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“The last geometric statement of Jacobi” asserts:

The conjugate locus of a general point on the two-dimensional ellipsoid

contains just four cusps (Vorlesungen über Dynamik).

Aim of this talk: To discuss singularities of the conjugate loci on higher

dimensional ellipsoids and certain Liouville manifolds.

In particular, we shall show:

(1) The conjugate locus of a general point contains just three connected

components of singularities, each of which is a cuspidal edge (dim > 2).

(2) At the end of the above cuspidal edges there appear D+
4 Lagrangian

singularities (of Arnold).
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Plan of this talk

1. Conjugate points, conjugate locus (review)

2. Two-dim case

3. Ellipsoids

4. Results

5. D+
4 Langrangian singularity

6. Liouville manifold and its geodesics
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1. Conjugate point, conjugate locus

M : a riemannian manifold, dimM = n.

γv(t): the geodesic with γv(0) = p, γ̇v(0) = v (p ∈M , v ∈ UpM).

Exp : TpM →M is defined by Exp (tv) = γv(t).

γv(t0) (t0 > 0) is called a conjugate point of p along γv if the differential

dExp t0v : TpM → Tγv(t0)M

is singular. In other words,

• There is a Jacobi field Y (t) ̸≡ 0 along γv(t) such that Y (0) = 0

and Y (t0) = 0.
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Conjugate points of p = γv(0) along γv(t) are discrete; γv(t1), γv(t2),

. . . (0 < t1 ≤ t2 ≤ . . . ), called the first conjugate point, the second . . . ,

etc.. The multiplicity is less than or equal to n− 1.

The i-th conjugate locus of p ∈ M , denoted by Ci(p), is the set of all

i-th conjugate point of p along the geodesics emanating from p.

The term “conjugate locus” is usually used with the meaning of the

first conjugate locus.

Example: The sphere of constant curvature Sn

C1(x) = {−x} for any x ∈ Sn; the multiplicity is n − 1 along any

geodesic. In particular,

C1(x) = C2(x) = · · · = Cn−1(x) .
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2. Two-dimensional case

• Two-dim. tri-axial ellipsoid S

For each non-umbilic point p ∈ S, the first conjugate locus of p contains

exactly four cusps, which are located on the coordinate lines of the elliptic

coordinate system passing through the antipodal point of p. (The cut locus

of p is a segment of the curvature line whose end points are two of the

above four conjugate points, see the next pictures.)

cf. J. Itoh, K.Kiyohara, The cut loci and the conjugate loci on ellip-

soids, Manuscripta Math., 114 (2004), 247–264.

6



7



3. Ellipsoids

Ellipsoid M :

n∑
i=0

u2i
ai

= 1 (0 < an < · · · < a0)

Submanifolds Nk and Jk:

Nk = {u = (u0, . . . , un) ∈M | uk = 0 } (0 ≤ k ≤ n)

Jk = {u ∈M | uk = 0,
∑

i ̸=k
u2
i

ai−ak
= 1 } (1 ≤ k ≤ n− 1)

Then: (1) Nk is totally geodesic, codimension 1;

(2) Jk ⊂ Nk, Jk is diffeomorphic to Sk−1 × Sn−k−1;

(3)
∪

k Jk is the set of points where some principal curvature with

respect to the inclusion M ⊂ Rn+1 has multiplicity ≥ 2;
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(4) Denoting by (λ1, . . . , λn) the elliptic coordinate system on M such

that ak ≤ λk ≤ ak−1,

Nk = {λk = ak or λk+1 = ak },
Jk = {λk = λk+1 = ak }.

The elliptic coordinate system (λ1, . . . , λn) on M (λn ≤ · · · ≤ λ1) is

defined by the following identity in λ:

n∑
i=0

u2i
ai − λ

− 1 =
λ
∏n

k=1(λk − λ)∏
i(ai − λ)

.

For a fixed u ∈ M , λk are determined by n “confocal quadrics” passing

through u. From λk’s, ui are explicitly described as:

u2i =
ai

∏n
k=1(λk − ai)∏

j ̸=i(aj − ai)
.
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• Elliptic coordinate system on a unit tangent space

Let p ∈M be a general point, i.e., p ̸∈ Ni (i ≤ i ≤ n− 1). Let

v =
n∑

i=1

vi
∂

∂λi
∈ TpM.

