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1. Introduction

Let S be a base space, which is locally compact Hausdorff space with countable
basis, and A be a Radon measure on S.

The configuration space over S is given by the set of nonnegative-integer-valued
Radon measures;

Conf(S { ZO cx; €5, Z(A) < oo for all bounded set A C S} :

Conf(S) is equipped with the topological Borel o-fields with respect to the vague
topology. We say ¢,,n € N:={1,2,...} converges to ¢ in the vague topology, if

/f Ea(da) —>ff E(dr),  Yfel(9),

where C.(9) is the set of all continuous real-valued functions with compact sup-
port.

A point process on S is a Conf(S)-valued random variable = = =(-,w) on a proba-
bility space (2, F,P). If Z({z}) € {0,1} for any point x € S, then the point process
is said to be simple.



e Assume that A; j =1.2,...,m, m € N are disjoint bounded sets in S and £; €
No,j=1,2,....m satlsfy Zm ki =n € Np.

e A symmetric measure \" on S" is called the n-th correlation measure, if it satisfies

E

m

>] (AR e x Al

[I]
> [I]

j:l
where if Z(A;) — k; <0, we interpret =(A;)!/(Z(A;) — k;)! = 0.

e If \" is absolutely continuous with respect to the n-product measure \*", the
Radon-Nikodym derivative p"(xq, ..., ,,,) is called the n-point correlation function
with respect to the background measure \;



e Determinantal point process (DPP) is defined as follows.

Definition 1.1 A simple point process = on (S, \) is said to be a determinantal point process

(DPP) with correlation kernel K : S x S+ C, if it has correlation functions {p"},>1, and they
are given by

Py, ) = 1<(}%t<n[K(:Uj,:Uk)] for everyn=1,2,..., and xy,...,x, € S.

The triplet (=, K, \(dx)) denotes the DPP, = € Conf(S), specified by the correlation kernel K
with respect to the measure \(dx).




e If the correlation kernel K is of rank N € N, then the number of points is N

a.s. If N < oo (resp. N =), we call the system a finite DPP (resp. an infinite
DPP).

e The density of points with respect to the background measure \(dz) is given by
pla) = p'(x) = K(,2).
e The DPP is negatively correlated as shown by

20 N : :
p (@, x) = det K, z) K2, 2)

= K(x,2)K (2, 2') — |K (2, 2)]* < p(a)pa)), x,2" €8S,

provided that K is Hermitian.
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Let L?(S,\) be an L*-space.

For operators A,B on L*(S.)\), we write A > O if (Af, f)r2sy > 0 for any f €
L*(S,)\), and A>Bif A—B> 0.

For a compact subset A C S, the projection from L?(S,\) to L*(A, \) is denoted
by Pa.

We say that the bounded Hermitian operator A4 on L*(S, )\) is said to be of locally
trace class, if the restriction of A to each compact subset A, A, := Py AP,, is of
trace class; Tr Ay < oo.

The totality of locally trace class operators on L*(S,)\) is denoted by Z; ,.(S, \).
It is known that [Soshnikov (2002), Shirai—Takahashi (2003)], if

KeTin(S\) and O<K<I,

where [ is the identity operator, then we have a unique DPP on S with the
determinantal correlation functions with the correlation kernel given by the
integral kernel for K.

11



In the present talk, we consider the case that

Kf=f forall fe(kerK): C L*S,\),
where (ker K) denotes the orthogonal complement of the kernel of K.
That is, K is an orthogonal projection.

By definition, it is obvious that the condition O < K < [ is satisfied.

The purpose of the present talk is to propose useful methods to provide orthog-
onal projections I and DPPs whose correlation kernels are given by the integral
kernels K(x,2'),z, 2" € S of K.

12



We consider a pair of Hilbert spaces, Hy;,{ = 1,2, which are assumed to be realized
as L*-spaces, L*(S;, \), { = 1,2.

We introduce a linear operator VV and its adjoint W*,

W:HlHHQ, W*ZHQHHl.

We prove that if

(i) both of W, W* are partial isometries and
(11) WW e Iuoc(Sl, )\1), WW* e I1,1OC(SQ, /\2)

then we have unique pair of DPPs, (=, K¢, \¢), ( = 1,2.
The pair of DPPs satisfies some useful duality relations.

We assume that 1V admits an integral kernel W on L?(S, \;), and give practical
setting of 1V which makes W and W* satisfy the above two assumptions.

13



e In order to demonstrate the class of DPPs obtained by our method is large
enough to study a variety of DPPs and universal structures behind them, we
show many examples of DPPs in one- and two-dimensional spaces.

e In particular, we use the symbols of classical and affine roots systems (e.g.,
An_1, By, Cn, Dy, N € N) to classify finite DPPs.

e Several types of weak convergence theorems of finite DPPs to infinite DPPs are
given.

14



e We will show that in the one-dimensional space, there are three universal DPPs
with an infinite number of points specified by the correlation kernels,

sin(x — ') |
KSIHC(‘CC 37’) - W(Qf _ ZEJ) - 27’(‘/; ‘ : )df% 37,517, S R;

KU (5 1) = sin(e —a')  sin(z+a/) 1 /1

sin(ya) sin(ya')d~,

Bessel m(x — ) e +a) 7).,
R ey - T ) *cosye) cos(ra)d ' € [0, 00)
v, 2') = = — [ cos(va)cos(va)dy, w.w ,00),
Bessel 7_‘_(3: . l',) 7T($ n CC’) T/, Y Y Y

where 7 .= /—1.

® /. 1s usually called the sine kernel in random matrix theory, but it shall be
called the sinc kernel.

