# Singularities arising at conjugate loci in ellipsoids and certain Liouville manifolds 

Kazuyoshi Kiyohara<br>Okayama University<br>joint work with<br>Jin-ichi Itoh<br>Kumamoto University

"The last geometric statement of Jacobi" asserts:
The conjugate locus of a general point on the two-dimensional ellipsoid contains just four cusps (Vorlesungen über Dynamik).

Aim of this talk: To discuss singularities of the conjugate loci on higher dimensional ellipsoids and certain Liouville manifolds.

In particular, we shall show:
(1) The conjugate locus of a general point contains just three connected components of singularities, each of which is a cuspidal edge (dim > 2).
(2) At the end of the above cuspidal edges there appear $D_{4}^{+}$Lagrangian singularities (of Arnold).

Plan of this talk

1. Conjugate points, conjugate locus (review)
2. Two-dim case
3. Ellipsoids
4. Results
5. $D_{4}^{+}$Langrangian singularity
6. Liouville manifold and its geodesics

## 1. Conjugate point, conjugate locus

$M$ : a riemannian manifold, $\operatorname{dim} M=n$.
$\gamma_{v}(t)$ : the geodesic with $\gamma_{v}(0)=p, \dot{\gamma}_{v}(0)=v \quad\left(p \in M, v \in U_{p} M\right)$.
$\operatorname{Exp}: T_{p} M \rightarrow M$ is defined by $\operatorname{Exp}(t v)=\gamma_{v}(t)$.
$\gamma_{v}\left(t_{0}\right)\left(t_{0}>0\right)$ is called a conjugate point of $p$ along $\gamma_{v}$ if the differential

$$
d \operatorname{Exp}_{t_{0} v}: T_{p} M \rightarrow T_{\gamma_{v}\left(t_{0}\right)} M
$$

is singular. In other words,

- There is a Jacobi field $Y(t) \not \equiv 0$ along $\gamma_{v}(t)$ such that $Y(0)=0$ and $Y\left(t_{0}\right)=0$.

Conjugate points of $p=\gamma_{v}(0)$ along $\gamma_{v}(t)$ are discrete; $\gamma_{v}\left(t_{1}\right), \gamma_{v}\left(t_{2}\right)$, $\ldots\left(0<t_{1} \leq t_{2} \leq \ldots\right)$, called the first conjugate point, the second $\ldots$, etc.. The multiplicity is less than or equal to $n-1$.

The $i$-th conjugate locus of $p \in M$, denoted by $C_{i}(p)$, is the set of all $i$-th conjugate point of $p$ along the geodesics emanating from $p$.

The term "conjugate locus" is usually used with the meaning of the first conjugate locus.

Example: The sphere of constant curvature $S^{n}$
$C_{1}(x)=\{-x\}$ for any $x \in S^{n}$; the multiplicity is $n-1$ along any geodesic. In particular,

$$
C_{1}(x)=C_{2}(x)=\cdots=C_{n-1}(x) .
$$

## 2. Two-dimensional case

- Two-dim. tri-axial ellipsoid $S$

For each non-umbilic point $p \in S$, the first conjugate locus of $p$ contains exactly four cusps, which are located on the coordinate lines of the elliptic coordinate system passing through the antipodal point of $p$. (The cut locus of $p$ is a segment of the curvature line whose end points are two of the above four conjugate points, see the next pictures.)
$c f$. J. Itoh, K. Kiyohara, The cut loci and the conjugate loci on ellipsoids, Manuscripta Math., 114 (2004), 247-264.


## 3. Ellipsoids

Ellipsoid $M: \sum_{i=0}^{n} \frac{u_{i}^{2}}{a_{i}}=1 \quad\left(0<a_{n}<\cdots<a_{0}\right)$
Submanifolds $N_{k}$ and $J_{k}$ :

$$
\begin{array}{ll}
N_{k}=\left\{u=\left(u_{0}, \ldots, u_{n}\right) \in M \mid u_{k}=0\right\} & (0 \leq k \leq n) \\
J_{k}=\left\{u \in M \mid u_{k}=0, \sum_{i \neq k} \frac{u_{i}^{2}}{a_{i}-a_{k}}=1\right\} & (1 \leq k \leq n-1)
\end{array}
$$

Then: (1) $N_{k}$ is totally geodesic, codimension 1 ;
(2) $J_{k} \subset N_{k}, J_{k}$ is diffeomorphic to $S^{k-1} \times S^{n-k-1}$;
(3) $\bigcup_{k} J_{k}$ is the set of points where some principal curvature with respect to the inclusion $M \subset \mathbb{R}^{n+1}$ has multiplicity $\geq 2$;
(4) Denoting by $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ the elliptic coordinate system on $M$ such that $a_{k} \leq \lambda_{k} \leq a_{k-1}$,

$$
\begin{gathered}
N_{k}=\left\{\lambda_{k}=a_{k} \quad \text { or } \quad \lambda_{k+1}=a_{k}\right\}, \\
J_{k}=\left\{\lambda_{k}=\lambda_{k+1}=a_{k}\right\} .
\end{gathered}
$$

