四元数 CR 多様体のツイスター空間について

 Twistor space for a quaternionic CR manifold＊
Hiroyuki Kamada（Miyagi University of Education） Joint work with Shin Nayatani（Nagoya University）

第22回 沼津研究会—幾何，数理物理，そして量子論— 2015年3月10日

[^0]Question: What is is a natural geometric structure modeled on any real hypersurface $M^{4 n+3}$ in a quaternionic manifold $\mathcal{N}^{4 n+4}$ (e.g., \mathbb{H}^{n+1})?

Fact: A CR structure is a natural geometric structure on every real hypersurface in a complex manifold (e.g., \mathbb{C}^{n+1}).

Quaternionic analogues of CR structures：
－Kuo（1970）．Almost contact 3－structure．Sasakian 3－structure
－Boyer－Galicki－Mann（1993）：3－Sasakian manifolds
－Hernandez（1996）：Hyper f－structure．Hyper PS－structure
－Biquard（2000）：Quaternionic contact structure（QC） （Duchemin（2006）：QC hypersurface）
－待田芳德（2004）：インスタントン分布の理論と 3－接触構造への一般化
－Alekseevsky－Kamishima（2004）：Pseudo－conformal quaternionic CR structure．
－K．－Nayatani（2001，2013）＊：Quaternionic CR structure（QCR）．
－Marchiafava－Ornea－Pantilie（2012）：CR quaternionic structure

Question：What are different？

＊The notion of QCR str．of the 2001 version was defined for a real hy－ persurface in a certain（but not general）quaternionic manifold（e．g．， \mathbb{H}^{n+1} ）；So we change the definition of QCR str．so that any real hyper－ surface in a quaternionic manifold naturally admits such a structure．

Extracted from Machida（2004）：
In $2 n$－dimensions：
シンプレクティツク構造 \leftarrow Kähler 計量 \rightarrow 複素構造。
In $(2 n+1)$－dimensions：
接触構造 \leftarrow Sasaki 計量 $\rightarrow C R$ 構造。

In $4 n$－dimensions：
超シンプレクティック構造
In $(4 n+3)$－dimensions：
超接触構造 $* ~ \leftarrow ~$ 超 Sasaki 計量 ${ }^{\dagger} \rightarrow$ 超 CR 構造 \ddagger
＊This is also called tri－contact structure（鼎接触構造）of quaternionic type（4元型3－接触冓造）．
${ }^{\dagger}$ This is usually called a 3－Sasakian metric．
\ddagger This may be equivalent to our HCR str．in the 2001 version．

Twistor theory

- Penrose (1976)
- Atiyah-Hitchin-Singer (1978)
- Salamon (1982, 1986): quaternionic-Kähler / quaternionic manifolds
- LeBrun (1984): Twistor CR manifolds and three-dimensional conformal geometry

Cf. Sato-Yamaguchi (1989): Lie contact manifolds

- Machida-Sato (2000)
- LeBrun-Mason (2007)

Quaternionic contact case (Biquard):

- Typical examples: $S^{4 n+3}$ (sphere), $\mathcal{H}^{4 n+3}$ (quaternionic Heisenberg group).
- Analogue of the Tanaka-Webster connection: Biquard connection $D^{\text {bia }}$.
- The twistor CR spaces for QC manifolds are constructed.
- QC structures sufficiently close to the standard one on $S^{4 n+3}$ exist, and are realized as the conformal infinity of $B_{\mathbb{H}}^{n+1}$ with a certain complete Einstein metric.

Quaternionic CR case (Nayatani-K.):

- Typical examples: $S^{4 n+3}, \mathcal{H}^{4 n+3}$, and any real hyersurface in a quaternionic manifold
- Analogue of the Tanaka-Webster connection: canonical connection $D^{\text {can }}$, under "ultra-pseudoconvexity"

Twistor CR spaces should be constructed.

Main Result The twistor space for a QCR manifold has a natural partially integrable almost $C R$ structure.

In the reminder of this talk, unless otherwise stated, we assume $\operatorname{dim}_{\mathbb{R}} M>7$.

