1

0

)
we identify X ∈ U(g) with φ+(0,0,1) ⊗ X . Thus

we look g as a Lie subalgebra of ĝ :

[
φ+(0,0,1) ⊗X, φ+(0,0,1) ⊗ Y

]
ĝ
= [X, Y ]g , (4.6)

and we shall write φ+(0,0,1) ⊗X simply as X .

24



Let

ĥ = ( (Cφ+(0,0,1) )⊗ h) ⊕ (C a)⊕ (C d) = h⊕ (C a)⊕ (Cd) . (4.7)

ĥ is an abelian subalgebra of ĝ and ad(ĥ) is diagonalizable for any ĥ ∈ ĥ.

We write ĥ = h+ sa+ td ∈ ĥ with h ∈ h and s, t ∈ C. An element λ of the dual space

h∗ of h can be regarded as an element of ĥ ∗ by putting

〈λ, a〉 = 〈λ, d〉 = 0. (4.8)

So ∆ ⊂ h∗ is seen to be a subset of ĥ ∗. We define the elements δ , Λ0 ∈ ĥ ∗ by

〈δ, α∨
i 〉 = 〈Λ0, α

∨
i 〉 = 0, (1 ≦ i ≦ r), (4.9)

〈 δ, a〉 = 0 , 〈 δ, d 〉 = 1, (4.10)

〈Λ0, a〉 = 1 , 〈Λ0, d 〉 = 0. (4.11)

Then the set {α1, · · · , αr, δ , Λ0 } forms a basis of ĥ ∗. Similarly Σ is a subset of ĥ∗.

For any h ∈ h, φ ∈ C[φ±(m,l,k)] and X ∈ U(g), it holds that

[φ+(0,0,1) ⊗ h, φ⊗X ]ĝ = φ⊗ ( hX −Xh) ,

[ d, φ⊗X ]ĝ = (d0φ )⊗X ,

[φ+(0,0,1) ⊗ h, a ]ĝ = [φ+(0,0,1) ⊗ h, d ]ĝ = [ d, a ]ĝ = 0 .

The adjoint actions of ĥ = h+ sa + td ∈ ĥ on ĝ is written as follows.

ad(ĥ) (φ⊗X + µa+ νd) = φ⊗ (hX −Xh) + td0φ⊗X , (4.12)

for ξ = φ⊗X + µa+ νd ∈ ĝ.

Since ĥ is a commutative subalgebra of ĝ, ĝ is decomposed into a direct sum of the

simultaneous eigenspaces of ad (ĥ), ĥ ∈ ĥ. For λ = γ + k0δ ∈ ĥ ∗, γ =
∑r

i=1 kiαi ∈ Σ,

ki ∈ Z, i = 0, 1, · · · , r, we put,

ĝλ =
{
ξ ∈ ĝ ; [ ĥ, ξ ] = 〈λ, ĥ〉 ξ for ∀ĥ ∈ ĥ

}
. (4.13)
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λ is called a weight of ĝ if ĝλ 6= 0. ĝλ is called the weight space of λ . It holds that

ĝλ ⊂ ĝ(a) . (4.14)

Let Σ̂ denote the set of weights of the representation
(
ĝ , ad(ĥ)

)
.

Theorem 4.2. 1.

Σ̂ =
{m
2
δ + λ; λ ∈ Σ , m ∈ Z, m 6= −1,−2

}

⋃{m
2
δ; m ∈ Z, m 6= −1,−2

}
.

2. Let λ ∈ Σ and λ 6= 0.

ĝm
2
δ+λ = C[φ+(m,l,k); 0 ≤ l ≤ m, 0 ≤ k ≤ m+ 1 ]⊗ gUλ , for m ≥ 0,

ĝ−m+3

2
δ+λ = C[φ−(m,l,k); 0 ≤ l ≤ m, 0 ≤ k ≤ m+ 1 ]⊗ gUλ , for m ≥ 0.

3.