The elliptic coordinate system $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ on $M\left(\lambda_{n} \leq \cdots \leq \lambda_{1}\right)$ is defined by the following identity in $\lambda$ :

$$
\sum_{i=0}^{n} \frac{u_{i}^{2}}{a_{i}-\lambda}-1=\frac{\lambda \prod_{k=1}^{n}\left(\lambda_{k}-\lambda\right)}{\prod_{i}\left(a_{i}-\lambda\right)}
$$

For a fixed $u \in M, \lambda_{k}$ are determined by $n$ "confocal quadrics" passing through $u$. From $\lambda_{k}$ 's, $u_{i}$ are explicitly described as:

$$
u_{i}^{2}=\frac{a_{i} \prod_{k=1}^{n}\left(\lambda_{k}-a_{i}\right)}{\prod_{j \neq i}\left(a_{j}-a_{i}\right)} .
$$

- Elliptic coordinate system on a unit tangent space

Let $p \in M$ be a general point, i.e., $p \notin N_{i}(i \leq i \leq n-1)$. Let

$$
v=\sum_{i=1}^{n} v_{i} \frac{\partial}{\partial \lambda_{i}} \in T_{p} M
$$

Then, putting

$$
\tilde{v}_{i}=\sqrt{\frac{(-1)^{n-i} \lambda_{i} \prod_{l \neq i}\left(\lambda_{l}-\lambda_{i}\right)}{(-1)^{i} 4 \prod_{j=0}^{n}\left(\lambda_{i}-a_{j}\right)}} v_{i}
$$

we have an Euclidean coordinate system $\left(\tilde{v}_{1}, \ldots, \tilde{v}_{n}\right)$ on $T_{p} M$, i.e.,

$$
g(v, v)=1 \quad \text { if and only if } \quad \sum_{i=1}^{n} \tilde{v}_{i}^{2}=1
$$

Define an elliptic coordinate system $\left(\mu_{1}, \ldots, \mu_{n-1}\right)$ on the unit tangent space $U_{p} M \subset T_{p} M$ by the following identity in $\mu$ :

$$
\sum_{i=1}^{n} \frac{\tilde{v}_{i}^{2}}{\mu-\lambda_{i}(p)}=\frac{\prod_{k=1}^{n-1}\left(\mu-\mu_{k}\right)}{\prod_{j=1}^{n}\left(\mu-\lambda_{j}(p)\right)}, \quad \lambda_{i+1}(p) \leq \mu_{i} \leq \lambda_{i}(p) .
$$

Then

$$
\tilde{v}_{i}^{2}=\frac{\prod_{k=1}^{n-1}\left(\lambda_{i}(p)-\mu_{k}\right)}{\prod_{j \neq i}\left(\lambda_{i}(p)-\lambda_{j}(p)\right)}, \quad \sum_{i=1}^{n-1} \tilde{v}_{i}^{2}=1
$$

Define the submanifolds (with boundary) $L_{i}^{ \pm}(1 \leq i \leq n-1)$ by

$$
L_{i}^{-}=\left\{v \in U_{p} M \mid \mu_{i}(v)=\lambda_{i+1}(p)\right\}, \quad L_{i}^{+}=\left\{v \in U_{p} M \mid \mu_{i}(v)=\lambda_{i}(p)\right\} .
$$

They satisfy

$$
\begin{gathered}
L_{i-1}^{-} \cup L_{i}^{+}=\text {the great sphere }\left\{\tilde{v}_{i}=0\right\} \\
L_{i}^{-} \simeq S^{i-1} \times \bar{D}^{n-1-i}, \quad L_{i}^{+} \simeq \bar{D}^{i-1} \times S^{n-1-i},
\end{gathered}
$$

where $S^{k}$ and $\bar{D}^{k}$ stand for $k$-sphere and closed $k$-disk respectively. Also,

$$
\begin{gathered}
\partial L_{i}^{+}=\partial L_{i-1}^{-}=L_{i}^{+} \cap L_{i-1}^{-} \simeq S^{i-2} \times S^{n-1-i} \quad(2 \leq i \leq n-1) \\
\partial L_{n-1}^{-}=\emptyset=\partial L_{1}^{+}
\end{gathered}
$$

## - Jacobi fields

$V_{i}= \pm\left(\partial / \partial \mu_{i}\right) /\left\|\partial / \partial \mu_{i}\right\|(1 \leq i \leq n-1)$, defined at each $v \in U_{p} M-\partial L_{i}^{ \pm}$ $\gamma_{v}(t)$ : the geodesic with $\dot{\gamma}_{v}(0)=v \in U_{p} M$ $Y_{i}(t, v)(1 \leq i \leq n-1)$ : the Jacobi field along $\gamma_{v}(t)$ with

$$
Y_{i}(0, v)=0, \quad Y_{i}^{\prime}(0, v)=V_{i}(v)
$$

Assume first that $v \notin \partial L_{j}^{ \pm}$for any $j$. Then the Jacobi field $Y_{i}(t, v)$ is of the form