§1. Review of CR structure

Definition: Let M be an odd-dim. (orientable) manifold. An almost CR str. on M is a pair (Q, J) of a corank 1 subbundle $Q \subset T M$ and a complex str. $J: Q \rightarrow Q$ (that is, $J^{2}=-\mathrm{id}_{Q}$).

- (Q, J) is partially integrable if it satisfies $[J X, Y]+[X, J Y] \in \Gamma(Q), X, Y \in \Gamma(Q)$
- (Q, J) is integrable if it further satisfies $[J X, J Y]-[X, Y]-J([J X, Y]+[X, J Y])=0$, $X, Y \in \Gamma(Q)$.
Then (Q, J) is called a CR structure.

Let (Q, J) be an almost CR str. on M with 1 -form θ on M such that $\operatorname{ker} \theta=Q$. Define a bilinear form L_{θ} on Q by

$$
L_{\theta}(X, Y):=d \theta(X, J Y), \quad X, Y \in Q
$$

- L_{θ} is symmetric and J-invariant on Q
(i.e., $d \theta(X, J Y)=d \theta(Y, J X), X, Y \in Q)$
iff (Q, J) is partially integrable.
(θ is unique up to $\theta \mapsto f \theta$ for $f \neq 0$, and satisfies $L_{f \theta}=f L_{\theta}$, because $d(f \theta)=d f \wedge \theta+f d \theta$.) L_{θ} is called the Levi form for (Q, J)
- (Q, J) is strongly pseudoconvex if $L_{\theta}>0$ for some θ, and such a θ is called a pseudohermitian structure. Then \exists a vector field T on M satisfying $\theta(T)=1$ and $d \theta(T, \cdot)=0$ (Reeb vector field).

§2. Quaternionic CR structures:

Unless otherwise stated, (a, b, c) denotes a cyclic permutation of $(1,2,3)$.
Definition A hyper CR str. on $M^{4 n+3}$ is a triple of almost CR str.s $\left(Q_{a}, I_{a}\right), a=1,2,3$, satisfying
(i) Q_{a} and Q_{b} are transverse to each other;
(ii) $I_{a}\left(Q_{a} \cap Q_{b}\right)=Q_{a} \cap Q_{c}$;
(iii) $I_{a} I_{b}=I_{c}$ on $Q_{b} \cap Q_{c}$ and $I_{b} I_{a}=-I_{c}$ on $Q_{a} \cap Q_{c}$;
(iv) $\left[I_{a} X, Y\right]+\left[X, I_{a} Y\right] \in \Gamma\left(Q_{a}\right), X, Y \in \Gamma(Q)$;
(v) $\left[I_{a} X, I_{a} Y\right]-[X, Y]-I_{a}\left(\left[I_{a} X, Y\right]+\left[X, I_{a} Y\right]\right) \in \Gamma(Q)$, $X, Y \in \Gamma(Q)$.
Here, $Q:=\bigcap_{a=1}^{3} Q_{a}$, and $I_{a} I_{b}=-I_{b} I_{a}=I_{c}$ hold on Q.

Definition (Strong integrability) A hyper CR structure $\left\{\left(Q_{a}, I_{a}\right)\right\}$ on M is said to be strongly integrable if \exists an so(3)-valued 1-form ($\gamma_{a b}$) on M such that

$$
\begin{aligned}
& I_{a}\left([X, Y]-\left[I_{a} X, I_{a} Y\right]\right)=\left[X, I_{a} Y\right]+\left[I_{a} X, Y\right] \\
& -\left(\left(\gamma_{a b}-\gamma_{a c} \circ I_{a}\right) \wedge I_{b}\right)(X, Y) \\
& +\left(\left(\gamma_{a b}-\gamma_{a c} \circ I_{a}\right) \wedge I_{b}\right)\left(I_{a} X, I_{a} Y\right), \\
& X, Y \in \Gamma(Q) \text {. }
\end{aligned}
$$

Definition A quaternionic CR (QCR) str. is a covering by local hyper CR str.s satisfying an appropriate gluing condition.