° K](gleé 361 and K é;sel) are special cases of the Bessel kernels K ](361%1? v > —1 with indices
v =1/2 and —1/2, respectively.

1
e Note that Kg,.(r,2') = 5{[(&{%(3: x') + Kée‘,ﬁ)(a:,f)}, z, 2" € [0, 00).

15



e Corresponding to the threefold, K., KE(Sle{f«il? K]g;jﬁ), we also show the three

universal DPPs on C, whose correlation kernels are given by

00 —
N )"
Kéinibre(x? xl) - GII’ - Z ’

|
n—=>0 1
50 —
: . _ (l‘l")Qn_H
Kuire(, 2") = sinh(wa”) = Z m
n=0
> AT\2n
Ké‘?inibre(xr CU’) - COSh(l‘?) - Z (ll ) ) X, xl € (C;
— (2n)!

where 2/ denotes the complex conjugate of 2.

o K& .. is known as the correlation kernel of the Ginibre ensemble in random
matrix theory [Ginibre 1965] and K¢, . and K% . = were studied in [K2019].

A o C . A D I v
e Note that KGinibre(‘q” X ) - KGinibre(q” 2 ) + KGinibre(q’? 2 )7 r,r e (C'

16



e Our method to generate DPPs is valid also in higher dimensional spaces.

e We will state that the DPP with the sinc kernel Kg,. 1s the lowest-dimensional
(d = 1) example of the one-parameter (d € N) family of DPPs on R’ whose
correlation kernels are given by

1 Jap(llr — 'l[ee)

(2m)2 e — a||37
1

(2m)¢

~(d
[ﬁléu)clid(x? CC,) —

P .
e @ gy 2 e RY,
Bd

where J, is the Bessel function of the first kind, ||z — 2/||[g« is the Euclidean
distance between x and 2/ in RY, and B? is a unit ball in R? centered at the
origin.

17



e We also claim that the Ginibre ensemble is the lowest-dimensional example
(d = 1) of another one-parameter (d € N) family of DPPs on C¢, whose correlation

kernel is given by

(d) x-a’

el — .o d
Heisenberg(aﬂ X ) =€ xr,r < C“.

e We call these two families of DPPs the Euclidean family of DPPs and the Heisen-
berg family of DPPs, respectively, following the terminologies by Zelditch (2000).

18



2. Main Theorems

2.1 Isometry, partial isometry, and DPPs

Let H,,{ = 1,2 be separable Hilbert spaces with inner products (-, )y

ﬁ.

For a linear operator W : H, — H,, the adjoint of )V is defined as the operator

W* . Hy — Hy, such that

<Wf> 9>H2 — <f7 W*9>H1

for all f € Hy and g € H,.

A linear operator )V is called an isometry if

W, = [fllm for all fe H.

For W its kernel is denoted as ker )V and the orthogonal complement of ker W is

written as (ker W)».

A linear operator W is called a partial isometry, if

WA = (1]

for all f € (ker W)*.

For the partial isometry W, (ker W)' is called the initial space and the range of

W is called the final space.

19



e By definition, ||Wf|[;, = W[/ W)y, = (f, W*W[)u,. This implies the following.

Lemma 2.1 The linear operator W (resp. W*) is a partial isometry, if and only if W*W (resp.
WW?* ) is the identity on (ker W)L (resp. (kerW*)*%).

20



Assumption 1 Both W and W* are partial isometries.

e Under Assumption 1, the operator W*W (resp. WW*) is the projection onto the
initial space of W (resp. the final space of W).

e Now we assume that H| and [, are realized as L*-spaces, L*(S1, \|) and L?(Ss, \2),
respectively.

e We consider the case in which ¥V admits an integral kernel 1V : Sy x S; — C such
that

W) = ) Wy, 2)f(x)Mi(dz),  f €L (S, \).

and then

(W*g)(x) = . Wy, 2)g(y)Aa(dy), g€ L7(S2 \a).

21



e We put the second assumption.

Assumption 2 W'W € 7, ,.(S1, A1) and WW* € T 1,.(52, \a)-

e We have

(W*Wf)(il?) - KS1 (58? ;z:’)f(a?’))\l(dsc’), f € LQ(SM /\1)7

S

W) (y) = | Ks(y. v )9 ) No(dy'), g € L*(S2. \a),
So

with the integral kernels,

Kg, (iU,CE’) = W(yﬁx)w(y?f)/b(dz}) = <W('9$I)v W('?$)>L2(325A2)?

So

Ko, (y,y') = | Wy o)W (y, x) (dx) = (W(y.-). W) r2si.a0)-

St

e We see that K, (v/,2) = Kg,(2,2') and Kg, (v, y) = Ks,(y,y').

22



e The main theorem is the following.

Theorem 2.2 Under Assumptions 1 and 2, associated with W*W and YWW?*, there exists unique
pair of DPPs; (Z1, Kg,, \i(dx)) on Sy and (=2, Ks,, \2(dy)) on Ss.  The correlation kernels
Kg,, 0 =1,2 are Hermitian and giwen by

Ky, ($7$l) = W(y>$)W(y>$l))\2(dy) = (W(-,QL"),W(-,$)>L2(32,)\2),
S

KSQ(y7 y’) - W(y7 CL‘)W(y’, x))\l(dl') - <W(y> ')7 W(yla ')>L2(S1,)\1)'
St

e Note that the densities of the DPPs, (=, Kg,, \i(dr)) and (=5, Kg,, A2(dy)), are
given by

pr(x) = Kg (v,2) = | [W(y,2)haldy) = [[W(2)||25,00), € S,
S

p2(y) = Ks,(y,y) = . W (y. )P Ai(da) = [|W(y, lzsian, Y € So
1

with respect to the background measures A (dx) and Ay (dy), respectively.