$$
Y_{i}(t, v)=y_{i}(t, v) \tilde{V}_{i}(t, v)
$$

where $y_{i}(t, v)$ is a function and $\tilde{V}_{i}(t, v)$ is the parallel vector field along the geodesic $\gamma_{v}(t)$ such that $\tilde{V}_{i}(0, v)=V_{i}(v)$. (Actually, we may say $\left.\tilde{V}_{i}(t, v)=V_{i}\left(\dot{\gamma}_{v}(t)\right).\right)$
$t=r_{i}(v)$ : the first zero of $t \mapsto y_{i}(t, v)$ for $t>0$.
$r_{i}(v)$ can be continuously extended to all over $U_{p} M$ and is of $C^{\infty}$ outside $\partial L_{i}^{ \pm}$.

## 4. Results

## Our first result is:

## Theorem A.

1. $r_{n-1}(v) \leq r_{n-2}(v) \leq \cdots \leq r_{1}(v)$ for any $v \in U_{p} M$.
2. $r_{i-1}(v)=r_{i}(v)$ if and only if $v \in \partial L_{i-1}^{-}=\partial L_{i}^{+} \quad(2 \leq i \leq n-1)$

Put

$$
\tilde{K}_{i}(p)=\left\{r_{i}(v) v \mid v \in U_{p} M\right\}, \quad K_{i}(p)=\left\{\gamma_{v}\left(r_{i}(v)\right) \mid v \in U_{p} M\right\} .
$$

As a consequence of the above theorem:

## Theorem B.

1. $K_{n-1}(p)$ is the (first) conjugate locus of $p$.
2. If $M$ is close to the round sphere in an appropriate sense, then $K_{n-i}(p)$ is the $i$-th conjugate locus of $p$ for $2 \leq i \leq n-1$.

The assumption in (2) of the above theorem is actually given as follows: "if the second zero, say $r_{n-1}^{2}(v)$, of $y_{n-1}(t, v)$ is greater than $r_{1}(v)$ for any $v \in U_{p} M$ ".

- Singularities on the conjugate locus

Define the mapping $\Phi: U_{p} M \rightarrow M$ by

$$
\Phi(v)=\operatorname{Exp}_{p}\left(r_{n-1}(v) v\right)=\gamma_{v}\left(r_{n-1}(v)\right),
$$

whose image is the conjugate locus $K_{n-1}(p)$ of $p$. Then:

## Theorem C.

1. $\Phi$ is an immersion outside $L_{n-1}^{-} \cup L_{n-1}^{+}$.
2. The germ of $\Phi$ is a cuspidal edge at each point of $L_{n-1}^{-}$and each interior point of $L_{n-1}^{+}$; the restriction of $\Phi$ to (the interior of) $L_{n-1}^{ \pm}$ is immersions to the edges of the vertices.

Remark. The restriction of $\Phi$ to $L_{n-1}^{-}$is actually an embedding and the image bounds the cut locus of $p$.

As for the singularities arising on the boundary $\partial L_{n-1}^{+}$, we need to treat them as the singularities of the mapping $\operatorname{Exp}_{p}: T_{p} M \rightarrow M$, since the mapping $\Phi$ is not differentiable at points on $\partial L_{n-1}^{+}$(and the tangential conjugate locus $\tilde{K}_{n-1}(p)$ is not smooth at $\left.r_{n-1}(v) v, v \in \partial L_{n-1}^{+}\right)$. However, it should be noted that the function $r_{n-1}$ restricted to $\partial L_{n-1}^{+}$ is smooth. Thus $\Lambda=\left\{r_{n-1}(v) v \mid v \in \partial L_{n-1}^{+}\right\}$is a submanifold of $T_{p} M$ diffeomorphic to $S^{n-3} \times S^{0}$.

Theorem D. The germ of the mapping $\operatorname{Exp}_{p}: T_{p} M \rightarrow M$ at each point $w \in \Lambda$ is a $D_{4}^{+}$Lagrangian singularity.

Under the situation of Theorem B (2), we have the similar result for $K_{n-i}(p)$.

Theorem E. Suppose $K_{n-i}(p)(2 \leq i \leq n-1)$ is the $i$-th conjugate locus of $p$. Then, defining the mapping $\Phi_{n-i}: U_{p} M \rightarrow M$ by

$$
\Phi_{n-i}(v)=\operatorname{Exp}_{p}\left(r_{n-i}(v) v\right),
$$

we have:

1. $\Phi_{n-i}$ is an immersion outside $L_{n-i}^{-} \cup L_{n-i}^{+}$.
2. The germ of $\Phi_{n-i}$ is a cuspidal edge at each interior point of $L_{n-i}^{-}$ and $L_{n-i}^{+}$; the restriction of $\Phi_{n-i}$ to the interior of $L_{n-i}^{ \pm}$is immersions to the edges of the vertices.
3. The germ of the mapping $\operatorname{Exp}_{p}: T_{p}^{*} M \rightarrow M$ at each point $r_{n-i}(v) v, v \in \partial L_{n-i}^{ \pm}$, is a $D_{4}^{+}$Lagrangian singularity and the restriction $\left.\operatorname{Exp}_{p}\right|_{\partial L_{n-i}^{ \pm}}$is an immersion to the edge of vertices.