Note The local str.s $\left\{\left(Q_{a}, I_{a}\right)\right\}$ of any real hypersurface in a quaternionic manifold satisfy the strong integrability.

Proposition For a hyper CR str. $\left(Q_{a}, I_{a}\right), a=1,2,3$, there exists an \mathbb{R}^{3}-valued 1 -form $\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$, called a compatible 1-form, that satisfies $Q_{a}=\operatorname{ker} \theta_{a}$, and

$$
\theta_{c}=\theta_{a} \circ I_{b} \circ n Q_{b}, \quad \theta_{c}=-\theta_{b} \circ I_{a} \text { on } Q_{a}
$$

(θ is also unique up to conformal change $\theta \mapsto f \theta$.)
Definition (Levi form) The Levi form L_{θ} is a symmetric bilinear form on Q invariant by all I_{a} 's, defined by

$$
L_{\theta}(X, Y)=\frac{1}{2}\left\{d \theta_{a}\left(X, I_{a} Y\right)+d \theta_{a}\left(I_{b} X, I_{c} Y\right)\right\}, X, Y \in Q
$$

(The RHS is independent of the choice of (a, b, c).)

Note The Levi form, the strong pseudoconvexity, and the notions of pseudohermitian str. and strong integrability can also be defined for a QCR str.. A strongly pseudoconvex QCR str. has a natural $\operatorname{CSp}(n) \cdot \operatorname{Sp}(1)$-str. $\left(Q,\left[L_{\theta}\right], \mathbb{I}\right)$.

Definition ($C S p(n) \cdot S p(1)$-str.) Let $Q \rightarrow M$ be a real vector bundle of rank $4 n$. A $C S p(n) \cdot S p(1)$-str. on Q is a pair ($[\gamma], \mathbb{I})$ of a conformal class [γ] of metrics on Q and an S^{2}-bundle \mathbb{I} over M consisting of complex str.s on Q satisfying
(i) \mathbb{I} locally admits sections $I_{a}, a=1,2,3$ that satisfy the quaternion relation $I_{1} I_{2}=-I_{2} I_{1}=I_{3}$ and

$$
\mathbb{I}=\left\{v_{1} I_{1}+v_{2} I_{2}+v_{3} I_{3} \mid v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=1\right\} .
$$

(ii) $\gamma(I X, I Y)=\gamma(X, Y), X, Y \in Q$, for any $I \in \mathbb{I}$.

§3. Real hypersurface

Let \mathcal{N} be a real ($4 n+4$)-dim. quaternionic manifold, that is, a $G L(n+1, \mathbb{H}) \cdot S p(1)$-manifold admitting a compatible torsion-free connection. Here,

- A $G L(n+1, \mathbb{H}) \cdot S p(1)$-str. on $T \mathcal{N}$ is given by

$$
\mathcal{J}=\left\{v_{1} \mathcal{J}_{1}+v_{2} \mathcal{J}_{2}+v_{3} \mathcal{J}_{3} \mid v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=1\right\}
$$

for some (local) triple of almost complex str. \mathcal{J}_{a} that satisfies $\mathcal{J}_{a} \mathcal{J}_{b}=\mathcal{J}_{c}=-\mathcal{J}_{b} \mathcal{J}_{a}$.

- A torsion-free affine connection \mathcal{D} on \mathcal{N} is compatible with \mathcal{J}, if \exists a local so(3)-valued 1-form $\left(\gamma_{a b}\right)$ such that $\mathcal{D} \mathcal{J}_{a}=\gamma_{a b} \otimes \mathcal{J}_{b}+\gamma_{a c} \otimes \mathcal{J}_{c}$.