23




2.2 Basic properties of DPPs

For v = (v, ... o@D e RY, ¢y = (yV, ..., y¥) € RY, d € N, the inner product of them
is given by v-y=y-v:= Zgzl vl@y@ and |v]? =00,

When S ¢ C'.d € N, 2 € S has d complex components; = = (2", ... 2¥) with
2 = Rl + il a=1,...,d.

In order to describe clearly such a complex structure, we set xp = (RzlV), ... Rzld) €
R, x; = (%x“% e %x(d)) c R?, and write © = xp + ix;.

The Lebesgue measure is written as dr = drrdr; = szl dRx W d3x@. The com-
plex conjugate of r = xp + iy 1s defined as T = xg — ixy.

For v = g +ixy, o' = 2 +ix; € C?, we use the Hermitian inner product;

v-a = (rp +iwy) - (wg —ixh) = (wp - 2x + a1 - 2p) —ilag -] —xp - aR)

and define
@) =T = |wr|* + |1, xeC”

24



e For (2, K, \(dx)) on S =R’ or S = C?, we introduce the following operations.
(shift) For u € S, 7,2 := Zj O 4us
oK (2, 2") = K(x +u, 2’ +u),

and T, \(dr) = ANu + dx). We write (7,=, 7, K, 7, A(dx)) simply as 7,(Z, K, \(dz)).
(Dilatation) For ¢ > 0, we set co=:=)_.0

. J
coK(x,2") =K (3?1—) . w7 €cS,
¢ c
and co A(dx) := A(dz/c). We define co (=, K ( )= (coZ,co K, co\dr)).
(Squared) For (2, K, A(dx) on S =R, we put = =3~ 4, K<2>(£L o) = K(x%,2'%),
and A% (dx) = A(dx?). We define (Z, K, )\(d;L)) = (2, K@ X% (dx)) on [0, 00).
(Gauge transformation) For u : S — C, a gauge transformation of K by u is
defined as

2
)

Kz, ') — Ky o= u(x) K (x, 2 )u(2) "

In particular, when u : S +— U(1), the U(1)-gauge transformation of A is given
by

~

K(x,2')— K, :=u(x)K(x, 2" )u(a’).

25



e We will use the following basic properties of DPP.

[Gauge invariance| For any u : S — C, a gauge transformation does note change
the probability law of DPP;

(law) ~

(2, K, \(dx)) =" (5, Ky, \(dx)).
Measure change| For a measurable function g : S — [0, o0),
9
— (law)
(E, K(x,2"), g(x)Adx)) =" (E,Vg(2) K (z,2")/g(x"), Adw)).

[Mapping and Scaling] For a one-to-one measurable mapping h : S §, if we
set

[

=D 0uey. Klw.a!) = K07 (2).h71(y),  Ade) = MA™'(dw)).
J

then (E[A(X(da,)) is a DPP on 5.
In particular, when h(x) = cx,c > 0, (Z, K, AM(dx)) = co(Z, K, A(dx)). If co(dx) =
¢ I\(dx), then

co(Z, K \dr)) "™ (o2, K., Mdx)), ¢>0,

with

1 . !
Ke(r,2') = =K (E, l—) :
c

C

where the base space is given by ¢S.

26



2.3 Orthogonal functions and correlation kernels

e In addition to L?(S;, \), { = 1,2, we introduce L*(T',v) as a parameter space for
functions in L?(S;, \;),( = 1,2.

e We put the following.

Assumption 3  There are two sets of functions {Uy(-,v) € L*(S;,\) : v €T}, ( = 1,2,
which satisfy the following.

(i) The orthonormality relations hold,

(We(o ), Ve ) s, a0 v(dy) = 0(y =+ )dy, v,y €T, (=12

(ii) ¢y (x,) € L*(T',v) for \j-a.e.x € Sy, and »s(y, ) € L*(T',v) for \;-a.e.y € Ss.

27




e Under Assumption 3, we set
W) = [ i@l (@) = ) s e

e The following is obtained as a corollary of Theorem 2.2.

Corollary 2.3 Under Assumption 3, if we set W as above, then there exist unique pair of DPPs;
(21, Kg,, Mi(dx)) on Sy and (Za, Ks,, Aao(dy)) on Sy. Here the correlation kernels Kg,, £ = 1,2 are
given by

Ko (2. 2) L/m W@ dY) = (1 () n (@ ) ey,
KSQ Y y /% Y. 102( ) ( f)/) = <w2(y7')7w2(yl7')>L2(F,V)'

28




e Now we consider a simplified version of the above setting of .

e Let ' C Sy and v = )\y. In the above setting of W, we put

Vo(y, Y)v(dy) = d(y —v)dy., ye€S ~el,

and hence

Wy, x) = 1(x,y)Le(y).

e Assumption 3 is replaced by the following.

Assumption 3° For T' C Sy, there is a set of functions {¢(-,y) € L*(S;,\) : y € T}
which satisfies the following.
(i) The orthonormality relation holds,

W1y)s oy N rzsanAe(dy) = 0(y —y)dy.  y,y' €T

(11) w1($, ) < LQ(F,)\Q), A-a.e. T € 95].

e Corollary 2.3 is reduced to the following.

Corollary 2.4 Under Assumption 3°, if we consider W in the simplified setting, then there exists
unique DPP, (Z, K, A1) on Sy with the correlation kernel

Ko, (.2') = f 01 (0. )T ) el dy).

