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三点接割線の補題1

A tangential trisecant lemma

楫 元
横浜

第23回沼津研究会
——幾何，数理物理，そして量子論——

沼津工業高等専門学校
2016年3月8日

1待田芳徳先生から演題邦訳をいただきました. ありがとうございました.
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万葉集

第六巻:0934: 朝なぎに楫の音聞こゆ御食つ国・・・
原文: 朝名寸二 梶音所聞 三食津國 野嶋乃海子乃 船二四有良信
作者: 山部赤人 (やまべのあかひと)

よみ: 朝なぎに、楫 (かぢ)の音 (おと)聞こゆ、御食 (みけ)つ国、野島 (のしま)の海人 (あま)の、舟にしあるらし
意味: 朝凪 (あさなぎ)に舵 (かじ)の音が聞こえます。御食 (みけ)つ国の野島 (のしま)の海人 (あま)の舟なので
しょう。

第十九巻:4240: 大船に真楫しじ貫きこの我子を・・・
原文: 大船尓 真梶繁貫 此吾子乎 韓國邊遣 伊波敝神多智
作者: 光明皇后 (こうみょうこうごう)

よみ: 大船 (おほぶね)に、楫 (まかぢ)しじ貫 (ぬ)き、この我子 (あこ)を、唐国 (からくに)へ遣 (や)る、斎 (い
は)へ神たち
意味: 大船に櫂 (かい)をたくさん取りつけて、この我が子を唐の国へ遣 (つか)わします。どうかお守りくださ
い、神々よ。

歌風と万葉仮名編集 (https://ja.wikipedia.org/wiki/万葉集)

全文が漢字で書かれており、漢文の体裁をなしている。しかし、歌は、日本語の語順で書かれている。歌は、表
意的に漢字で表したもの、表音的に漢字で表したもの、表意と表音とを併せたもの、文字を使っていないものな
どがあり多種多様である。編纂された頃にはまだ仮名文字は作られていなかったので、万葉仮名とよばれる独特
の表記法を用いた。つまり、漢字の意味とは関係なく、漢字の音訓だけを借用して日本語を表記しようとしたの
である。その意味では、万葉仮名は、漢字を用いながらも、日本人による日本人のための最初の文字であったと
言えよう。
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Plan

1. Introduction
2. Tangential Trisecant Lemma
3. Recent Result
4. Sketch of Proof
5. Conjectures

We work over an algebarically closed field k of
arbitrary characteristic p ≥ 0.
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1 Introduction
As a celebrated result in classical projective geometry, we have

Theorem (trisecant lemma)
Let X ⊆ PN be a smooth projective curve.
If a general secant line of X is trisecant, then

X is planar, i.e., contained in a 2-plane.
...
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As a celebrated result in classical projective geometry, we have

Theorem (trisecant lemma)
Let X ⊆ PN be a smooth projective curve.
If a general secant line of X is trisecant, then

X is planar, i.e., contained in a 2-plane.
By virtue of the trisecant lemma, using generic projection, one can prove

Corollary (existence of a good plane-curve model)

A smooth projective curve is birationally equivalent to
a plane curve with at most nodes for singularities.

Definition A line L ⊆ PN is called

• a secant line of X
def⇔ #(L ∩X) ≥ 2.

• a trisecant line of X
def⇔ #(L ∩X) ≥ 3.

Question

...
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X is planar, i.e., contained in a 2-plane.
By virtue of the trisecant lemma, using generic projection, one can prove

Corollary (existence of a good plane-curve model)

A smooth projective curve is birationally equivalent to
a plane curve with at most nodes for singularities.

Definition A line L ⊆ PN is called

• a secant line of X
def⇔ #(L ∩X) ≥ 2.

• a trisecant line of X
def⇔ #(L ∩X) ≥ 3.

Question (näıve) Does the same conclusion hold

if “secant line” is replaced by “tangent line” in the trisecant lemma? i.e.,
Is a proj curve planar if a general tangent line is tangential trisecant?

Definition A line L ⊆ PN is called

• a tangential trisecant line of X
def⇔ L tang to X & #(L ∩X) ≥ 2.

• Q

general P •

XTP

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

tangential trisecant line
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Definition A projective curve X ⊆ PN is said to be

tangentially degenerate
def⇔ a general tangent line is tangential trisecant.

Question (näıve)

Is a projective curve X ⊆ PN planar if it is tangentially degenerate?

• Q

general P •

XTP

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

tangential trisecant line
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According to C.Ciliberto [MR0850959 (87i:14027)],
such a question was explicitly posed for the first time by A.Terracini:
In fact, in the footnote 27 on p.143 of his paper,

Alessandro TERRACINI:
“Sulla riducibilitá di alcune particolari corrispondenze
algebriche,” Rend.Circ.Mat.Palermo 56 (1932), 112–143.