3-dim. case

$$
\begin{aligned}
& \gamma_{v}(r(v)) \\
& U_{p} M \quad \forall v \longmapsto \operatorname{Exp}_{p}(r(v) v) \in C_{l}(p)
\end{aligned}
$$



3-dim. case

$$
T_{p} M \supset \tilde{C}_{1}(p) \cup \tilde{C}_{2}(p)
$$


(*) if $M \approx$ roundsphere

## 5. $D_{4}^{+}$Lagrangian singularity

- Lagrangian singularity
$N$ : a manifold, $\quad L \subset T^{*} N$ : a Lagrangian submanifold
A Lagrangian singularity is a singularity of the map germ

$$
(\pi \circ i):\left(L, \lambda_{0}\right) \rightarrow\left(N, q_{0}\right)
$$

Two such map-germs $\left(L, \lambda_{0}\right) \rightarrow\left(N, q_{0}\right)$ and $\left(\pi^{\prime} \circ i^{\prime}\right):\left(L^{\prime}, \lambda_{0}^{\prime}\right) \rightarrow\left(N^{\prime}, q_{0}^{\prime}\right)$ are said to be Lagrangian equivalent if

$$
\exists \phi:\left(N, q_{0}\right) \rightarrow\left(N^{\prime}, q_{0}^{\prime}\right), \quad \exists \Phi:\left(T^{*} N, \lambda_{0}\right) \rightarrow\left(T^{*} N^{\prime}, \lambda_{0}^{\prime}\right)
$$

such that $\Phi\left(L, \lambda_{0}\right)=\left(L^{\prime}, \lambda_{0}^{\prime}\right)$ and the diagram

$$
\begin{array}{ccc}
\left(T^{*} N, \lambda_{0}\right) \xrightarrow{\Phi} & \left(T^{*} N^{\prime}, \lambda_{0}^{\prime}\right) \\
\pi \downarrow & & \downarrow \pi^{\prime} \\
\left(N, q_{0}\right) \xrightarrow[\phi]{ } & \left(N^{\prime}, q_{0}^{\prime}\right)
\end{array}
$$

is commutative. Actually, $\Phi$ is described as

$$
\Phi(\lambda)=\left(\phi^{*}\right)^{-1}(\lambda)+d h_{\phi(\pi(\lambda))}, \quad \lambda \in T^{*} N
$$

for some function $h$ on $N^{\prime}$ in this case.

## - Generating family

Let $\left(L, \lambda_{0}\right) \subset T^{*} N$ and $\left(N, q_{0}\right)$ be as above.
$x=\left(x_{1}, \ldots, x_{n}\right)$ : a coordinate system on $N ; \quad q_{0} \leftrightarrow a$
A function germ $F(u, x)=F\left(u_{1}, \ldots, u_{k}, x_{1}, \ldots, x_{n}\right)$ at $(b, a) \in \mathbb{R}^{k} \times \mathbb{R}^{n}$ is called a "generating family" for $L$ at $\lambda_{0} \in L$ if it satisfies

1. $0 \in \mathbb{R}^{k}$ is a regular value of the map

$$
d_{u} F:(u, x) \mapsto\left(\partial F / \partial u_{1}, \ldots, \partial F / \partial u_{k}\right)
$$

and $d_{u} F(b, a)=0$. Thus $C=\left(d_{u} F\right)^{-1}(0)$ is a $n$-dimensional manifold and $(b, a) \in C$.
2. The map

$$
\begin{aligned}
& \qquad d_{x} F: C \ni(u, x) \mapsto \sum_{l=1}^{n}\left(\partial F / \partial x_{l}\right)(u, x) d x_{l} \in T_{x}^{*} N \subset T^{*} N \\
& \text { gives an embedding of } C \text { into } T^{*} N \text { whose image is } L \text { and } \\
& d_{x} F(b, a)=\lambda_{0} \text {. }
\end{aligned}
$$

The number $k$ satsifies

$$
k \geq \operatorname{dim} \operatorname{ker}\left((\pi \circ i)_{*}\right)_{\lambda_{0}}: T_{\lambda_{0}} L \rightarrow T_{q_{0}} N .
$$

If the equality holds, then the generating family is called minimal.