Then, putting

ṽi =

√
(−1)n−i λi

∏
l ̸=i(λl − λi)

(−1)i 4
∏n

j=0(λi − aj)
vi ,

we have an Euclidean coordinate system (ṽ1, . . . , ṽn) on TpM , i.e.,

g(v, v) = 1 if and only if
n∑

i=1

ṽ2i = 1 .
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Define an elliptic coordinate system (µ1, . . . , µn−1) on the unit tangent

space UpM ⊂ TpM by the following identity in µ:

n∑
i=1

ṽ2i
µ− λi(p)

=

∏n−1
k=1(µ− µk)∏n

j=1(µ− λj(p))
, λi+1(p) ≤ µi ≤ λi(p) .

Then

ṽ2i =

∏n−1
k=1(λi(p)− µk)∏

j ̸=i(λi(p)− λj(p))
,

n−1∑
i=1

ṽ2i = 1 .

Define the submanifolds (with boundary) L±
i (1 ≤ i ≤ n− 1) by

L−
i = {v ∈ UpM |µi(v) = λi+1(p)}, L+

i = {v ∈ UpM |µi(v) = λi(p)} .
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They satisfy

L−
i−1 ∪ L

+
i = the great sphere {ṽi = 0}

L−
i ≃ Si−1 × D̄n−1−i, L+

i ≃ D̄i−1 × Sn−1−i ,

where Sk and D̄k stand for k-sphere and closed k-disk respectively.

Also,

∂L+
i = ∂L−

i−1 = L+
i ∩ L−

i−1 ≃ Si−2 × Sn−1−i (2 ≤ i ≤ n− 1) ,

∂L−
n−1 = ∅ = ∂L+

1 .
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• Jacobi fields

Vi = ±(∂/∂µi)/∥∂/∂µi∥ (1 ≤ i ≤ n−1), defined at each v ∈ UpM−∂L±
i

γv(t): the geodesic with γ̇v(0) = v ∈ UpM

Yi(t, v) (1 ≤ i ≤ n− 1): the Jacobi field along γv(t) with

Yi(0, v) = 0, Y ′
i (0, v) = Vi(v)

Assume first that v ̸∈ ∂L±
j for any j. Then the Jacobi field Yi(t, v) is

of the form
Yi(t, v) = yi(t, v)Ṽi(t, v),

where yi(t, v) is a function and Ṽi(t, v) is the parallel vector field along

the geodesic γv(t) such that Ṽi(0, v) = Vi(v). (Actually, we may say

Ṽi(t, v) = Vi(γ̇v(t)).)
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t = ri(v): the first zero of t 7→ yi(t, v) for t > 0.

ri(v) can be continuously extended to all over UpM and is of C∞

outside ∂L±
i .
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4. Results

Our first result is:

Theorem A.

1. rn−1(v) ≤ rn−2(v) ≤ · · · ≤ r1(v) for any v ∈ UpM .

2. ri−1(v) = ri(v) if and only if v ∈ ∂L−
i−1 = ∂L+

i (2 ≤ i ≤ n− 1)

Put

K̃i(p) = {ri(v)v | v ∈ UpM}, Ki(p) = {γv(ri(v)) | v ∈ UpM} .
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As a consequence of the above theorem:

Theorem B.

1. Kn−1(p) is the (first) conjugate locus of p.

2. If M is close to the round sphere in an appropriate sense, then

Kn−i(p) is the i-th conjugate locus of p for 2 ≤ i ≤ n− 1.

The assumption in (2) of the above theorem is actually given as follows:

“if the second zero, say r2n−1(v), of yn−1(t, v) is greater than r1(v) for

any v ∈ UpM”.
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• Singularities on the conjugate locus

Define the mapping Φ : UpM →M by

Φ(v) = Expp(rn−1(v)v) = γv(rn−1(v)) ,

whose image is the conjugate locus Kn−1(p) of p. Then:

Theorem C.