Terracini wrote as follows:
27) Non so se siano stati dati esempi di curve algebriche relative al
caso r = 3, h = 1, vale a dire di curve algebriche sghembe dello spazio
ordinario le cui rette tangenti siano tutte ulteriormente secanti.
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“Sulla riducibilitá di alcune particolari corrispondenze
algebriche,” Rend.Circ.Mat.Palermo 56 (1932), 112–143.

Terracini wrote as follows:
27) Non so se siano stati dati esempi di curve algebriche relative al
caso r = 3, h = 1, vale a dire di curve algebriche sghembe dello spazio
ordinario le cui rette tangenti siano tutte ulteriormente secanti.

↓ http://translate.google.com/

27) I don’t know if have been given examples of algebraic curves related
to the case r = 3, h = 1, that is to say of skew algebraic curves of the
ordinary space whose tangent lines are further all secant.

r = dim of ambnt space, h = dim of linear spaces in question.

from “On the reducibility of some special algebraic correspondences”

In fact, he gave a counter-example of analytic curve in A3
C, as follows:
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Example (Terracini (1932), tang deg but non-planar affine analytic curve)
• Let X = ϕ(C) be an analytic curve parametrized by

ϕ : C→ C3; t '→ (eαt, eβt, eγt), (α,β, γ ∈ C \ {0}).
• Then, for k ∈ C \ {0}, the tangent line to X at ϕ(t) meets X again

at ϕ(t + k) iff ϕ(t + k)− ϕ(t) ‖ ϕ̇(t) as vectors in C3, where
...

• ϕ(t + k)

ϕ(t) •

XTϕ(t)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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! just choose distinct α,β, γ ∈ f−1(K). !
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X is not planar in C3 if α,β, γ distinct.
• To show ∃ distinct α,β, γ ∈ C \ {0} satisfying the relation above,

consider a function on C as follows: f(z) =
ekz − 1

z
.

• According to Picard theorem (in complex analysis),
for a general K ∈ C, there exist infinitely many z ∈ C s.t. f(z) = K.
! just choose distinct α,β, γ ∈ f−1(K). !

What’s going on at
the infinity X \ X ⊆ CP3?
e.g., dimR(X \ X) = 0 or 1?
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Theorem (trisecant lemma, slightly generalized version)
For X ⊆ PN a projective curve with normalization C, assume that

• the characteristic p = 0, or
• b1(P ) = 1 (∀P ∈ C), i.e., ι : C → PN unramified (e.g., X smooth).

If a general secant line of X is trisecant, then X is planar.

Proof May assume N = 3, by induction on N with generic projection.
• Suppose X were not planar (i.e., non-degenerate in P3).
! πz|X : X " X := πz(X) ⊆ P2 is finite morph of deg ≥ 2,
∵ gen secant is trisec, where πz : P3\X → P2(⊆ P3) proj from gen z ∈ X.
! if πz|X inseparable, then z ∈ Tx for any smooth x ∈ X,

namely, X is strange with center z, and
if πz|X sep, then for gen P ∈ X, #(πz|−1X (P )) ≥ 2.

! ∃x -= y ∈ X,πz(x) = πz(y) = P .
! Tx, Ty ⊆ 〈z, TP 〉 0 P2. ! Tx ∩ Ty -= ∅.

! for gen z ∈ X and for gen x, y ∈ X s.t. z ∈ 〈x, y〉, Tx ∩ Ty -= ∅.
! for gen x, y ∈ X, Tx ∩ Ty -= ∅ (by dimension counting).
! A := Tx∩Ty (gen x, y ∈ X)⇒ Tw 3 A for gen w ∈ X \ 〈Tx, Ty〉.
! X is strange with center A.

! Whether πz|X is separable or not, X would be strange.
• A strange curve X with unramified ι is classified either

a line or a conic in p = 2. In particular, X is planar.
∴ This is a contradiction. (Note: only strange curve in p = 0 is a line.) !
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The unramifiedness of ι in p > 0 is essential. In fact, we have

Example (J.Roberts (1980)) Assume p > 0.

Let X := ϕ(A1) ⊆ PN the projective closure of ϕ(A1), where

ϕ : A1→ AN ; t '→ (t, tp, tp
2
, . . . , tp

N−2
, tp

N−1
).

Then
• X is non-degenerate in PN , hence not planar if N ≥ 3.
• A general secant line of X is trisecant: In fact,

ϕ(t + t′) ∈ 〈ϕ(t),ϕ(t′)〉 for any t -= t′ ∈ A1.