ĝm
2
δ = C[φ+(m,l,k); 0 ≤ l ≤ m, 0 ≤ k ≤ m+ 0 ]⊗ gU0 , for m ≥ 0,

ĝ−m+3

2
δ = C[φ−(m,l,k); 0 ≤ l ≤ m, 0 ≤ k ≤ m+ 1 ] ⊗ gU0 , for m ≥ 0 .

4. ĝ has the following decomposition:

ĝ =
⊕

m6=−1,−2

ĝm
2
δ

⊕

λ∈Σ, m6=−1,−2

ĝm
2
δ+λ

⊕
(Ca)

⊕
(Cd) (4.15)

Proof

First we prove the second assertion. Let X ∈ gUλ for a λ ∈ Σ, λ 6= 0. We have, for any

h ∈ h and m ≥ 0,

[φ+(0,0,1) ⊗ h, φ±(m,l,k) ⊗X ]ĝ = φ±(m,l,k) ⊗ (hX −Xh) = 〈λ, h〉φ±(m,l,k) ⊗X,

[d, φ+(m,l,k) ⊗X ]ĝ =
m

2
φ+(m,l,k) ⊗X,

[d, φ−(m,l,k) ⊗X ]ĝ = −m+ 3

2
φ−(m,l,k) ⊗X ,
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that is, for every ĥ ∈ ĥ, we have

[ĥ , φ+(m,l,k) ⊗X ]ĝ =
〈m
2
δ + λ , ĥ

〉
(φ+(m,l,k) ⊗X) , (4.16)

[ĥ , φ−(m,l,k) ⊗X ]ĝ =

〈
−m+ 3

2
δ + λ , ĥ

〉
(φ−(m,l,k) ⊗X) . (4.17)

Therefore, for m ≥ 0, we have φ+(m,l,k) ⊗X ∈ ĝm
2
δ+λ and φ−(m,l,k) ⊗X ∈ ĝ−m+3

2
δ+λ.

Conversely we shall show that any ξ ∈ ĝ−m+3

2
δ+λ is written by a linear combination

of {φ−(m,l,k) ⊗X ; 0 ≤ l ≤ m, 0 ≤ k ≤ m + 1, X ∈ gUλ } . Let ξ = φ ⊗ X + µa + νd for

φ ∈ C[φ±(n,l,k)], X ∈ U(g) and µ, ν ∈ C, where φ is a Laurent polynomial spinor;

φ =
∑

n,l,k

C−(n,l,k)φ
−(n,l,k) +

∑

n,l,k

C+(n,l,k)φ
+(n,l,k) .

We have

[ĥ, ξ] = [φ+(0,0,1) ⊗ h+ td , φ⊗X + µa ] = [ h , φ⊗X ]

+ t

(
∑

n,l,k

(−n + 3

2
)C−(n,l,k)φ

−(n,l,k) +
n

2
C+(n,l,k)φ

+(n,l,k)

)
⊗X

for any ĥ = φ+(0,0,1) ⊗ h + sa+ td ∈ ĥ. From the assumption we have [ĥ, ξ] = 〈−m+3
2
δ +

λ , ĥ 〉 ξ , that is,

〈−m+ 3

2
δ + λ , ĥ 〉ξ =< λ, h > φ⊗X + (−m+ 3

2
t+ < λ, h >)(µa+ νd)

+ (−m+ 3

2
)t

(
∑

n,l,k

C−(n,l,k)φ
−(n,l,k) + C+(n,l,k)φ

+(n,l,k)

)
⊗X.

Comparing the above two equations we have C+(n,l,k) = 0 for all n ≥ 0, while C−(n,l,k) = 0

except for n = m, and µ = ν = 0 . Therefore φ =
∑

0≤l≤m,0≤k≤m+1C−(m,l,k)φ
−(m,l,k), and

[ĥ, ξ] = φ ⊗ [h,X ] = 〈λ, h〉 φ ⊗X for all ĥ = φ+(0,0,1) ⊗ h + sa + td ∈ ĥ. Hence X ∈ gUλ

and ξ =
(∑

0≤l≤m,0≤k≤m+1C−(m,l,k)φ
−(m,l,k)

)
⊗X ∈ ĝ−m+3

2
δ+λ . We have proved

ĝ−m+3

2
δ+λ = C[φ−(m,l,k); 0 ≤ l ≤ m, 0 ≤ k ≤ m+ 1 ] ⊗ gUλ , for m ≥ 0 .
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The same argument proves also

ĝ− 1

2
δ+λ = ĝ− 2

2
δ+λ = 0. (4.18)

Similarly we have

ĝm
2
δ+λ = C[φ+(m,l,k); 0 ≤ l ≤ m, 0 ≤ k ≤ m+ 1 ] ⊗ gUλ , for m ≥ 0 .