Let $M=\rho^{-1}(0) \subset \mathcal{N}$ be a real hypersurface and set

$$
Q_{a}=T M \cap \mathcal{J}_{a} T M, \quad I_{a}=\left.\mathcal{J}_{a}\right|_{Q_{a}} .
$$

Then $\left\{\left(Q_{a}, I_{a}\right)\right\}$ is a local hyper CR structure on M, which defines a QCR structure on M equipped with compatible 1 -form $\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$,

$$
\theta_{a}=-\left.\frac{1}{2} \mathcal{J}_{a} d \rho\right|_{T M}, \quad a=1,2,3 .
$$

The $G L(n, \mathbb{H}) \cdot S p(1)$-structure (Q, \mathbb{I}) of this QCR structure is called the standard underlying structure.
§4. Almost CR structure on the twistor space
Let M be a strongly integrable QCR manifold and $\pi: \mathcal{Z}=$ $\mathbb{I} \rightarrow M$ the associated S^{2}-bundle

$$
\mathcal{Z}=\left\{I_{\mathbf{v}}=v_{1} I_{1}+v_{2} I_{2}+v_{3} I_{3} \mid \mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right) \in S^{2}\right\}
$$

Then one can define a hyperplane $Q_{\mathbf{v}} \subset T_{q} M, q \in M$ on which $I_{\mathbf{v}}$ makes sense. In fact, $Q_{\mathbf{v}}=\operatorname{Ker} \theta_{\mathbf{v}}$, where $\theta_{\mathbf{v}}=$ $v_{1} \theta_{1}+v_{2} \theta_{2}+v_{3} \theta_{3}$.

Assume that M is ultra pseudoconvex and fix a pseudohermitian str..

Definition A quaternionic CR str. is ultra pseudoconvex if

$$
h_{\theta}=(2 n+4) L_{\theta}-\left.\sum_{a=1}^{3} d \theta_{a}\left(\cdot, I_{a} \cdot\right)\right|_{Q \times Q}>0
$$

Set $I=I_{\mathrm{v}} \in \mathcal{Z}$ and $q=\pi(I)$.
Using the canonical connection $D^{\text {can }}$, we decompose $T_{I} \mathcal{Z}=$ $\mathcal{V}_{I} \oplus \mathcal{H}_{I}$, where $\mathcal{V}_{I}=T_{I} \pi^{-1}(q)$ and \mathcal{H}_{I} is the horizontal space with respect to $D^{\text {can }}$.

Define a complex str. $\mathcal{J}=\mathcal{J}_{I}$ on $\mathcal{P}_{I}=\mathcal{V}_{I} \oplus \widetilde{Q_{\mathrm{V}}}$, where $\widetilde{Q_{\mathbf{v}}}=\left(\left.\pi_{*}\right|_{\mathcal{H}_{I}}\right)^{-1}\left(Q_{\mathrm{v}}\right)$, so that
(i) $\left.\mathcal{J}\right|_{\mathcal{V}_{I}}$ is the natural complex str. of $\pi^{-1}(q)=S^{2}$.
(ii) $\mathcal{J}_{\widetilde{Q}_{\mathrm{v}}}$ is the lift of $I_{\mathrm{v}}: Q_{\mathrm{v}} \rightarrow Q_{\mathrm{v}}$.

Theorem $\mathcal{J}: \mathcal{P}_{I} \rightarrow \mathcal{P}_{I}$ is independent of the choice of θ. Then we have a well-defined almost $\mathrm{CR} \operatorname{str} .(\mathcal{P}, \mathcal{J})$ on \mathcal{Z}. Moreover, $(\mathcal{P}, \mathcal{J})$ is also partially integrable.

It remains to see whether $(\mathcal{P}, \mathcal{J})$ is integrable.

Note

- It is known that for an HCR str. with integrable CR structures $\left\{\left(Q_{a}, I_{a}\right)\right\}$ on M, the product space $\mathcal{Z}=M \times S^{2}$ has a natural CR str..
- Recently, Marchiafava et al. introduce "CR quaternonic structure" and "co-CR quaternionic structure".