∵ ϕ(t) + ϕ(t′) = ϕ(t + t′) as vectors in AN by p > 0.
• X is strange: In fact, Tϕ(t) 3 ϕ̇(t) = (1, 0, . . . , 0) for any t ∈ A1.
• The induced morphism ι : P1 = C → X ↪→ PN is

ramified at ∞ ∈ P1 unless N = p = 2 (⇔ X is smooth).
∵ the order at ∞: b1(∞) = pN−1 − pN−2 = pN−2(p− 1).
! b1(∞) = 1⇔ N = p = 2. !

Remark

Roberts’ example above is introduced in F.Zak’s textbook
“Tangents and Secants of Algebraic Varieties” (p.41, Remark 1.12),
as in origin a counter-example in p > 0 for “Terracini’s Lemma,” which
asserts that Tz SecX = 〈TxX, TyX〉 for general z ∈ 〈x, y〉.
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Corollary (existence of a good plane-curve model)

A smooth projective curve X ⊆ PN is birationally equivalent to
a plane curve with at most nodes for singularities.

Proof May assume X ⊆ P3 non-planar, and smooth (by gen projection).
Claim 1: Tx ∩ Ty = ∅ for gen x, y ∈ X.
∵ shown in the proof of Trisecant Lemma.

Claim 2: gen pt z ∈ P3 is not on any trisecant line of X. !
∵ The closure of the image,

p12 : {(P,Q,R)|R ∈ 〈P,Q〉} ⊆ X ×X ×X → X ×X,
is proper closed in X ×X by Trisecant Lemma, hence of dim ≤ 1.
! dim(

⋃
trisecant lines) ≤ 2, hence a proper subset of P3. !

• Set X := πz(X) ⊆ P2, where πz : P3\{z}→ P2(⊆ P3) proj from z ∈ P3.
• for gen z ∈ P3,

Claim 1 ! X has at most ordinary pts for sing.
Claim 2 ! X has at most double pts for sing.
Therefore X has at most ordinary double pts (i.e., nodes) for sing. !
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2 Tangential Trisecant Lemma

Theorem (‘tangential trisecant lemma,’ K (1986))
For a projective curve X ⊆ PN with normalization C, assume that

• the characteristic p = 0, and
• the induced morphism ι : C → PN is unramified.

If a general tangent line of X is a tangential trisecant line, then
X is planar, that is, contained in a 2-plane.

Definition A line L ⊆ PN is called
a tangential trisecant line of X

def⇔ L is tangent to X and #(L ∩X) ≥ 2 as a set.

• Q

P •

XL

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Remark
• Some attempts to weaken the condition on singularities of X
have been given, as I explain below.

• I believe that any condition on singularities is not necessary. Namely,

My Belief

The conclusion of Theorem above holds for
any (possibly singular) projective curve X ⊆ PN if p = 0.

On the other hand, ...
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Counter examples in p > 0 (smooth, tang degen but non-planar curves):

Example 1 (K(1986), Rathmann(1987), Levcovitz(1991); graph of insep morph)
For f : P1 " P1 of sep deg s > 1, insep deg q = pe with e > 0, set

X := (the image of Γf ↪→ P1 × P1 ↪→ P3), Γf is the graph of f .
! for gen P ∈ X, TP ∩X = q · P1 + · · · + q · Ps (∃P1, . . . , Ps = P ).
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! for gen P ∈ X, TP ∩X = q · P1 + · · · + q · Ps (∃P1, . . . , Ps = P ).

Example 2 (K(1989); ordinary elliptic curves without inflection pt)
For ordinary elliptic curve X and for s > 0 s.t. p- | s,
∃ embedding ϕ : X ↪→ PN with N ≥ 3 s.t.

for all P ∈ X, TP ∩X = q · P1 + · · · + q · Ps , and
{P1, . . . , Ps = P} form a cyclic subgroup of X with order s.

• If q = 2, thenX has no inflection point.

An elliptic curve C in char p > 0 is said to be supersingular if Cp = {0}.
Otherwise C is said to be ordinary, and in that case Cp 0 Z/pZ.

A point P of X is called an inflection point
def⇔ i(X, TP ;P ) ≥ 3.
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{P1, . . . , Ps = P} form a cyclic subgroup of X with order s.

• If q = 2, thenX has no inflection point.

Example 3 (Garcia-Voloch(1991); Frobenius non-classical complete int)
ConsiderX ⊆ P3 : xq+1 + yq+1 = 1, xq+1 + zq+1 = λ, (1 -= λ ∈ Fq, p > 2).