29




2.4 Simple examples
(i) DPP with sinc kernel

e Weset 51 =R, \(de)=dz, I =(-1,1), v(dy) = X2(dy) = dy, and put
1

ei:cy .

wl(x7y) - \/%

e The correlation kernel K, is given by

1

1
Ksinc(il?,il?,) — % /1 eiy($—x’)dy —

: o
sin(x — ') r.2 € R,

m(x —a')

30



(ii) Three types of Ginibre ensembles

Let S = C with A(dx) = Axq,1.0)(dv), where Ay, .2).c)(dr) denotes the complex
normal distribution,

1 ‘
/\ (m,o;C) (d‘r) Ee_m_m‘Z/gz dx

_ Le—(xg —mp)? /o —(x1—m1)?/o? dCERdCE'[,

o2
m € C,mgr := Rm,my; := Sm, o > 0.
We put

A — (2% —a?) /2422y
)

Vi (x,y) =e
v (@, 7) = V2sinh(2ay)e R/,
Y2 (2,7) = V2 cosh(2a7y)e~ @R —21)/2,

31



e It is easy to confirm that

1 - . ﬂ .
;:]Q?#A(xyvﬁdﬁﬁtﬁyvﬂemfdx1==62($é&”*”0(7-—'797

4

1 (y—=7v)—=dv+7), R=C,

— 2 2
= [ Y2, 7)0R (@, e Tde; = e "% cosh(dapy) x { ;
mé (v=7) +ov+7), E=D.

S, D

e Therefore, we have

<2/)A(.’A/)’Z/)A("A//)>LQ(C:)\N(O,LC))V(dﬂ/) 5(“/ - A/,)dﬂ/: ﬂ/yﬁ/l < FA = R7
<1/)R(.?ﬁ//)7 Z/}R(Wﬁ/,)>LQ(C)\N(O,LC))‘U(C[A/) — 5(7 _ “/,)d“/? ,.\/?,1// c PR - (07 OO), R— C, D7

with v(dv) = Ano,1/4)(d7y), where Ay, .2)(dz) denotes the normal distribution,

1 e—(:z7—'rn)2/(20'2)daj

V2To ’

meR, o>0.

)\N(m,ag) (d‘f) —

32



e Then we can apply Corollaries 2.3 or 2.4.

e The obtained kernels are given as

K x,2') = \/26_{(IR o) +(eh o) )}/2/ e~ 20~ (@27} gy
Q — 0

> S B
K (x,2') = 2\/i6 (=) (o = )}/2/ e~ sinh(22y) sinh(2277 ) d,
a 0

2 © B
K (x,2') = 2\/i€ (et (oot )}/2/ e~ 27" cosh(2a7y) cosh(227) dy.
@ 0

e The integrals are performed and we obtain
KR( . J) o i:z?R:r,IKR ( . J) —LI’RIi R=AC.D
L, r)=¢ Ginibre (L5 T )€ s A M

with

xx!

Kéinibre(x? CLJ) — €
Kginibre(x? ZU/) - Siﬂh(ﬂ?y)?

K& (. 2") = cosh(xa’), x,2" € C.

e Due to the gauge invariance of DPP mentioned above, the obtained three types
of infinite DPPs on C are written as (2, K, ... \o1.0)(dz)), R=A,C, D.
33



The DPP, (Z, K&, e AN0.1:0)(dr)) describes the eigenvalue distribution of the
Gaussian random complex matrix in the bulk scaling limit, which is called the
complex Ginibre ensemble[Ginibre(1965)].

This is uniform on C with the density
A ].
PGinibre (2)dT = K¢ im0 (2, ) ANo,1.0) (d) = ;dwRdJL‘I, x € C.
On the other hands, the Ginibre DPPs of types ' and D are rotationally sym-

metric around the origin, but non-uniform on C.

The density profiles are given by
1 9
2—(1 —e Jdardxy, x e C,
s
2

1 /
pginibre(‘r)dl‘ = Kginiljl‘e(J;? x)AN(Dal;C) (dCL) = %(1 + 6_2|x| )dedCUI; xr € C.

pginibre (l)dl - Kginibre (:L ‘,’L) AN(Orl;C) (dl) -

They were first obtained in [K(2019)] by taking the limit W — o keeping the
density of points of the DPPs in the strip on C, {z € C: 0 < 32z < W},

34



3. DPPs on Sphere and Torus
3.1 Finite DPPs on sphere S°

e Let S* = {& € R? : ||z||]gs = 1} be the two-dimensional unit sphere centered at
the origin in the three-dimensional Euclidean space R®, where ||-||gp: denotes the
Euclidean distance in R®.

e We will use the following coordinates for x = (2!, 2?, 2*)) on §2,

2 =sinfcosp, 2% =sinfsing, 2® =cosf., 0ec[0,7], ¢ €0,2n)

e We consider the case that S| = Ny and S; = §%, in which we assume that \y(dx)
is given by the Lebesgue surface area measure dos(2) on S* such that

Mo(d) = doy(2) = doy (6., @) = sin0dfdp,  Ao(S?) = 04(S?) = 4.