1. Φ is an immersion outside L−
n−1 ∪ L

+
n−1.

2. The germ of Φ is a cuspidal edge at each point of L−
n−1 and each

interior point of L+
n−1; the restriction of Φ to (the interior of) L±

n−1

is immersions to the edges of the vertices.

Remark. The restriction of Φ to L−
n−1 is actually an embedding and

the image bounds the cut locus of p.
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As for the singularities arising on the boundary ∂L+
n−1, we need to

treat them as the singularities of the mapping Expp : TpM → M , since

the mapping Φ is not differentiable at points on ∂L+
n−1 (and the tan-

gential conjugate locus K̃n−1(p) is not smooth at rn−1(v)v, v ∈ ∂L+
n−1).

However, it should be noted that the function rn−1 restricted to ∂L+
n−1

is smooth. Thus Λ = {rn−1(v)v | v ∈ ∂L+
n−1} is a submanifold of TpM

diffeomorphic to Sn−3 × S0.

Theorem D. The germ of the mapping Expp : TpM → M at each

point w ∈ Λ is a D+
4 Lagrangian singularity.

Under the situation of Theorem B (2), we have the similar result for

Kn−i(p).
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Theorem E. Suppose Kn−i(p) (2 ≤ i ≤ n − 1) is the i-th conjugate

locus of p. Then, defining the mapping Φn−i : UpM →M by

Φn−i(v) = Expp(rn−i(v)v) ,

we have:

1. Φn−i is an immersion outside L−
n−i ∪ L

+
n−i.

2. The germ of Φn−i is a cuspidal edge at each interior point of L−
n−i

and L+
n−i; the restriction of Φn−i to the interior of L±

n−i is immer-

sions to the edges of the vertices.

3. The germ of the mapping Expp : T ∗
pM → M at each point

rn−i(v)v, v ∈ ∂L±
n−i, is a D+

4 Lagrangian singularity and the

restriction Expp|∂L±
n−i

is an immersion to the edge of vertices.
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5. D+
4 Lagrangian singularity

• Lagrangian singularity

N : a manifold, L ⊂ T ∗N : a Lagrangian submanifold

A Lagrangian singularity is a singularity of the map germ

(π ◦ i) : (L, λ0) → (N, q0)

Two such map-germs (L, λ0) → (N, q0) and (π′ ◦ i′) : (L′, λ′0) → (N ′, q′0)

are said to be Lagrangian equivalent if

∃ϕ : (N, q0) → (N ′, q′0) , ∃Φ : (T ∗N,λ0) → (T ∗N ′, λ′0)
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such that Φ(L, λ0) = (L′, λ′0) and the diagram

(T ∗N,λ0)
Φ−−−−→ (T ∗N ′, λ′0)

π

y yπ′

(N, q0) −−−−→
ϕ

(N ′, q′0)

is commutative. Actually, Φ is described as

Φ(λ) = (ϕ∗)−1(λ) + dhϕ(π(λ)) , λ ∈ T ∗N

for some function h on N ′ in this case.
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• Generating family

Let (L, λ0) ⊂ T ∗N and (N, q0) be as above.

x = (x1, . . . , xn): a coordinate system on N ; q0 ↔ a

A function germ F (u, x) = F (u1, . . . , uk, x1, . . . , xn) at (b, a) ∈ Rk×Rn

is called a “generating family” for L at λ0 ∈ L if it satisfies

1. 0 ∈ Rk is a regular value of the map

duF : (u, x) 7→ (∂F/∂u1, . . . , ∂F/∂uk)

and duF (b, a) = 0. Thus C = (duF )
−1(0) is a n-dimensional

manifold and (b, a) ∈ C.
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2. The map

dxF : C ∋ (u, x) 7→
n∑

l=1

(∂F/∂xl)(u, x) dxl ∈ T ∗
xN ⊂ T ∗N

gives an embedding of C into T ∗N whose image is L and

dxF (b, a) = λ0.

The number k satsifies

k ≥ dimker((π ◦ i)∗)λ0 : Tλ0L→ Tq0N .