! for gen P ∈ X, TP ∩X = q · P + F (P ) , F a Frob morph of deg q2.
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Example 2 (K(1989); ordinary elliptic curves without inflection pt)
For ordinary elliptic curve X and for s > 0 s.t. p- | s,
∃ embedding ϕ : X ↪→ PN with N ≥ 3 s.t.

for all P ∈ X, TP ∩X = q · P1 + · · · + q · Ps , and
{P1, . . . , Ps = P} form a cyclic subgroup of X with order s.

• If q = 2, then X has no inflection point.
• The orders of X are {0, 1, q, q + 1}. ! non-reflexive

Example 3 (Garcia-Voloch(1991); Frobenius non-classical complete int)
Consider X ⊆ P3 : xq+1 + yq+1 = 1, xq+1 + zq+1 = λ, (1 -= λ ∈ Fq, p > 2).

! for gen P ∈ X, TP ∩X = q · P + F (P ) , F a Frob morph of deg q2.

• The orders of X are {0, 1, q, 2q}. ! non-reflexive
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Counter examples in p > 0 (smooth, tang degen but non-planar curves):

Example 4 (Esteves-Homma (1994))

Assume p > 3 and set X := ϕ(A1) ⊆ P3, where
ϕ : A1→ A3, ϕ(t) = (t, t2 − tp, t3 + 2tp − 3tp+1).

! for all t ∈ A1, Tϕ(t) ∩X = 2 · ϕ(t) + ϕ(t + 1) .

In fact, ϕ(t + 1)− ϕ(t) = ϕ̇(t) as vectors for all t ∈ A1.
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Counter examples in p > 0 (smooth, tang degen but non-planar curves):

Example 4 (Esteves-Homma (1994))

Assume p > 3 and set X := ϕ(A1) ⊆ P3, where
ϕ : A1→ A3, ϕ(t) = (t, t2 − tp, t3 + 2tp − 3tp+1).

! for all t ∈ A1, Tϕ(t) ∩X = 2 · ϕ(t) + ϕ(t + 1) .

In fact, ϕ(t + 1)− ϕ(t) = ϕ̇(t) as vectors for all t ∈ A1.
• The orders of X are {0, 1, 2, 3}.
• Surprisingly, it’s reflexive!
(I will return to this example later)
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Generalizations of the weak Tangential Trisecant Lemma in char p = 0:

• S.González, R.Mallavibarrena: “Osculating Degeneration of Curves,”
Comm.Alg. 31 (2003), 3829-3845.

They treat osculating spaces instead of tangent lines for smooth curves,
using computer alg system “Maple.”

• ...
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• S.González, R.Mallavibarrena: “Osculating Degeneration of Curves,”
Comm.Alg. 31 (2003), 3829-3845.

They treat osculating spaces instead of tangent lines for smooth curves,
using computer alg system “Maple.”

• M.Bolognesi, G.Pirola: “Osculating spaces and diophantine equations,”
Math.Nachr. 284 (2011), 960–972.

They weaken the condition on singularities, treating locally toric curves,
i.e., curves locally isomorphic to a monomial curve given by an
analytical parameterization with relatively prime exponents:
t '→ (ta1, . . . , taN) with 0 < a1 < · · · < aN and (a1, . . . , aN) = 1.

Theorem (Bolognesi-Pirola (2011), locally toric curves)

Let X ⊆ P3 a complex projective curve.
Assume that X is locally toric.
If X is tangentially degenerate, then X is planar.
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3 Recent Result

Definition A projective curve X ⊆ PN is said to be
tangentially degenerate

def⇔ a gen tang line is tangential trisecant.

Question (näıve)
If a proj curve X ⊆ PN is tangentially degenerate, then is X planar?

• Q

P •

XTP

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Theorem ...
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Theorem (K (2014), tangential trisecant lemma)
X ⊆ PN a non-deg proj curve with N ≥ 3 in p = 0.

Assume that ∀P ∈ C (normalization of X), ∃ distinct i, j, k > 0 s.t.
the orders, bi(P ), bj(P ) and bk(P ) are relatively prime.

Then X is not tangentially degenarate.

Definition (orders)
The orders at P ∈ C are a sequence of non-neg integers defined by

{b0(P ) < b1(P ) < b2(P ) < · · · < bN(P )} := {vP (f)|0 -= f ∈ Λ},
where

Λ ⊆ K(C) the linear system defining induced morph ι : C → X ⊆ PN

vP a valuation of the local ring OC,P 0 OC(Λ)P = ι∗OPN(1)P .
The orders of X are defined to be the orders at a general pt of C.