35



e For ne {0,1,..., N -1}, N € N, put

1 ine
——e "™sin™(0/2) cos™N T(0/2), e [0.7], el 2n),

N,
Ar (N — 1\
}n:i(N):_

e It is easy to confirm the following orthonormality relations on S?,

P () = ¢ (0, 0) =

with

27
<LIQTSL ( ) Lfjm Lz(S2 dcrg / d@/ d(ﬂ(p 7 99771 (9 (,D)dO'Q (9 C}Q) - 5””’”? n? m e ND'
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e Assumption 3’ is satisfied and, if we set L*(T,v) = (*({0,1,...,N —1}), N € Ny,
Corollary 2.4 gives the DPP with N points on §?, (Z, Kéﬁv),dgg(a;)), whose corre-

lation kernel is given by
Ko (r.a') = K ((60.0). (¢.¢))
N-1

N N —1 oy n N—-1—-n
> ( ) (e—*w ) sin(6/2) sin (¢’ /2)) (cos(e /2) cos(#’ /2))

T A —~ n

N Con ! N—1
= - (e_"“(%ﬁ_"g Vsin(#/2) sin(#/2) + cos(6/2) COS(E”/2))

-

e The density of points with respect to doy(x) is given by

N
plx) = Kéév) (2, 2) = i constant, 1z € §%.

y Figure made by T. Shirai
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e For two points © = (6, p) and 2/ = (¢, ¢') on S?,

|2 — 2'||5s = (sin 6 cos ¢ — sin @' cos ¢')* + (sin @ sin ¢ — sin ¢’ sin ¢’)* + (cos 6 — cos §')*
= oz~ 2P
with ; o ) ,
O(xr —a') = 2cos 5 cos Eei(@ﬂ”’)/? [ei“’g tan 5 e~ tan 3

e Then we can show that the probability density of this DPP with respect to
dos(x) = Hj\le doy(x;) is given as

1
N
Zga 1<ick<N

2
N(N+1).N [N
(N) _ 2 m -
Zg, = AT (H(]—l)!) .
i=1

with
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e Since ||z — 2/||5: =2 — 2z - 2/ for x,2' € S?, we have the equality
1 (o 2
5(1 +x-2) = ‘e_z(“"’_“"’" ) sin(0/2) sin(6' /2) + cos(0/2) cos(¢ /2)| .

e Hence the absolute value of the correlation kernel is written as

N 1 . !/ (N—l)/?
K )| = = (- ,
41 2

and hence the two-point correlation function with respect to doy(x) is given by

A 2 | N N-1
p,2)) = (E) [1 - (#) ] . x,x' e St

e The system (E,Kéjgv),dag(:c)) is a uniform and isotropic DPP on §?, which is
called the the spherical ensemble [Krishnapur (2009), Alishashi—Zamani (2015),

Beltran—Etayo(2018+)].
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The equivalent system with the spherical ensemble of DPPs was studied by
Caillol(1981) as a two-dimensional one-component plasma model in physics.

It is interesting to see that he used the Cayley-Klein parameters defined by

0 oy . O
0426“'“/20085, /5:—26_“'“/281115, pe0,2m), 6€l0,mn]

The above orthonormal functions can be identified with the follows up to irrel-
evant factors,

1
(o, p) = N ne 0,1, N — 1}

If we define B -
((a. ), (', 3))cx = aa’ + B,

the correlation kernel is written as

(N) N

K& (') = KL (0. 8). (o) ) = 7= (e B). (@, 39)er)
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e Following the claim given in Caillol (1981), we consider the vicinity of the north
pole, x,, = (0,0,1) € R?, that is 6 ~ 0.

e We put

Figure made by T. Shirai
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e Then we see that

rr’
in(f/2)sin(0’'/2 —99’—
sin(#/2)sin(#'/2) ~ 1 i
6>+ 6" r?+r”
/ 1 1 _
cos(f/2) cos(0'/2) ~ 1 3 1 N

o We set re’¥ = 2, r'e’¥ = 2/ € C with rdrdy = dz. Then the kernel

lim K2((0.0). (¢, ) dos (0 ‘
A Ke ' ((0,0), (0, 9))doal6,9)| o w

N 1 [ — 22+ ]2\ " 4
= lim — (14 —{:7— i
No3so A ( TN {Zz > N
_ LT,
-

e This implies the following limit theorem.

Proposition 3.1 The following weak convergence is established,

o=

2

N—oco [ —
Kg(év 7d0-2( )) ——_i> (:‘7KéinibrmAN(O:lE(c)(dx))?

where the limit point process is the Ginibre DPP of type A.
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3.2 Finite DPPs on torus T2

e Let
2: — e'U?T?,; q — 6’7'771,

for v e Cand 1€ H:= {2z € C: 3z > 0}. The Jacobi theta functions are defined
as follows,

ﬁo(@’, 7_) _ Z(_l)nqnzz%z; _ ZZ (n—1/2) 22271 1?

nez =y
. . n—1/2)% 2n—1 n? 271
792(@’,7)—5 g E q
=y ne

e We define the following four types of functions;

040, 2, 7) = "5 (0T + 2:7),

08 (0,2, 7) = V(07 + 2;7) — e T (0T — 2 7),
O% 0,2, 7) = ¥y (0T + 2, 7) — ey (0T — 2, 7),
OF(0,2,7) = ™5 (o1 + 2;7) + € T (0T — 2 7),

for c e R,z e C, 7 € H.
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e We will consider the finite DPPs on a surface of torus with double periodicity
wy = 2w, wy = 27w with 7 =i$7 € H.

e The surface of such the torus T? = T?(27, 277) := S'(27) x S!(277) can be identified
with a rectangular domain in C,

Dirormy ={2€C:0 <R < 27,0 <J2 <2737} € C with double periodicity (27, 277).

So we first consider the systems on Dy 9,7
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o Let S=C with Adx) =1p, ,  (v)drrdr;. For N € N, put

€_NHN ix? [ (4rT)

Ry .
QPEN,(%“QTW) (l) _ @ﬁ(RN) (J N (n):NRN%:NRNT) :

NRN

plN (7)
where

(A, if Ry = An_1,

B,  if Ry = By, BY,

C,  if Ry = Cy, CY. BC\y,
| D, if Ry = Dy.