The proof of the third assertion is also carried out by the same argument as above if we

revise it for the case λ = 0 . Always the same argument as above yields

ĝ− 1

2
δ+α = ĝ− 2

2
δ+α = 0,

ĝ− 1

2
δ = ĝ− 2

2
δ = 0. (4.19)

From the above discussion follow the first and the fourth assertions.

Proposition 4.3. We have the following relations:

1.

[
ĝm

2
δ+α , ĝn

2
δ+β

]
ĝ
⊂ ĝm+n

2
δ+α+β , (4.20)

[
ĝm

2
δ , ĝn

2
δ

]
ĝ
⊂ ĝm+n

2
δ . (4.21)

2.

[
ĝm

2
δ+α , ĝ−n+3

2
δ+β

]
ĝ
⊂ ĝm−n−3

2
δ+α+β , for m ≤ n or m ≥ n+ 3 , (4.22)

and for n = m− 1 or n = m− 2,

[
ĝm

2
δ+α , ĝ−n+3

2
δ+β

]
ĝ
= 0 . (4.23)

3.

[
ĝm

2
δ , ĝ−n+3

2
δ

]
ĝ
⊂ ĝm−n−3

2
δ , for m ≤ n or m > n+ 3, (4.24)

[
ĝm

2
δ , ĝ−m

2
δ

]
ĝ
⊂ ĝ0δ ⊕ ĥ , (4.25)
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and for n = m− 1 or n = m− 2,

[
ĝm

2
δ , ĝ−n+3

2
δ

]
ĝ
= 0 . (4.26)

4.

[
ĝ−m+3

2
δ+α , ĝ−n+3

2
δ+β

]
ĝ
⊂ ĝ(−m+n

2
−3)δ+α+β , (4.27)

[
ĝ−m+3

2
δ , ĝ−n+3

2
δ

]
ĝ
⊂ ĝ(−m+n

2
−3)δ . (4.28)

Proof

Let φ⊗X ∈ ĝm
2
δ+α and ψ ⊗ Y ∈ ĝn

2
δ+β . Then we have, for h ∈ h,

[ h, [φ⊗X,ψ ⊗ Y ] ] = −[φ⊗X, [ψ ⊗ Y, h ] ]− [ψ ⊗ Y, [ h, φ⊗X ] ]

=< β, h > [φ⊗X,ψ ⊗ Y ]+ < α, h > [φ⊗X,ψ ⊗ Y ]

=< α + β, h > [φ⊗X,ψ ⊗ Y ].

On the other hand,

[ d, [φ⊗X,ψ ⊗ Y ] ] = −[φ⊗X, [ψ ⊗ Y, d] ]− [ψ ⊗ Y, [ d, φ⊗X ] ]

=
m+ n

2
[φ⊗X,ψ ⊗ Y ] .

Hence

[ ĥ, [φ⊗X,ψ ⊗ Y ] ] =

〈
m+ n

2
δ + α + β , ĥ

〉
[φ⊗X,ψ ⊗ Y ] (4.29)

for any ĥ ∈ ĥ. Therefore

[
ĝm

2
δ+α , ĝn

2
δ+β

]
ĝ
⊂ ĝm+n

2
δ+α+β , (4.30)

The same calculation for φ⊗H ∈ ĝm
2
δ and ψ ⊗H ′ ∈ ĝn

2
δ yields

[
ĝm

2
δ , ĝn

2
δ

]
ĝ
⊂ ĝm+n

2
δ . (4.31)

The rests are proved in the same way. The second assertion for the commutativity in case

of n = m− 1 or n = m− 2 is proved by virtue of (4.19).
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