Note: the function bi : P '→ bi(P ) is upper semi-continuous.
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• The orders at P ∈ C (normalization of X ⊆ PN):
{b0(P ) < b1(P ) < b2(P ) < · · · < bN(P )} := {vP (f)|0 -= f ∈ Λ}.

• The orders of X: {bi := bi(P ) for general P ∈ C}0≤i≤N .

Remark Let ι : C → PN induced morph from normalization C → X.

• b0 = 0 (∵Bs(ι) = ∅⇔∀P ∈ C, ∃f ∈ Λ, f(P ) -= 0, i.e., b0(P ) = 0).
• b1 = 1 (∵ ι is bir & [ι unram at P⇔∃f ∈ Λ, df

dt
(P ) -= 0⇔ b1(P ) = 1]).

...
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• (p > 0) b2 ≡ 0 mod p ⇔ X ⊆ PN not reflexive.
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C(X) = C(X∗) via PN × P̌N 0 ˇ̌PN × P̌N ,
where X∗ the dual variety of X, and C(X) the conormal variety of X.

• If X is reflexive, then one can expect {TP}P∈X ‘behaves’ as in char p = 0.

...



(15)

• The orders at P ∈ C (normalization of X ⊆ PN):
{b0(P ) < b1(P ) < b2(P ) < · · · < bN(P )} := {vP (f)|0 -= f ∈ Λ}.

• The orders of X: {bi := bi(P ) for general P ∈ C}0≤i≤N .

Remark Let ι : C → PN induced morph from normalization C → X.
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• b1 = 1 (∵ ι is bir & [ι unram at P⇔∃f ∈ Λ, df

dt
(P ) -= 0⇔ b1(P ) = 1]).

Fact • (classical) If p = 0, then bi = i for any i ≥ 0.
• (p > 0) b2 ≡ 0 mod p ⇔ X ⊆ PN not reflexive.

Definition (reflexivity) A projective variety X ⊆ PN said to be reflexive if

C(X) = C(X∗) via PN × P̌N 0 ˇ̌PN × P̌N ,
where X∗ the dual variety of X, and C(X) the conormal variety of X.

• If X is reflexive, then one can expect {TP}P∈X ‘behaves’ as in char p = 0.
Fact (Hefez-Kakuta(1992), Homma-K(1992), K(1992)) [not used below]

Let b′i be the highest power of p dividing bi,
ι(i) : X %%& G(i, PN) the i-th Gauss map, and
π(i) : C(i)X " X∗(i) the i-th conormal map of X

defined by osculating i-planes of X. Then for each i ≥ 1, we have
b′i+1 = insep-deg(ι(i)) = insep-deg(π(i)).

In particular, bi+1 ≡ 0 mod p⇔ι(i) insep⇔π(i) insep. [Endof§2:MainResult]
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4 Sketch of Proof

Theorem (K (2014), tangential trisecant lemma)

X ⊆ PN a non-deg proj curve with N ≥ 3 in p = 0.
Assume that ∀P ∈ C (normalization of X),
∃ distinct i, j, k > 0 s.t. (bi(P ), bj(P ), bk(P )) = 1.

Then X is not tangentially degenarate.

...
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...



(16)

4 Sketch of Proof

Theorem (K (2014), tangential trisecant lemma)

X ⊆ PN a non-deg proj curve with N ≥ 3 in p = 0.
Assume that ∀P ∈ C (normalization of X),
∃ distinct i, j, k > 0 s.t. (bi(P ), bj(P ), bk(P )) = 1.

Then X is not tangentially degenarate.

To prove the above,
assuming X ⊆ PN tangentially degenerate,
we deduce contradiction.

Plan:
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Step 2: parametrize the pts of contact P and of intersection Q on X
Step 3: find an inflection point P0 of X where

a tangential trisecant line becomes flex tangent as a limit.
Step 4: study the parametrization locally around the inflection point P0,

to deduce a certain necessary condition for tangential degeneration
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• Q
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inflection point

Remark

• The proof here is different from the one for “trisecant lemma”.
• The arguments here are similar to the ones of the weak version,
except for Steps 3 and 5 in the plan above.
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Step 1: rephrase “tangential degeneration”.

• Let C → X the normal of X ⊆ PN , ι : C → PN the induced morph.

• One can assign any P ∈ C to a ‘tangent line’ TP to X at ι(P ).
(just extend a rational map C %%& G(1, PN);P '→ TP , to a morphism)

• Set
...
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• Let C → X the normal of X ⊆ PN , ι : C → PN the induced morph.