If the equality holds, then the generating family is called minimal.
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Let G(v1, . . . , vk′ , y1, . . . , yn) with the base point (b′, a′) be another

minimal generating family for a Lagrangian submanifold (L̃, λ̃0) ⊂ T ∗Ñ .

Then those two minimal generating families are said to be R+-equivalent

if k′ = k and there is a diffeomorphism Ψ : Rk×Rn → Rk×Rn ((b, a) 7→
(b′, a′)) of the form

Ψ(u, x) = (ψ(u, x), ϕ(x))

and a function h(x) so that F (u, x) = G(Ψ(u, x)) + h(x). The following

criterion is crucial

Theorem (Arnold) Two minimal generating families F (u, x) and G(v, y)

are R+-equivalent if and only if the corresponding Lagrangian subman-

ifolds (L, λ0) ⊂ T ∗N and (L̃, λ̃0) ⊂ T ∗Ñ are Lagrangian equivalent.
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• Versal deformation of a function germ

Let F (u, x) be a function germ on Rk × Rn at (b, a) and put

f(u) = f(u1, . . . , uk) = F (u, a).

Such F is called a deformation (or an unfolding) of the function germ

(f(u), b). We are interested in the case where F (u, x) is a versal defor-

mation of f .
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Theorem (Mather) The function germ (F (u, x), (b, a)) is a versal de-

formation of the function germ (f(u), b) if an only if the quotient space

Ek/
(
∂f

∂u1
, . . . ,

∂f

∂uk

)
is spanned by elements represented by constant functions and

∂F

∂xj
(u, a) (1 ≤ j ≤ n)

as a vector space.

Here Ek denotes the algebra of function germs in (u1, . . . , uk) at

u = b and (. . . , (∂F/∂xj)(u, a), . . . ) stands for its ideal generated by

(∂F/∂xj)(u, a) (1 ≤ j ≤ n).
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Theorem Let (F (u, x), (b, a)) and (H(v, y), (b′, a′)) be two deforma-

tion germs on Rk×Rn of f(u) = F (u, a) and h(v) = H(u, a′) respectively.

Suppose F and H are versal deformations. Then the two deformation

germs F and H are R+-equivalent if and only if the function germs

(f(u), b) and (h(v), b′) are equivalent, i.e., there is a diffeomorphism germ

ϕ : (Rk, b) → (Rk, b′) and a constant c ∈ R such that f = h ◦ ϕ+ c.

If (F (u, x), (b, a)) is a versal deformation of (f(u), b), then it is known

that the function germ f(u) is finitely determined, i.e., there is a positive

integer l such that any function germ (h(u), b) whose l-jet is equal to

the l-jet of f(u) at b is equivalent to (f(u), b). (In this case (f(u), b) is

said to be l-determined. ) Therefore we have the following criterion for

Lagrangian equivalence of Lagrangian singulaities.
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Theorem Let (F (u, x), (b, a)), a function germ on Rk × Rn, be a

minimal generating family for a Lagrangian submanifold (L, λ0) ⊂ T ∗N .

Suppose F is a versal deformation of f(u) = F (u, a) at b and f(u) is

l-determined. Let H(v, y), (b′, a′)) be another function germ on Rk ×
Rn and is a minimal generating family of a Lagrangian submanifold

(L′, λ0) ⊂ T ∗N ′. Suppose also that H is a versal defromation of h(v) =

H(v, a′) at b′. Then the Lagrangian singulality π ◦ i : (L, λ0) → (N, q0)

is Lagrangian equivalent to π′ ◦ i : (L′, λ′0) → (N ′, q′0) if and only if there

is a diffeomorphism germ ϕ : (Rk, b) → (Rk, b′) and a constant c ∈ R
such that the l-jets of h(ϕ(u)) + c and f(u) at b coincide.
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• D+
4 singularity

The equivalence class of the function germ f(u1, u2) = u31 + u1u
2
2 at

0 ∈ R2 is called the D+
4 -singularity. It is 3-determined and the quotient

space

E2/
(
∂f

∂u1
,
∂f

∂u2

)
is spanned by 1, u1, u2, and u

2
2. Put

F (u, x1, . . . , xn) = u31 + u1u
2
2 + x1u1 + x2u2 + x3u

2
2 +

n∑
j=4

cjxj ,

where c4, . . . , cn ∈ R. Then (F (u, x), (0, 0)) is a versal deformation of

(f(u), 0).
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Putting
C = {(u, x) | ∂F/∂u1 = ∂F/∂u2 = 0},

we define a germ of a Lagrangian submanifold (L, λ0) ⊂ T ∗Rn as the

imapge of the map

C ∋ (u, x) 7→
n∑

j=1

∂F

∂xj
(u, x)dxj ∈ T ∗Rn , λ0 =

∂F

∂xj
(0, 0)dxj .