Let $G\left(v_{1}, \ldots, v_{k^{\prime}}, y_{1}, \ldots, y_{n}\right)$ with the base point $\left(b^{\prime}, a^{\prime}\right)$ be another minimal generating family for a Lagrangian submanifold $\left(\tilde{L}, \tilde{\lambda}_{0}\right) \subset T^{*} \tilde{N}$. Then those two minimal generating families are said to be $\mathcal{R}^{+}$-equivalent if $k^{\prime}=k$ and there is a diffeomorphism $\Psi: \mathbb{R}^{k} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{k} \times \mathbb{R}^{n}((b, a) \mapsto$ $\left(b^{\prime}, a^{\prime}\right)$ ) of the form

$$
\Psi(u, x)=(\psi(u, x), \phi(x))
$$

and a function $h(x)$ so that $F(u, x)=G(\Psi(u, x))+h(x)$. The following criterion is crucial

Theorem (Arnold) Two minimal generating families $F(u, x)$ and $G(v, y)$ are $\mathcal{R}^{+}$-equivalent if and only if the corresponding Lagrangian submanifolds $\left(L, \lambda_{0}\right) \subset T^{*} N$ and $\left(\tilde{L}, \tilde{\lambda}_{0}\right) \subset T^{*} \tilde{N}$ are Lagrangian equivalent.

- Versal deformation of a function germ

Let $F(u, x)$ be a function germ on $\mathbb{R}^{k} \times \mathbb{R}^{n}$ at $(b, a)$ and put

$$
f(u)=f\left(u_{1}, \ldots, u_{k}\right)=F(u, a) .
$$

Such $F$ is called a deformation (or an unfolding) of the function germ $(f(u), b)$. We are interested in the case where $F(u, x)$ is a versal deformation of $f$.

Theorem (Mather) The function germ $(F(u, x),(b, a))$ is a versal deformation of the function germ $(f(u), b)$ if an only if the quotient space

$$
\mathcal{E}_{k} /\left(\frac{\partial f}{\partial u_{1}}, \ldots, \frac{\partial f}{\partial u_{k}}\right)
$$

is spanned by elements represented by constant functions and

$$
\frac{\partial F}{\partial x_{j}}(u, a) \quad(1 \leq j \leq n)
$$

as a vector space.
Here $\mathcal{E}_{k}$ denotes the algebra of function germs in $\left(u_{1}, \ldots, u_{k}\right)$ at $u=b$ and $\left(\ldots,\left(\partial F / \partial x_{j}\right)(u, a), \ldots\right)$ stands for its ideal generated by $\left(\partial F / \partial x_{j}\right)(u, a)(1 \leq j \leq n)$.

Theorem Let $(F(u, x),(b, a))$ and $\left(H(v, y),\left(b^{\prime}, a^{\prime}\right)\right)$ be two deformation germs on $\mathbb{R}^{k} \times \mathbb{R}^{n}$ of $f(u)=F(u, a)$ and $h(v)=H\left(u, a^{\prime}\right)$ respectively. Suppose $F$ and $H$ are versal deformations. Then the two deformation germs $F$ and $H$ are $\mathcal{R}^{+}$-equivalent if and only if the function germs $(f(u), b)$ and $\left(h(v), b^{\prime}\right)$ are equivalent, i.e., there is a diffeomorphism germ $\phi:\left(\mathbb{R}^{k}, b\right) \rightarrow\left(\mathbb{R}^{k}, b^{\prime}\right)$ and a constant $c \in \mathbb{R}$ such that $f=h \circ \phi+c$.

If $(F(u, x),(b, a))$ is a versal deformation of $(f(u), b)$, then it is known that the function germ $f(u)$ is finitely determined, i.e., there is a positive integer $l$ such that any function germ $(h(u), b)$ whose $l$-jet is equal to the $l$-jet of $f(u)$ at $b$ is equivalent to $(f(u), b)$. (In this case $(f(u), b)$ is said to be $l$-determined. ) Therefore we have the following criterion for Lagrangian equivalence of Lagrangian singulaities.

Theorem Let $(F(u, x),(b, a))$, a function germ on $\mathbb{R}^{k} \times \mathbb{R}^{n}$, be a minimal generating family for a Lagrangian submanifold $\left(L, \lambda_{0}\right) \subset T^{*} N$. Suppose $F$ is a versal deformation of $f(u)=F(u, a)$ at $b$ and $f(u)$ is $l$-determined. Let $\left.H(v, y),\left(b^{\prime}, a^{\prime}\right)\right)$ be another function germ on $\mathbb{R}^{k} \times$ $\mathbb{R}^{n}$ and is a minimal generating family of a Lagrangian submanifold $\left(L^{\prime}, \lambda_{0}\right) \subset T^{*} N^{\prime}$. Suppose also that $H$ is a versal defromation of $h(v)=$ $H\left(v, a^{\prime}\right)$ at $b^{\prime}$. Then the Lagrangian singulality $\pi \circ i:\left(L, \lambda_{0}\right) \rightarrow\left(N, q_{0}\right)$ is Lagrangian equivalent to $\pi^{\prime} \circ i:\left(L^{\prime}, \lambda_{0}^{\prime}\right) \rightarrow\left(N^{\prime}, q_{0}^{\prime}\right)$ if and only if there is a diffeomorphism germ $\phi:\left(\mathbb{R}^{k}, b\right) \rightarrow\left(\mathbb{R}^{k}, b^{\prime}\right)$ and a constant $c \in \mathbb{R}$ such that the $l$-jets of $h(\phi(u))+c$ and $f(u)$ at $b$ coincide.