• One can assign any P ∈ C to a ‘tangent line’ TP to X at ι(P ).
(just extend a rational map C %%& G(1, PN);P '→ TP , to a morphism)

• Set

T (C) := (projective tangent bundle) =
∐

P∈C TP ⊆ C × PN

with π : T (C)→ C canonical projection,

TanX := (tangential surface) =
⋃

P∈C TP ⊆ PN

with η : T (C) " TanX natural projection,
C0 := (the locus of pts of contact) ⊆ T (C) a section of π,

C0
!! !!

isom

""

! "

##

X! "

##

T (C)
π

##

η
!! !!TanX! "

##

C ι !!PN

• Then, ...
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• Then, X tangentially degenerate ⇔ dim η−1X \ C0 = 1.
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⋃

P∈C TP ⊆ PN

with η : T (C) " TanX natural projection,
C0 := (the locus of pts of contact) ⊆ T (C) a section of π,

C0
!! !!

isom

""

! "

##

X! "

##

T (C)
π

##

η
!! !!TanX! "

##

C ι !!PN

• Then, X tangentially degenerate ⇔ dim η−1X \ C0 = 1.

• Assume X ⊆ PN (N ≥ 3) tangentially degenerate.
! ∃ 1-dim irred comp in η−1X \ C0.
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Step 2: parametrize the pts of contact and of intersection.

• Consider
– D a 1-dim irred component of η−1X \ C0 with reduced str,

! D is not a fibre of π : T (C)→ C,
– ν : D̃ → D the normalization,
– π̃ := πν : D̃ → C, and
– η̃ : D̃ → C the natural morphism s.t. ην = ιη̃.

!ην : D̃ → X factors thru the normalization C → X.

D̃ ν !!

η̃

$$
π̃

$$

D η|D

""

π|D

%%

# $

&&#
##

##
##

##
##

##
##

##
##

##
#

C0
!! !!

! "

##

X! "

##

T (C)
π

##

η
!! !!TanX! "

##

C

''$$$$$$$$$$$$$$$$$$$$$$$$$$ ι !!PN

• Then for each Q ∈ D̃, ιη̃(Q) ∈ Tιπ̃(Q)

∵ ...
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π
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•

•

XTιπ̃(Q)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

D̃ 3 Q

ιη̃(Q)
%

ιη̃
((

ιπ̃(Q)

&

ιπ̃
))

• Then for each Q ∈ D̃, ιη̃(Q) ∈ Tιπ̃(Q)

∵ πν(Q) = π̃(Q)
! ν(Q) ∈ π−1π̃(Q)

! ιη̃(Q) = ην(Q) ∈ η(π−1π̃(Q)) = Tιπ̃(Q).
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Step 3: D ∩ C0 -= ∅ (i.e., ∃ inflection pt).

• Let P1
C(OC(1)) the bdle of prin parts of OC(1) := ι∗OPN(1) of 1st ord,

with natural homo a1 : H0(C,OC(1))⊗ OC → P1
C(OC(1)) and

the canonical exact sequence:
(ξ) 0→ Ω1

C ⊗ OC(1)→ P1
C(OC(1))→ OC(1)→ 0.

• ...
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C(OC(1)) the bdle of prin parts of OC(1) := ι∗OPN(1) of 1st ord,

with natural homo a1 : H0(C,OC(1))⊗ OC → P1
C(OC(1)) and

the canonical exact sequence:
(ξ) 0→ Ω1

C ⊗ OC(1)→ P1
C(OC(1))→ OC(1)→ 0.

• Set P := Ima1 , locally free of rk 2.
∵ ι : C → PN gener unramified ! dι gener surj ! a1 gener surj.

• Note that TC = P(P), and (sect T (C)←↩ C0) ' (1-quot P " OC(1)).

• ...

0 → ι∗Ω1
PN ⊗ OC(1) → H0(C,OC(1))⊗ OC → OC(1) → 0 (exact)

↓ dι⊗ 1OC(1) ↓ a1 ||

(ξ) 0 → Ω1
C ⊗ OC(1) → P1

C(OC(1)) → OC(1) → 0 (exact)
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• Note that TC = P(P), and (sect T (C)←↩ C0) ' (1-quot P " OC(1)).

• Suppose D ∩ C0 = ∅.
! the pull-back of P " OC(1) to the normalization D̃ splits.

∵ bs-chg of C0 and D by π̃ give disjoint sections of TC×C D̃ = P(π̃∗P).
! P " OC(1) itself splits by the assumption p = 0.

In fact, π̃ is separable.
! can surj P1

C(OC(1)) " OC(1) splits, i.e., (ξ) would split.

• ...

P → OC(1) → 0 (exact)

↓ ||
(ξ) 0 → Ω1

C ⊗ OC(1) → P1
C(OC(1)) → OC(1) → 0 (exact)
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Step 3: D ∩ C0 -= ∅ (i.e., ∃ inflection pt).