§5. Comparison of QCR with QC

Definition (Quaternionic contact str.) A quaternionic contact (QC) str. on a ($4 n+3$)-dim. manifold M is a corank 3 subbundle $Q \subset T M$ equipped with a $\operatorname{CSp}(n) \cdot S p(1)$-str. ($[\gamma], \mathbb{I})$ such that Q is locally the kernel of an \mathbb{R}^{3}-valued 1-form $\eta=\left(\eta_{1}, \eta_{2}, \eta_{3}\right)$ that satisfies

$$
d \eta_{a}\left(X, I_{a} Y\right)=\gamma(X, Y), \quad X, Y \in Q(a=1,2,3) .
$$

Note $\left.d \eta_{a}\left(\cdot, I_{a} \cdot\right)\right|_{Q \times Q}>0$ and is invariant by all I_{a} 's.

Proposition Let ($Q,[\gamma], \mathbb{I}$) be any QC str.. Take any 3plane field Q^{\perp} satisfying $T M=Q \oplus Q^{\perp}$. Then we can define a QCR str. $\left\{\left(Q_{a}, I_{a}\right)\right\}$ compatible with (Q, \mathbb{I}). If one takes $Q^{\perp}=\left\langle R_{a}\right\rangle$, the bundle generated by the "Reeb vector fields" $R_{a}, a=1,2,3$, then the corresponding QCR str. is strongly integrable.

Note In this sense, the geometry of QCR str.s contains that of QC ones. The latter statement of this proposition can be verified by using the Biquard connection $D^{\text {bia }}$.

Theorem (K.-Nayatani) Let (Q, \mathbb{I}) be a $G L(n, \mathbb{H}) \cdot S p(1)$ str. compatible with both a QC structure $(Q,[\gamma], \mathbb{I})$ and a QCR structure $\left\{\left(Q_{a}, I_{a}\right)\right\}$. Then $[\gamma]=\left[L_{\theta}\right]$ and

$$
L_{\theta}(X, Y)=d \theta_{a}\left(X, I_{a} Y\right), \quad X, Y \in Q(a=1,2,3)
$$

Note Such a QCR str. $\left\{\left(Q_{a}, I_{a}\right)\right\}$ is ultra pseudoconvex. Thus, for each choice of a pseudohermitian st. $\theta=\left(\theta_{a}\right)$ together with $Q^{\perp}=\left\langle R_{a}\right\rangle$, the Biquard connection $D^{\text {bid }}$ for QC and the canonical connection $D^{\text {can }}$ for QCR restrict the same Q-partial connection on Q, that is, $D_{X}^{\text {bia }} Y=D_{X}^{\text {can }} Y$ for $X, Y \in \Gamma(Q)$.

Recall: a quaternionic CR str. is ultra pseudoconvex \Leftrightarrow

$$
h_{\theta}=(2 n+4) L_{\theta}-\left.\sum_{a=1}^{3} d \theta_{a}\left(\cdot, I_{a} \cdot\right)\right|_{Q \times Q}>0
$$

Corollary There exists a $G L(n, \mathbb{H}) \cdot S p(1)$-str. compatible with a QCR str., but never compatible with a QC str..

Example A deformation of the quaternionic Heisenberg group has a $G L(n, \mathbb{H}) \cdot S p(1)$-str. compatible with a QCR, but never compatible with QC str., when some of $\left.d \theta_{a}\left(\cdot, I_{a} \cdot\right)\right|_{Q \times Q}$ is indefinite or degenerate.

Example A non-quaternionic ellipsoid \mathcal{E} admits no QC str. having the standard underlying $G L(n, \mathbb{H}) \cdot S p(1)$-str. defined by the defining function of \mathcal{E}.
$\underline{\text { Real ellipsoid }}$ Let $\mathcal{E}=\rho^{-1}(0) \subset \mathbb{H}^{n+1}=\mathbb{C}^{2 n+2}$ with
$\rho(z, w)=\sum_{i=1}^{n+1}\left\{A_{i}\left(z_{i}^{2}+{\overline{z_{i}}}^{2}\right)+B_{i} z_{i} \overline{z_{i}}+C_{i}\left(w_{i}^{2}+{\overline{w_{i}}}^{2}\right)+D_{i} \overline{w_{i}} w_{i}\right\}-1$
($A_{i}, C_{i} \in \mathbb{R}, B_{i}, D_{i} \in \mathbb{R}_{>0}$: constants). Then