- $D_{4}^{+}$singularity

The equivalence class of the function germ $f\left(u_{1}, u_{2}\right)=u_{1}^{3}+u_{1} u_{2}^{2}$ at $0 \in \mathbb{R}^{2}$ is called the $D_{4}^{+}$-singularity. It is 3 -determined and the quotient space

$$
\mathcal{E}_{2} /\left(\frac{\partial f}{\partial u_{1}}, \frac{\partial f}{\partial u_{2}}\right)
$$

is spanned by $1, u_{1}, u_{2}$, and $u_{2}^{2}$. Put

$$
F\left(u, x_{1}, \ldots, x_{n}\right)=u_{1}^{3}+u_{1} u_{2}^{2}+x_{1} u_{1}+x_{2} u_{2}+x_{3} u_{2}^{2}+\sum_{j=4}^{n} c_{j} x_{j}
$$

where $c_{4}, \ldots, c_{n} \in \mathbb{R}$. Then $(F(u, x),(0,0))$ is a versal deformation of $(f(u), 0)$.

Putting

$$
C=\left\{(u, x) \mid \partial F / \partial u_{1}=\partial F / \partial u_{2}=0\right\}
$$

we define a germ of a Lagrangian submanifold $\left(L, \lambda_{0}\right) \subset T^{*} \mathbb{R}^{n}$ as the imapge of the map

$$
C \ni(u, x) \mapsto \sum_{j=1}^{n} \frac{\partial F}{\partial x_{j}}(u, x) d x_{j} \in T^{*} \mathbb{R}^{n}, \quad \lambda_{0}=\frac{\partial F}{\partial x_{j}}(0,0) d x_{j}
$$

Namely, $L \subset T^{*} \mathbb{R}^{n}=\{(x, \xi)\}$ is parametrized by $\left(u_{1}, u_{2}, x_{3} \ldots, x_{n}\right)$ as

$$
x_{1}=-\left(3 u_{1}^{2}+u_{2}^{2}\right), \quad x_{2}=-2\left(u_{1}+x_{3}\right) u_{2}, \quad \xi=\left(u_{1}, u_{2}, u_{2}^{2}, c_{4}, \ldots, c_{n}\right) .
$$

The Lagrangian equivalence class represented by

$$
\pi \circ i:\left(L, \lambda_{0}\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)
$$

is called the $D_{4}^{+}$Lagrangian singularity.

- $D_{4}^{+}$singularity: $n=3, \quad L_{0}$ : the image of

$$
\left(x_{3}, \xi_{1}, \xi_{2}\right) \mapsto\left(x_{1}, x_{2}, x_{3}, \xi_{1}, \xi_{2}, \xi_{3}\right) \in T^{*} \mathbb{R}^{3}(\text { germ at }(x, \xi)=(0,0))
$$ such that

$$
\begin{aligned}
x_{1} & =-\left(3 \xi_{1}^{2}+\xi_{2}^{2}\right) \\
x_{2} & =-\left(2 \xi_{1} \xi_{2}+2 x_{3} \xi_{2}\right) \\
\xi_{3} & =\xi_{2}^{2}
\end{aligned}
$$

$F_{0}(x, \xi)=\xi_{1}^{3}+\xi_{1} \xi_{2}^{2}+x_{1} \xi_{1}+x_{2} \xi_{2}+x_{3} \xi_{2}^{2} ;$ a generating function of $L_{0}$

Then, for a Lagrangian submanifold germ $(L,(0, b)) \subset T^{*} \mathbb{R}^{3}$, $\pi: L \rightarrow \mathbb{R}^{3}$ is called $D_{4}^{+}$singularity if there is a diffeomorphism $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}(\phi(0)=0)$ and a function germ $h(x)$ on $\left(\mathbb{R}^{3}, 0\right)\left((d h)_{0}=b\right)$ such that
$L_{0}$ is mapped to $L$ by the diffeomorphism $\Phi: T^{*} \mathbb{R}^{3} \rightarrow T^{*} \mathbb{R}^{3}$ given by

$$
\Phi(x, \xi)=\phi^{*}(x, \xi)+(d h)_{x}
$$

- Correspondence to the conjugate locus

The singular locus of $\pi: L_{0} \rightarrow \mathbb{R}^{3} \Longleftrightarrow$ the conjugate locus
Denote by $f_{0}$ the composed map

$$
f_{0}:\left(x_{3}, \xi_{1}, \xi_{2}\right) \mapsto(x, \xi) \in L_{0} \xrightarrow{\pi}\left(x_{1}, x_{2}, x_{3}\right)
$$

The Jacobian of $f_{0}$ is:

$$
\operatorname{det}\left(D f_{0}\right)=3\left(2 \xi_{1}+x_{3}\right)^{2}-3 x_{3}^{2}-4 \xi_{2}^{2}
$$

Therefore the tangential conjugate locus in $T_{p} M$ is represented by the cone:

$$
3\left(2 \xi_{1}+x_{3}\right)^{2}-3 x_{3}^{2}-4 \xi_{2}^{2}=0
$$

in the 3 -dim. space $\left\{\left(x_{3}, \xi_{1}, \xi_{2}\right)\right\}$.