(n—1/2, RN:AN_:L?CA]\\I/T?

f(Ry) = 4

JIN(n)={n—1, Ry = By. BY,, Dy,
>z RN - ON,BCN,
(N, Ry = An_1.
IN 1, Ry = By,
NRN — 2N RN - ]\\/7: OXT
Z(N—I— 1), Ry = Cy,

2(N—1), Ry =Dy,

\

and {h/"} are proper normalization factors.

ne{l,2,....,N}

45



e The following orthonormal relations were proved in [K2019b],

Ry,(2m 217 Rn,(2w 217
<(/Qn]\ { ) (fomj\'( ' )>L2(C’1D(2w,277)(m)dm) - ()nm; n,m < ['= {1 2 c ey N}

RN :AN_l,BN?B]\\/[,CN, OJ\\?BOND]\/W

e Then Corollary 2.4 gives the seven types of DPPs with the correlation kernels,

KR]\ (2, 27’7’ l l Z (/QR“ ,(2m,277) )(pﬁN,(QWQTW) (l,)

n=1

with respect to the measure \(dz) = 1p,, .,,,dzon Cfor Ry = Ay_y, By, By, Cy, CY, BC N, Dy.

46



e The correlation kernels are quasi-double-periodic,

KRN,(QW,QTW) (37 + 27.‘_7 CC/) _ KRJ\",-(QWsQTW) (CC, Qfl + 27'(')

(_1)NAN—1 KRN,(QW,QTW) (1,7 CE"), RN _ AN—l:
- _KRN,(%T’?TW) (CC,CU,), RN - BN> O]\éaBC]\U
KRN"(QW,QTW) (:Ev ZC/), RN - B]\<T7 CNv DN7
—J\/'RN@'LURKRN,(QW,QTW) ! Ryv = A COv. CY . BC . D
KRAr,(QW,QTW)($+2T7T7x/) _ € . o (37733)7 N N-1, YN, YN, N, /N,
e N"Wian o Rn.(72r%) (p o) Ry = By, BY.
BN ! 7 (2w, 277 _
J B (2m27) (0,0 +277) = NN i RN (27277 (00 1Y Ry = An_1, Cy, Cy, BCw, Dy,
’ _ENRNi;n'RKRN,(QW,QTW) (QU,QZJ), RN — BN: B]\\/[
e The above implies that
GNRN@';UR

7_27TKR]\,T,(27T,2T7T) (CE, ZCI) KRN,(Qﬂ',QTﬂ') ((177 ZU/)

= ———T
eNR]V@':I:,P{ 2t

= KANETIm (2, a2’ € Dy gra.-

e In other words, we have obtained the seven types of DPPs with a finite number
of points N on a surface of torus T?(2m, 277). Hence here we write them as

(27, 27m)?

(E,K{;' d:zf), Ry = Ay 1, By, BY, Oy, CY, BCx, Dx.
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e We can prove the following limit theorem.

Proposition 3.2 The following weak convergence is established,

1 N — An_ N—oo [ —
SV 757 ° (:v K257 27 d:c) = (‘37 K Ginibres AN(0,1:0) (da:)) )
N N—=oo [ —
27_‘_%7_ ( K 2(271' 27'7r dm) _> (‘:7 Kginibrev 2AN(01C) (dx)) ?
N N—=oo [ —
2 7 ( K 2(27r 277)’ dllf) _> (‘:‘7 Ké)inibre? 2/\N(0:1;(C) (dx)) ’

where the limit point processes are the three types of Ginibre DPPs.

RN:BN7B]\\§70N:O]\\§:BON7

48



4. Two Families of Universal DPPs in Arbitrary Dimensions
4.1 Heisenberg Family of DPPs

e The Ginibre DPP of type A on C can be generalized to the DPPs on C? for
d > 2.

e This generalization was done by Abreu et al. (2017,2019) as the Weyl-Heisenberg
ensemble of DPP, but here we derive the DPPs on C%, d € N, following Corollary
2.4.

o Let Slz(Cd, SQIF:Rd,

d 9\ ©/2 i
Ao (dy) = H Axo./) (dy') = (_) e 20l

and
Ui (2,7) = e~ (erPolnlP/220mation) 0y = gp i, € €7,y €RY
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e It is easy to verify Assumption 3’ and then, by Corollary 2.4, we obtain the DPP
on C? with the correlation kernel,

d/2
K'9(z,2') = 2) 7 ellamPlm (gl /2 o2 en i)k —iaD)} 2] g
| i Rd
e @ :
- eix%{.xi KHeisenberg(xt L )
with

(d) . WA I? . N d
Heisenberg(a’v 2z ) =€ , T,T € Ce.
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e The kernels in this form on C% d € N have been studied by Zelditch and his
coworkers [Zelditch (2000), Bleher—Shiffman—Zerditch (2000)], who identified
them with the Szego kernels for the reduced Heisenberg group.

e Here we call the DPPs associated with the correlation kernels in this form the

Heisenberg family of DPPs on C?, d € N.