$$
\begin{aligned}
L_{\theta_{1}}= & 2 \sum_{i=1}^{n+1}\left(B_{i} d z_{i} d \overline{z_{i}}+D_{i} d \overline{w_{i}} d w_{i}\right) \\
L_{\theta_{2}}= & \operatorname{Re} \sum_{i=1}^{n+1}\left\{\left(B_{i}+D_{i}\right)\left(d z_{i} d \overline{z_{i}}+d \overline{w_{i}} d w_{i}\right)\right. \\
& \left.\quad+2\left(A_{i}+C_{i}\right)\left(d z_{i}^{2}+d{\overline{w_{i}}}^{2}\right)\right\} \\
L_{\theta_{3}}= & \operatorname{Re} \sum_{i=1}^{n+1}\left\{\left(B_{i}+D_{i}\right)\left(d z_{i} \overline{d z_{i}}+d \overline{w_{i}} d w_{i}\right)\right. \\
& \left.\quad+2\left(A_{i}-C_{i}\right)\left(d z_{i}^{2}-d{\overline{w_{i}}}^{2}\right)\right\} .
\end{aligned}
$$

In particular, all $L_{\theta_{a}}, a=1,2,3$, coincide if and only if $B_{i}=D_{i}$ and $A_{i}=C_{i}=0$, i.e., \mathcal{E} is a quaternionic ellipsoid.

Example (Deformation of $\mathcal{H}^{4 n+3}$) Take the following vector fields X_{α}^{a} on $\mathbb{R}^{4 n} \times \mathbb{R}^{3}$:

$$
\begin{aligned}
X_{\alpha}^{0} & =\frac{\partial}{\partial x_{\alpha}^{0}}+A_{\alpha}^{1} x_{\alpha}^{1} \frac{\partial}{\partial t_{1}}+A_{\alpha}^{2} x_{\alpha}^{2} \frac{\partial}{\partial t_{2}}+A_{\alpha}^{3} x_{\alpha}^{3} \frac{\partial}{\partial t_{3}}, \\
X_{\alpha}^{1} & =\frac{\partial}{\partial x_{\alpha}^{1}}-B_{\alpha}^{1} x_{\alpha}^{0} \frac{\partial}{\partial t_{1}}-B_{\alpha}^{2} x_{\alpha}^{3} \frac{\partial}{\partial t_{2}}+B_{\alpha}^{3} x_{\alpha}^{2} \frac{\partial}{\partial t_{3}}, \\
X_{\alpha}^{2} & =\frac{\partial}{\partial x_{\alpha}^{2}}+C_{\alpha}^{1} x_{\alpha}^{3} \frac{\partial}{\partial t_{1}}-C_{\alpha}^{2} x_{\alpha}^{0} \frac{\partial}{\partial t_{2}}-C_{\alpha}^{3} x_{\alpha}^{\frac{\partial}{\partial t_{3}}}, \\
X_{\alpha}^{3} & =\frac{\partial}{\partial x_{\alpha}^{3}}-D_{\alpha}^{1} x_{\alpha}^{2} \frac{\partial}{\partial t_{1}}+D_{\alpha}^{2} x_{\alpha}^{1} \frac{\partial}{\partial t_{2}}-D_{\alpha}^{3} x_{\alpha}^{0} \frac{\partial}{\partial t_{3}},
\end{aligned}
$$

where $A_{\alpha}^{a}, B_{\alpha}^{a}, C_{\alpha}^{a}, D_{\alpha}^{a} \in \mathbb{R}$ (constants).
Set $T_{a}=2 \partial / \partial t_{a}$ and define $Q,\left(Q_{a}, I_{a}\right)$ by

$$
\begin{gathered}
Q=\operatorname{span}\left\{X_{\alpha}^{a}\right\}_{1 \leq \alpha \leq n, 0 \leq a \leq 3}, \quad Q a=Q \oplus \mathbb{R} T_{b} \oplus \mathbb{R} T_{c} \\
I_{a} X_{\alpha}^{0}=X_{\alpha}^{a}, I_{a} X_{\alpha}^{b}=X_{\alpha}^{c}, I_{a} T_{b}=T_{c}
\end{gathered}
$$

Then almost CR structures $\left(Q a, I_{a}\right), a=1,2,3$, on $\mathbb{R}^{4 n} \times \mathbb{R}^{3}$ always satisfy (iv).