• Let P1
C(OC(1)) the bdle of prin parts of OC(1) := ι∗OPN(1) of 1st ord,

with natural homo a1 : H0(C,OC(1))⊗ OC → P1
C(OC(1)) and

the canonical exact sequence:
(ξ) 0→ Ω1

C ⊗ OC(1)→ P1
C(OC(1))→ OC(1)→ 0.

• Set P := Ima1 , locally free of rk 2.
∵ ι : C → PN gener unramified ! dι gener surj ! a1 gener surj.

• Note that TC = P(P), and (sect T (C)←↩ C0) ' (1-quot P " OC(1)).

• Suppose D ∩ C0 = ∅.
! the pull-back of P " OC(1) to the normalization D̃ splits.

∵ bs-chg of C0 and D by π̃ give disjoint sections of TC×C D̃ = P(π̃∗P).
! P " OC(1) itself splits by the assumption p = 0.

In fact, π̃ is separable.
! can surj P1

C(OC(1)) " OC(1) splits, i.e., (ξ) would split.

• But (ξ) does not splits: Indeed, according to a theorem of Atiyah,

(ξ) ↔ c1(OC(1)) = degOC(1) · 1k∈ ∈

Ext1OC
(OC(1),Ω1

C ⊗ OC(1))) = H1(C,Ω1
C) 0 k

where degOC(1) · 1k -= 0 by p = 0.

• Therefore D ∩ C0 -= ∅. !

The First Chern Class
c1 : PicC → H1(C,Ω1

C)

!d log : O×
C → Ω1

C; f '→
df

f
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Step 4: local study around C0 ∩D.

• Take a point P0 ∈ C0 ∩D,
assume x1, . . . , xN ∈ OP0,C defines ι : C %%& AN ⊆ PN around P0,

set x :=(x1,. . . ,xN), and fix a point Q0 ∈ D̃ s.t. π̃(Q0) = η̃(Q0) = P0.

! ιπ̃, ιη̃ : D̃ %%& AN resp given locally by

π̃∗x = (π̃∗x1,. . . ,π̃∗xN), η̃∗x = (η̃∗x1,. . . ,η̃∗xN) around Q0.

• Q

• P
• P0

XTP

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

TP0

""""""""""""""""""""""""""""""""""""""""""""""""""""""""

• ...
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

TP0

""""""""""""""""""""""""""""""""""""""""""""""""""""""""

• Choosing a suitable change of coordinates, one may assume





x1 = tb1 + · · ·
x2 = tb2 + · · ·

..
.

xN = tbN + · · ·

in the completion ÔC,P0 0 k[[t]] with some reg para t of C at P0,

where bi := bi(P0) the orders at P0 .
• ...
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• Q

• P
• P0

XTP

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

TP0

""""""""""""""""""""""""""""""""""""""""""""""""""""""""

• Choosing a suitable change of coordinates, one may assume





x1 = tb1 + · · ·
x2 = tb2 + · · ·

..
.

xN = tbN + · · ·

in the completion ÔC,P0 0 k[[t]] with some reg para t of C at P0,

where bi := bi(P0) the orders at P0 .
• Moreover may assume that

π̃∗t = ud + · · · , η̃∗t = ξud′ + · · · in ÔD̃,Q0
0 k[[u]]

with some d ≥ 1, d′ ≥ 1, ξ ∈ k× and some reg para u of D̃ at Q0.
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Step 4: local study around C0 ∩D (continued).

• ιη̃(Q) ∈ Tιπ̃(Q) for each Q ∈ D̃

! π̃∗ẋ ‖ η̃∗x− π̃∗x as vectors in AN ,
where x := (x1, . . . , xN) and ẋi := dxi/dt.

•

•

XTιπ̃(Q)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

D̃ 3 Q

ιη̃(Q)
%

ιη̃
((

ιπ̃(Q)

&

ιπ̃
))

! ...
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! Γij = 0 in k[[u]] (1 ≤ i < j ≤ N), where

Γij := det
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π̃∗ẋi η̃∗xi − π̃∗xi
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−{(ud + · · · )bi + · · · }
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! ...



(21)

Step 4: local study around C0 ∩D (continued).

• ιη̃(Q) ∈ Tιπ̃(Q) for each Q ∈ D̃
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=






ξbjud(bi−1)+d′bj + · · · , if d′ < d,
(bi(ξbj − 1)− bj(ξbi − 1))ud(bi+bj+1) + · · · , if d′ = d,
(bi − bj)ud(bi+bj−1) + · · · , if d′ > d.