e This class includes the Ginibre DPP of type A as the lowest dimensional case

with d = 1.
Definition 4.1 The Heisenberg family of DPP on CY d € N is defined by (E, Kﬁ?isenberg, )\N(O,l;cd)(dﬂf))
with B
KI(—IC?isenberg(:m SC/) - 61.1,7 T, U € Cd'
e Since
K (x,2)A (dz) = idaz: z e C?
Heisenberg \**» N(0,1;C4) - 7‘(‘d s )

every DPP in the Heisenberg family is uniform on C? and the density with

respect to the Lebesgue measure dz is given by 1/7°.
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4.2 Finite DPPs on §¢

e For d € N, let P = P(R%"!) be a vector space of all complex-valued polynomials
on R¥*! and P, k € Ny, be its subspaces consisting of homogeneous polynomials
of degree k; p(x) = 3, _; Ca®, ¢o € Cox = (2, 2! ""Y) € R™™, where we have

used the notations z* := []*7](z(*) with a := (a1, ..., ags1) € NI o] = 37 a,.

e The vector space of all harmonic functions in P is denoted by H = {p € P: Ap =0}
and let H, = H NPy, k € Ny.
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e Now we consider a unit sphere in R/"!' denoted by S¢, in which we use the polar
coordinates for x = (21, ..., )y e 87

J J

1)

M = gin By ---sin by sin by,

2 =ginf,---sinf, cosb,_1. a=2.....d,
) = cos,,  with 6, €[0,27), 6,<€[0.7], a=2,....d.

Note that |[z][3,., = S +(@? = 1. The standard measure on S’ is given by the

a=1

Lebesgue area measure expressed as

dog(x) = sint 0, sin?2 0, 1 -+ -sinfodby - - dby, xS
e The total measure of S is calculated as

wWqg = O'd(Sd) =
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e We write the restriction of harmonic polynomials in H; on S? as

Vid i) = {h‘sd h € Hk} . ke Ny.

We can see that

(d+2k —1)(d+ k — 2)!

D(d. k) = dim Y = (d—1)lk!

D(d.k)

e Consider an orthonormal basis {Y,J-(d’k)}j:1

of Va i) with respect to doy;

<Yn(d’k):Kgf’k)>L2(Sd.dad) = / de‘k)(:z;)l/}f’k)(a:)dad(:c) = 0pm. N, m € Np.
do o

Then, if we put

D(d.k)
FVn) (ZL‘,QL‘,) _ Z Y-(d’k)(ﬂ))Y-(d’k)(jj’), = Sd,

i=1

then {KY@w (z,2")}, »cse give the reproducing kernels in Y% in the sense that

Y(ZL/) — /Sd Y(x)Ky(d,k) (g/ JJ’)CZO’C{(CL’), VY € y(d,k)-
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For A > —1/2, we define

1 11—
P,;\(:E)—F(—k,k+2/\;)\+§; 2$>,

where I’ denotes the Gauss hypergeometric function.

Then the following equality is established,

D(d, k _
KYan (g, a') = —(w’ )Pk(d DRa),  wal e s
d

where z -2/ 1= Y07 @)@,

The function P(s) is called the ultraspherical polynomial. This is the zonal
harmonics of degree k.

Note that, when we set

kE+2\—1

cda = (") R

we call (;(s) the Gegenbauer polynomial of degree k.
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Fix d € N and £k € Np.

Then, if we consider the case that S| =S, S, = N with \(dx) = dog(x), L*(T,v) =
(*({1,2,...,D(d,k)}) C Sa, and ¢y(x,n) = Y,fd’k)(:(;), Assumption 3’ is guaranteed.

Hence Theorem 2.4 determines a unique DPP on S? in which the correlation
kernel is given by

D(d, k _
(d, )Pk(d D2y o)
wWd

d—1+2k 4
pRrE A )

KYan (p,2') =

The density of points is uniform on S§¢ and is given with respect to o (dx) by

D(d, k _
py(d.k) = K Yar (g/l) = MPéd 1)/2(1)
Wd
 D(d.k)
— ox

where we have used the fact that P}(1) = F(=k, k+2\ XA +1/2;0) =1, )\ > —1/2.
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e Next we consider the DPP on S? for fixed d € N and N € N such that the
correlation kernel is given by the following finite sum,

L-1 1 L—-1
l(li\igjollluc(Si Ky(d k) CL CL - D(d 'If)Pk(d_l)/z(iU . CU,)
0 Wi 1o
L—

k=
1 —1+2
:_Zd —|_ kc(d 1/2( CLJ),
Wd
=0

H

where the total number of points on S? is given by

t~

N(d, L) = - D(d. k) =

0

QL +d—2(d+L—2 _2 o

=~
Il

e The DPP (=, KN (51) ,dog(z)) was called the harmonic ensemble in S with N

harmonic

points by Beltran et al. (2016).
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e We note the recurrence relation of the Gegenbauer polynomials,
(n+N)Cp() = NC () = Crta(w)).
This implies that

d—1+42k 4
T 2R A(d-1)/2

d+1)/2 d-+1)/2
— O ) =T ) - G @), k>2

Since Cg(x) = 1,C(x) = 2\x, we obtain the following expression for the correla-
tion kernel,

N(d,L 1 d1)/2 d+1)/2
Kl(lal'fn611zi(8d)(‘r7 :LJ) - w_d {Oé—l )/ (l ' wl) + Oé_g )/ (l . ll)} ;

e If we introduce the Jacobi polynomials defined as

(a+1),

plas) (z) = -

n

1 — o
F(—n,n+ax+ﬁ+1;ax+1; 21),

and use the contiguous relation, (b—a)F(a,b;c; z)+aF (a+1,b;¢;2) —bF (a,b+1;¢;2) =
0, the above is written as follows,
(N(d.L)) 1 N L) a2

/
har ',(Sd)( ) ) = L+d/2—1 L—-1
1armonic Wy ( Lil )