3-dim. case

$$
T_{p} M \supset \tilde{C}_{1}(p) \cup \tilde{C}_{2}(p)
$$


(*) if $M \approx$ roundsphere

## 6. Liouville manifold and its geodesics

$M$ : $n$-dim. riemannian manifold
$\mathcal{F}$ : $n$-dim. vector space of functions on $T^{*} M$
$(M, \mathcal{F})$ is called a Liouville manifold if it satisfies:
i) each $F \in \mathcal{F}$ is fiberwise a quadratic polynomial;
ii) those quadratic forms are simultaneously normalizable on each fiber;
iii) $\mathcal{F}$ is commutative with respect to the Poisson bracket;
iv) $\mathcal{F}$ contains the hamiltonian of the geodesic flow.
$c f$. K. Kiyohara, Two classes of Riemannian manifolds whose geodesic
flows are integrable, Mem. Amer. Math. Soc., 130/619 (1997).

- Liouville manifold (restricted version, used here)

Constructed from

$$
\left\{\begin{array}{l}
\text { Constants } \quad a_{0}>\cdots>a_{n}>0 \\
\text { Function } \\
A(\lambda)>0 \quad \text { on } \quad a_{n} \leq \lambda \leq a_{0}
\end{array}\right.
$$

(1) Torus $R=\prod_{i=1}^{n}\left(\mathbb{R} / \alpha_{i} \mathbb{Z}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right)\right\}$, where

$$
\alpha_{i}=2 \int_{a_{i}}^{a_{i-1}} \frac{A(\lambda) d \lambda}{\sqrt{(-1)^{i} \prod_{j=0}^{n}\left(\lambda-a_{j}\right)}}
$$

$\tau_{i}: R \rightarrow R(1 \leq i \leq n-1)$
$\tau_{i}(x)=\left(x_{1}, \ldots,-x_{i}, \frac{\alpha_{i+1}}{2}-x_{i+1}, \ldots, x_{n}\right)$
$G=<\tau_{1}, \ldots, \tau_{n-1}>\simeq(\mathbb{Z} / 2 \mathbb{Z})^{n-1}$
Branched cover $R \rightarrow R / G=M \simeq S^{n}$
(2) Functions $f_{i}\left(x_{i}\right)$ on $\mathbb{R} / \alpha_{i} \mathbb{Z}$ are defined by

$$
\begin{gathered}
\left(\frac{d f_{i}}{d x_{i}}\right)^{2}=\frac{(-1)^{i} 4 \prod_{j=0}^{n}\left(f_{i}-a_{j}\right)}{A\left(f_{i}\right)^{2}} \\
f_{i}(0)=a_{i}, \quad f_{i}\left(\frac{\alpha_{i}}{4}\right)=a_{i-1} \\
f_{i}\left(-x_{i}\right)=f_{i}\left(x_{i}\right)=f_{i}\left(\frac{\alpha_{i}}{2}-x_{i}\right)
\end{gathered}
$$

The range of $f_{i}\left(x_{i}\right)$ is $\quad a_{i} \leq f_{i}\left(x_{i}\right) \leq a_{i-1}$.


- Riemannian metric

$$
g=\sum_{i=1}^{n}(-1)^{n-i} \prod_{l \neq i}\left(f_{l}\left(x_{l}\right)-f_{i}\left(x_{i}\right)\right) d x_{i}^{2}
$$

Examples:
$A(\lambda)=\sqrt{\lambda} \Rightarrow M$ is the ellipsoid $\sum_{i=0}^{n} \frac{u_{i}^{2}}{a_{i}}=1$
$A(\lambda)=$ constant $\Rightarrow M$ is the sphere of constant curvature

- First integrals. Putting

$$
b_{i j}\left(x_{i}\right)=\left\{\begin{array}{cc}
(-1)^{i} \prod_{\substack{1 \leq k \leq n-1 \\
k \neq j}}\left(f_{i}\left(x_{i}\right)-a_{k}\right) & (1 \leq j \leq n-1) \\
(-1)^{i+1} \prod_{k=1}^{n-1}\left(f_{i}\left(x_{i}\right)-a_{k}\right) & (j=n)
\end{array}\right.
$$

we define functions $F_{1}, \ldots, F_{n}=2 E$ on the cotangent bundle by

$$
\sum_{j=1}^{n} b_{i j}\left(x_{i}\right) F_{j}=\xi_{i}^{2}
$$

where $\xi_{i}$ are the fiber coordinates.
$F_{i}$ represent well-defined smooth functions on $T^{*} M$ and $E$ is the hamiltonian of the geodesic flow of $(M, g)$.

Putting

$$
\mathcal{F}=\operatorname{span}\left\{F_{1}, \ldots, F_{n}\right\},
$$

$(M, \mathcal{F})$ becomes a Liouville manifold.