If $\left\{\left(Q_{a}, I_{a}\right)\right\}$ is strongly integrable (or all $\left(Q_{a}, I_{a}\right)$ are CR structures), then $A_{\alpha}^{a}+B_{\alpha}^{a}+C_{\alpha}^{a}+D_{\alpha}^{a}$ does not depend on a (though may depend on α).

Then an \mathbb{R}^{3}-valued 1-form $\theta=\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ given by

$$
\begin{aligned}
\theta_{1} & =\frac{1}{2}\left[d t_{1}+\sum_{\alpha}\left(-A_{\alpha}^{1} x_{\alpha}^{1} d x_{\alpha}^{0}+B_{\alpha}^{1} x_{\alpha}^{0} d x_{\alpha}^{1}-C_{\alpha}^{1} x_{\alpha}^{3} d x_{\alpha}^{2}+D_{\alpha}^{1} x_{\alpha}^{2} d x_{\alpha}^{3}\right)\right], \\
\theta_{2} & =\frac{1}{2}\left[d t_{2}+\sum_{\alpha}\left(-A_{\alpha}^{2} x_{\alpha}^{2} d x_{\alpha}^{0}+B_{\alpha}^{2} x_{\alpha}^{3} d x_{\alpha}^{1}+C_{\alpha}^{2} x_{\alpha}^{0} d x_{\alpha}^{2}-D_{\alpha}^{2} x_{\alpha}^{1} d x_{\alpha}^{3}\right)\right], \\
\theta_{3} & =\frac{1}{2}\left[d t_{2}+\sum_{\alpha}\left(-A_{\alpha}^{3} x_{\alpha}^{3} d x_{\alpha}^{0}-B_{\alpha}^{3} x_{\alpha}^{2} d x_{\alpha}^{1}+C_{\alpha}^{3} x_{\alpha}^{1} d x_{\alpha}^{2}+D_{\alpha}^{3} x_{\alpha}^{0} d x_{\alpha}^{3}\right)\right]
\end{aligned}
$$

is compatible with the hyper CR structure and satisfies $\theta_{a}\left(T_{b}\right)=\delta_{a b}$.

The Levi forms (restricted to Q) for CR structures (Q_{a}, I_{a}) are

$$
\begin{aligned}
L_{\theta_{1}}= & \frac{1}{2} \sum_{\alpha}\left\{\left(A_{\alpha}^{1}+B_{\alpha}^{1}\right)\left(\left(d x_{\alpha}^{0}\right)^{2}+\left(d x_{\alpha}^{1}\right)^{2}\right)\right. \\
& \left.+\left(C_{\alpha}^{1}+D_{\alpha}^{1}\right)\left(\left(d x_{\alpha}^{2}\right)^{2}+\left(d x_{\alpha}^{3}\right)^{2}\right)\right\} \\
L_{\theta_{2}}= & \frac{1}{2} \sum_{\alpha}\left\{\left(A_{\alpha}^{2}+C_{\alpha}^{2}\right)\left(\left(d x_{\alpha}^{0}\right)^{2}+\left(d x_{\alpha}^{2}\right)^{2}\right)\right. \\
& \left.+\left(B_{\alpha}^{2}+D_{\alpha}^{2}\right)\left(\left(d x_{\alpha}^{3}\right)^{2}+\left(d x_{\alpha}^{1}\right)^{2}\right)\right\} \\
L_{\theta_{3}}= & \frac{1}{2} \sum_{\alpha}\left\{\left(A_{\alpha}^{3}+D_{\alpha}^{3}\right)\left(\left(d x_{\alpha}^{0}\right)^{2}+\left(d x_{\alpha}^{3}\right)^{2}\right)\right. \\
& \left.+\left(B_{\alpha}^{3}+C_{\alpha}^{3}\right)\left(\left(d x_{\alpha}^{1}\right)^{2}+\left(d x_{\alpha}^{2}\right)^{2}\right)\right\} .
\end{aligned}
$$