(),

where (“H27Y) .= D(L +d/2)/{(L — )IT(d/2 + 1)} = P22 1.
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e In particular, when d = 1, for z = (2, 2®) = (sin6,cosf), o/ = (@', 2/?) =
(sin@’,cos@') € S' C R?, 0,0' € [0,27), we have x -2’ = cos(f — (') and

1 1—-(2L-1) 1+(2L-1) 3 00—t
Ryt (@2 ) doy (@) F( ( ) 1+{ )3 sin? )w

harmonic(St) o 5 5 5 : 5, S1n

~ sin{(2L - 1)(0 — 0')/2} df
B sin{ (¢ — ¢')/2} 27
~ sin{N(0 —0")/2} do
-~ osin{(P—0)/2} 27’

where we have used the fact that N(1,L) =2L — 1.

e This verifies the identification of the 1-sphere case of the present DPP with the
Curcular Unitary Ensemble studied in random matrix theory.

e On the other hand, when d = 2, we have N(2,L) = L* and

L? 1 — -
K8 o (wa)="=F(~-L+1,L+1;2 ———
harmonic(S?) (:L v ) A + L L+ 102 2

N .l 2‘
_ZF(\MHLVN+L21 ij,
.

which is different from Kéév)(a:,:c’ ).
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4.3 Euclidean Family of DPPs

e We consider the vicinity of the north pole ¢;,; on S and put 0; =r/L, r € [0, 00).
Then the polar coordinates behave as

, 1
) ~ %sin G _1---sinfysint, =: —x(l),
@ I - L (@
Y~ Zsmﬁd_l ---sinf, cosl,_1 =: zx ., oa=2,...,d,
1 /7r\2
@)~ — = (—) :
. o \Z
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e In this case, for 2.2’ € ¢,

d+1

T - CL—ZSL —1—mHl—CL’Rd—|—O(1/L2) as L — oo,

where 7,7’ € R? and || - ||z« denotes the Euclidean norm in R

e Hence we can conclude that

/ r
XX = COS | —

1

e In this limit, the measure on S? behaves as

1
dog(x) = T — = lgin®3 0, o sinfy drdf, - - - dfy_,

1
ﬁd:c res  reR
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e The following limit is proved for the correlation kernel K (V(d, L))

harmonic(S4%) *

Lemma 4.2 When

x-x’cos(i)—i—o(—>, with r = ||v — 2'||pa,  as L — .

holds, the limat
1
ED(r) = lim — KNS af)

Ld harmonic(Sd)

exists and have the following expressions,

Jd/g(?“)
(27r)d/2’

1 ! d/2
:(27r)d/27“(d2)/2/0 S J(d_g)/g(rs)ds,

KD (r) =

where J,(2) is the Bessel function of the first kind with indezx v.
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e We can give the following alternative expression for K@,

Lemma 4.3 For d € N, the correlation kernel K'Y given above is written as

1 i(x—a')-
K9z, 2" = 20 /Rd Lga(y)e' "=V dy,

where BY denotes the unit ball centered at the origin, B := {y € R?: |y| < 1}.

e The above kernel is obtained as the correlation kernel Kg, in Corollary 2.4, if
we consider the case such that S, = S, = RY, )\ (dx) = dx, \a(dy) = v(dy) = dy,

V1(z,y) = eV, and ' = BY C R%
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e This kernel K'Y on R? d > 1 have been studied by Zelditch (2000), who regarded
them as the Szego kernels for the reduced Euclidean motion group. Here we
call the DPPs associated with the kernels in this form as correlation kernels the
Euclidean family of DPPs on R? d € N. See also [Zelditch (2000), Sogge—Zelditch
(2002), Zelditch (2009), Canzani-Hamin (2015)].

Euclidean?

Definition 4.4 The Euclidean family of DPP on R, d € N is defined by (E, KW d;z:) with
the correlation kernel

d
K]g]u)clid (‘T7 $’) -

d/2 d/2
2m)* e — ||,
_ 1 1 ! J /
T Sy T el e

. / ]. . /
= 1ga(y)e’ )Yy = / gy xa’ € R
(Zﬂ)d [];d Bd(J) Y (27T)d B Y
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e The above result is summarized as follows.

Proposition 4.5 The following is established for d € N,

e 1/d (V)
(5) N / © (:’ Kharmonic(Sd)7 dO'd(SU))

N—o0
—

= r-(d)
(‘—‘7 KEuclid7 d.’l?) :

e We see that
1 Jd/g(’r)

1

I ]g?clid(x , o) = lim

M G T T S+ 2)/2)

Then the Euclidean family of DPP is uniform on R? with the density with respect

to the Lebesgue measure dz is given by

(d) 1

Pluclid = 2407420 ((d + 2) /2)
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e For lower dimensions, the correlation kernels and the densities are given as
follows,

-(1) . Sill(l‘ — l‘/) - . . 1) 1
[i]g]uclid (CLT 3’,) — 7_‘_(1, _ ZL‘I) - [isinc (:Lv l/) with p](auchd — ;7
Sl = o'llee) 1
(2 1 R 2
R]Eju)clid(xv z') = 27l[w — /|2 with p(Etzclid s
-3 1 sin [|x — 2'||gs L . 3) 1
) = s (T g oslle =l ) with g = g

e This class of DPPs includes the DPP with the sinc kernel K,. as the lowest
dimensional case with d = 1.

e Note that, if d is odd,

(d) d . d 1 d "2 siny
[(Euclid(w?xl) — k.( )(HCL T Q;IHRO!) with ']C( )(T') =\ 57

27mr dr r
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Thank you very much
for your attention.
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