- The condition required in Theorems

The theorems hold for those Liouville manifolds such that, putting $C(\lambda)=\left(\lambda-a_{n}\right) A(\lambda)$,

$$
(-1)^{k} C^{(k)}(\lambda)>0 \quad \text { on }\left[a_{n}, a_{0}\right] \quad(2 \leq k \leq n)
$$

Clearly, ellipsoids $(A(\lambda)=\sqrt{\lambda})$ satisfy this condition.

## Geodesics and Jacobi fields

- First integrals $H_{i}(1 \leq i \leq n-1): H_{i} \leq H_{i-1}$,

$$
\begin{gathered}
-\sum_{j=1}^{n-1}\left(\prod_{\substack{1 \leq k \leq n-1 \\
k \neq j}}\left(\lambda-a_{k}\right)\right) F_{j}+\prod_{k=1}^{n-1}\left(\lambda-a_{k}\right) \\
=\prod_{l=1}^{n-1}\left(\lambda-H_{l}\right)
\end{gathered}
$$

They are functions on $U^{*} M$ (unit cotangent bundle) satisfying

$$
a_{i+1} \leq H_{i} \leq a_{i-1} .
$$

If

$$
a_{i+1}<b_{i}<a_{i-1}, \quad b_{i} \neq a_{i}, \quad b_{i}<b_{i-1}
$$

for any $i$, then the subset of the unit cotangent bundle given by $H_{i}=b_{i}$ $(1 \leq i \leq n-1)$ is a disjoint union of smooth (Lagrange) tori.

Put

$$
\begin{gathered}
a_{i}^{+}=\max \left\{a_{i}, b_{i}\right\}, \quad a_{i}^{-}=\min \left\{a_{i}, b_{i}\right\} \\
a_{n}^{+}=a_{n}, \quad a_{0}^{-}=a_{0}
\end{gathered}
$$

Let $\gamma(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$ be a geodesic with $H_{i}=b_{i}(1 \leq i \leq n-1)$. Then,

$$
a_{i}^{+} \leq f_{i}\left(x_{i}(t)\right) \leq a_{i-1}^{-} \quad(1 \leq i \leq n) .
$$

and $x_{i}(t) \in L_{i}$, where $L_{i}$ is a connected component of $f_{i}^{-1}\left(\left[a_{i}^{+}, a_{i-1}^{-}\right]\right) \subset$ $\mathbb{R} / \alpha_{i} \mathbb{Z}$. Each $L_{i}$ is an interval or the whole circle. Then

$$
L=L_{1} \times \cdots \times L_{n} \subset R
$$

is injectively mapped to $M$ by the quotient map $R \rightarrow M$, and is identical to the image of the Lagrange torus by the projection $\pi: T^{*} M \rightarrow M$.

- The geodesic equation for $\left(x_{1}(t), \ldots, x_{n}(t)\right)$ :

$$
\sum_{i=1}^{n} \frac{(-1)^{i} G\left(f_{i}\right) A\left(f_{i}\right)\left|d f_{i}\left(x_{i}(t)\right) / d t\right|}{\sqrt{-\prod_{k=1}^{n-1}\left(f_{i}-b_{k}\right) \cdot \prod_{k=0}^{n}\left(f_{i}-a_{k}\right)}}=0
$$

where $G(\lambda)$ is any polynomial of degree $\leq n-2$, and

$$
\sum_{i=1}^{n} \frac{(-1)^{i} \tilde{G}\left(f_{i}\right) A\left(f_{i}\right)\left|d f_{i}\left(x_{i}(t)\right) / d t\right|}{\sqrt{-\prod_{k=1}^{n-1}\left(f_{i}-b_{k}\right) \cdot \prod_{k=0}^{n}\left(f_{i}-a_{k}\right)}}=1
$$

where $\tilde{G}(\lambda)$ is a polynomial of degree $n-1$ and the coefficient of $\lambda^{n-1}$ is equal to 1 .

- Jacobi fields

Let $\gamma(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$ be a geodesic such that $a_{i+1}<b_{i}<a_{i-1}$ and $b_{i}<b_{i-1}$ for any $i$. Then:

Theorem There is a unique (mod sign) parallel orthonormal frame $V_{1}(t), \ldots, V_{n-1}(t), \dot{\gamma}(t)$ of TM along $\gamma(t)$ such that any Jacobi field $Y(t)$ with $Y\left(t_{0}\right), Y^{\prime}\left(t_{0}\right) \in \mathbb{R} V_{i}\left(t_{0}\right)$ at some $t_{0}$ is of the form $f(t) V_{i}(t)$ for any $t$.

Namely, the vector space of Jacobi fields along $\gamma(t)$ which are orthogonal to $\dot{\gamma}(t)\left((2 n-2)\right.$-dim.) is a direct sum $\sum_{i=1}^{n-1} \mathcal{Y}_{i}$ of two-dim. subspaces, where any $Y(t) \in \mathcal{Y}_{i}$ is of the form $f(t) V_{i}(t)$.
$V_{i}(t)$ is proportional to $d\left(\left.H_{i}\right|_{U_{\gamma(t)}^{*} M}\right)$.