Then the Levi form L_{θ} is

$$
L_{\theta}=\frac{1}{4} \sum_{\alpha} \wedge_{\alpha}\left(\left(d x_{\alpha}^{0}\right)^{2}+\left(d x_{\alpha}^{1}\right)^{2}+\left(d x_{\alpha}^{2}\right)^{2}+\left(d x_{\alpha}^{3}\right)^{2}\right)
$$

where $\wedge_{\alpha}:=A_{\alpha}^{a}+B_{\alpha}^{a}+C_{\alpha}^{a}+D_{\alpha}^{a}$.
If $\Lambda_{\alpha}>0$ for all α, then the hyper CR structure is strongly pseudoconvex.

Well-definedness of $(\mathcal{P}, \mathcal{J})$: Need to show the vanishing of

$$
\begin{aligned}
& g\left(\left(\nabla^{\prime}-\nabla\right)_{T_{3}} I, \Phi\right)+g\left(\left(\nabla^{\prime}-\nabla\right)_{T_{2}} I, I \Phi\right)= \\
& 4 u\left[\sum_{i=1}^{4 n} g\left(\left(D_{J \varepsilon_{i}} I\right)(J W), I \varepsilon_{i}\right)-\left\{\left(d \theta_{1}\left(T_{2}, K W\right)+d \theta_{1}\left(T_{3}, J W\right)\right)\right.\right. \\
& \left.\left.\quad+\left(d \theta_{2}\left(T_{2}, W\right)-d \theta_{3}\left(T_{3}, W\right)-d \theta_{2}\left(T_{3}, I W\right)-d \theta_{3}\left(T_{2}, I W\right)\right)\right\}\right] \\
& +4 v\left[\sum_{i=1}^{4 n} g\left(\left(D_{K \varepsilon_{i}} I\right)(J W), I \varepsilon_{i}\right)-\left\{\left(-d \theta_{1}\left(T_{2}, J W\right)+d \theta_{1}\left(T_{3}, K W\right)\right)\right.\right. \\
& \left.\left.\quad+\left(d \theta_{2}\left(T_{2}, I W\right)-d \theta_{3}\left(T_{3}, I W\right)+d \theta_{2}\left(T_{3}, W\right)+d \theta_{3}\left(T_{2}, W\right)\right)\right\}\right]
\end{aligned}
$$

for $\Phi=u J+v K$.

Lemma

$$
\begin{align*}
& \left(d \theta_{2}-\sqrt{-1} d \theta_{3}\right)\left(T_{2}-\sqrt{-1} T_{3}, Z\right)=0 \tag{1}\\
& \sum_{k=1}^{n} g\left(\left[e_{2 k-1}, e_{2 k}\right]_{Q}, Z\right)=-\frac{\sqrt{-1}}{2} d \theta_{1}\left(T_{2}-\sqrt{-1} T_{3}, Z\right) \tag{2}\\
& g\left(D_{Z} e_{2 k-1}, e_{2 k}\right)=\frac{\sqrt{-1}}{2} d \theta_{1}\left(T_{2}-\sqrt{-1} T_{3}, Z\right), k=1,2, \ldots \tag{3i}
\end{align*}
$$

for any $Z \in Q^{1,0}=\left\{Z \in Q \otimes \mathbb{C} \mid I_{1} Z=\sqrt{-1} Z\right\}$ Here, $\left\{e_{1}, \ldots, e_{2 n}\right\}$ is a local unitary frame field on $Q^{1,0}$ with respect to the Levi form $g=L_{\theta}$ satisfying $I_{2} e_{2 k-1}=$ $\overline{e_{2 k}}, I_{2} e_{2 k}=-\overline{e_{2 k-1}}, k=1,2, \ldots, n$.

[^0]: ＊Partly supported by JSPS KAKENHI Grant Numbers 24540062