Namely, L ⊂ T ∗Rn = {(x, ξ)} is parametrized by (u1, u2, x3. . . . , xn) as

x1 = −(3u21 + u22), x2 = −2(u1 + x3)u2, ξ = (u1, u2, u
2
2, c4, . . . , cn) .

The Lagrangian equivalence class represented by

π ◦ i : (L, λ0) → (Rn, 0)

is called the D+
4 Lagrangian singularity.
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• D+
4 singularity: n = 3, L0: the image of

(x3, ξ1, ξ2) 7→ (x1, x2, x3, ξ1, ξ2, ξ3) ∈ T ∗R3 (germ at (x, ξ) = (0, 0))

such that

x1 = −(3ξ21 + ξ22) ,

x2 = −(2ξ1ξ2 + 2x3ξ2) ,

ξ3 = ξ22 .

F0(x, ξ) = ξ31 + ξ1ξ
2
2 + x1ξ1 + x2ξ2 + x3ξ

2
2 ; a generating function of L0
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Then, for a Lagrangian submanifold germ (L, (0, b)) ⊂ T ∗R3,

π : L→ R3 is called D+
4 singularity if there is a diffeomorphism

ϕ : R3 → R3 (ϕ(0) = 0) and a function germ h(x) on (R3, 0) ((dh)0 = b)

such that

L0 is mapped to L by the diffeomorphism Φ : T ∗R3 → T ∗R3 given by

Φ(x, ξ) = ϕ∗(x, ξ) + (dh)x

• Correspondence to the conjugate locus

The singular locus of π : L0 → R3 ⇐⇒ the conjugate locus

Denote by f0 the composed map

f0 : (x3, ξ1, ξ2) 7→ (x, ξ) ∈ L0
π−→ (x1, x2, x3)
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The Jacobian of f0 is:

det(Df0) = 3(2ξ1 + x3)
2 − 3x23 − 4ξ22

Therefore the tangential conjugate locus in TpM is represented by the

cone:
3(2ξ1 + x3)

2 − 3x23 − 4ξ22 = 0

in the 3-dim. space {(x3, ξ1, ξ2)}.
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6. Liouville manifold and its geodesics

M : n-dim. riemannian manifold

F : n-dim. vector space of functions on T ∗M

(M,F) is called a Liouville manifold if it satisfies:

i) each F ∈ F is fiberwise a quadratic polynomial;

ii) those quadratic forms are simultaneously normalizable on each fiber;

iii) F is commutative with respect to the Poisson bracket;

iv) F contains the hamiltonian of the geodesic flow.

cf. K.Kiyohara, Two classes of Riemannian manifolds whose geodesic

flows are integrable, Mem.Amer.Math. Soc., 130/619 (1997).
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• Liouville manifold (restricted version, used here)

Constructed from{
Constants a0 > · · · > an > 0

Function A(λ) > 0 on an ≤ λ ≤ a0

(1) Torus R =
∏n

i=1(R/αiZ) = {(x1, . . . , xn)}, where

αi = 2

∫ ai−1

ai

A(λ) dλ√
(−1)i

∏n
j=0(λ− aj)

τi : R→ R (1 ≤ i ≤ n− 1)

τi(x) = (x1, . . . , ,−xi, αi+1

2 − xi+1, . . . , xn)

G =< τ1, . . . , τn−1 > ≃ (Z/2Z)n−1

Branched cover R→ R/G =M ≃ Sn
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• Riemannian metric

g =
n∑

i=1

(−1)n−i
∏
l ̸=i

(fl(xl)− fi(xi)) dx
2
i

Examples:

A(λ) =
√
λ⇒M is the ellipsoid

n∑
i=0

u2i
ai

= 1

A(λ) = constant ⇒M is the sphere of constant curvature
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• First integrals. Putting

bij(xi) =


(−1)i

∏
1≤k≤n−1

k ̸=j

(fi(xi)− ak) (1 ≤ j ≤ n− 1)

(−1)i+1
∏n−1

k=1(fi(xi)− ak) (j = n),

we define functions F1, . . . , Fn = 2E on the cotangent bundle by

n∑
j=1

bij(xi)Fj = ξ2i ,

where ξi are the fiber coordinates.

Fi represent well-defined smooth functions on T ∗M and E is the hamil-

tonian of the geodesic flow of (M, g).
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Putting
F = span{F1, . . . , Fn} ,

(M,F) becomes a Liouville manifold.

• The condition required in Theorems

The theorems hold for those Liouville manifolds such that, putting

C(λ) = (λ− an)A(λ),

(−1)kC(k)(λ) > 0 on [an, a0] (2 ≤ k ≤ n).

Clearly, ellipsoids (A(λ) =
√
λ) satisfy this condition.
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Geodesics and Jacobi fields

• First integrals Hi (1 ≤ i ≤ n− 1): Hi ≤ Hi−1,

−
n−1∑
j=1

 ∏
1≤k≤n−1

k ̸=j

(λ− ak)

 Fj +
n−1∏
k=1

(λ− ak)

=
n−1∏
l=1

(λ−Hl)

They are functions on U∗M (unit cotangent bundle) satisfying

ai+1 ≤ Hi ≤ ai−1.
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If
ai+1 < bi < ai−1, bi ̸= ai, bi < bi−1

for any i, then the subset of the unit cotangent bundle given by Hi = bi

(1 ≤ i ≤ n− 1) is a disjoint union of smooth (Lagrange) tori.

Put

a+i = max{ai, bi}, a−i = min{ai, bi}
a+n = an, a−0 = a0
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Let γ(t) = (x1(t), . . . , xn(t)) be a geodesic withHi = bi (1 ≤ i ≤ n−1).

Then,
a+i ≤ fi(xi(t)) ≤ a−i−1 (1 ≤ i ≤ n).

and xi(t) ∈ Li, where Li is a connected component of f−1
i ([a+i , a

−
i−1]) ⊂

R/αiZ. Each Li is an interval or the whole circle. Then

L = L1 × · · · × Ln ⊂ R

is injectively mapped toM by the quotient map R→M , and is identical

to the image of the Lagrange torus by the projection π : T ∗M →M .
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• The geodesic equation for (x1(t), . . . , xn(t)):

n∑
i=1

(−1)iG(fi)A(fi) |dfi(xi(t))/dt|√
−
∏n−1

k=1(fi − bk) ·
∏n

k=0(fi − ak)
= 0,

where G(λ) is any polynomial of degree ≤ n− 2, and

n∑
i=1

(−1)iG̃(fi)A(fi) |dfi(xi(t))/dt|√
−
∏n−1

k=1(fi − bk) ·
∏n

k=0(fi − ak)
= 1,

where G̃(λ) is a polynomial of degree n − 1 and the coefficient of λn−1

is equal to 1.
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• Jacobi fields

Let γ(t) = (x1(t), . . . , xn(t)) be a geodesic such that ai+1 < bi < ai−1

and bi < bi−1 for any i. Then:

Theorem There is a unique (mod sign) parallel orthonormal frame

V1(t), . . . , Vn−1(t), γ̇(t) of TM along γ(t) such that any Jacobi field Y (t)

with Y (t0), Y
′(t0) ∈ RVi(t0) at some t0 is of the form f(t)Vi(t) for any

t.

Namely, the vector space of Jacobi fields along γ(t) which are orthogo-

nal to γ̇(t) ((2n−2)-dim.) is a direct sum
∑n−1

i=1 Yi of two-dim. subspaces,

where any Y (t) ∈ Yi is of the form f(t)Vi(t).

Vi(t) is proportional to d
(
Hi|U∗

γ(t)
M

)
.
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