! d = d′ and bi(ξbj − 1)− bj(ξbi − 1) = 0,

where {bi := bi(P0)} the orders at P0 and η̃∗t = ξud + · · · .
• Now, set Fab(X) := b(Xa − 1)− a(Xb − 1) ∈ Q[X] for a > b ≥ 1.



(22)

Step 5: deduce contradiction. Fab(X) := b(Xa − 1)− a(Xb − 1) ∈ Q[X]

• Q

P •

XTP

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

• The polynomials {Fbjbi(X)}1≤i<j≤N in X (bi := bi(P0)) have

– irrelevant common root X = 1 with mult ≥ 2 ' C0 the pts P of contact,

and

– other common roots X = ξ ' D the pts Q of intersection of TP and X.

(Note: ξ might be equal to 1.)

• ...
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Lemma If a > b > c ≥ 1 are relatively prime, then
Fab, Fac, Fbc have a unique common root X = 1 in C and
its multiplicity is exactly equal to 2.
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XTP

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

• The polynomials {Fbjbi(X)}1≤i<j≤N in X (bi := bi(P0)) have

– irrelevant common root X = 1 with mult ≥ 2 ' C0 the pts P of contact,

and

– other common roots X = ξ ' D the pts Q of intersection of TP and X.

(Note: ξ might be equal to 1.)

• But this contradicts to
(our assumption: (bi, bj, bk) = 1 (∃i < j < k).)

Lemma If a > b > c ≥ 1 are relatively prime, then
Fab, Fac, Fbc have a unique common root X = 1 in C and
its multiplicity is exactly equal to 2.

Proof
• According to a lemma by Bolognesi-Pirola,
Fab, Fac, Fbc have a unique common root X = 1 in C.
(elementary calculus (Rolle’s theorem) with a clever argument)

• On the other hand, X = 1 is a root of Fab(X) of multiplicity exactly 2
since Fab(1) = F ′ab(1) = 0 and F ′′ab(1) = ab(a− b) -= 0. !
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Case: b1 = 1 (⇔ X smooth or nordal ⇔ ι unramified) [K(1986)]

Claim: Fa1(X) and Fb1(X) (a > b > c = 1) have a unique common root
X = 1 in C and its multiplicity is exactly equal to 2.

Fa1(X) = (Xa − 1)− a(X − 1)

= (X − 1)2(Xa−1 + 2Xa−2 + · · · + (a− 2)X + (a− 1))

• Set fa(X) := Xa−1 + 2Xa−2 + · · ·+ (a− 2)X + (a− 1). [Xa−1fa(1/X) = d
dX

(X
a−1

X−1 )]

Claim ⇔ fa(X) and fb(X) (a > b > 1) have no common root.
⇔ - ∃ξ ∈ C s.t. fa(ξ)− ξa−bfb(ξ) = fb(ξ) = 0 (a > b > 1).

Here
fa(X)−Xa−bfb(X) = bXa−b−1 + (b + 1)Xa−b−2 + · · · + (a− 1),

fb(X) = Xb−1 + 2Xb−2 + · · · + (b− 1).
• ...
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Claim ⇔ fa(X) and fb(X) (a > b > 1) have no common root.
⇔ - ∃ξ ∈ C s.t. fa(ξ)− ξa−bfb(ξ) = fb(ξ) = 0 (a > b > 1).

Here
fa(X)−Xa−bfb(X) = bXa−b−1 + (b + 1)Xa−b−2 + · · · + (a− 1),

fb(X) = Xb−1 + 2Xb−2 + · · · + (b− 1).

• According to Kakeya’s theorem, if fa(ξ)− ξa−bfb(ξ) = fb(ζ) = 0 (ξ, ζ ∈ C), then
1

2
≤ |ζ| ≤

b− 2

b− 1
<

b

b + 1
≤ |ξ| ≤

a− 2

a− 1
.

! ξ -= ζ. Thus the claim is proved. !
Fact (Kakeya’s theorem (掛谷の定理))
Let f(X) = c0 + c1X + · · · + cnXn ∈ R[X] with ci > 0 (∀i).
If f(ξ) = 0 (ξ ∈ C), then

min

{
c0

c1
,
c1

c2
, . . . ,

cn−1

cn

}
≤ |ξ| ≤ max

{
c0

c1
,
c1

c2
, . . . ,

cn−1

cn

}
.

Problem Is fa(X) ∈ Z[X] irreducible over Q?
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5 Conjectures Fab(X) = b(Xa − 1)− a(Xb − 1)

Observation (Esteves-Homma’s example, revisited)
Assume p > 3 and set X := ϕ(A1) ⊆ P3, where ϕ : A1→ A3 is defined by

ϕ(t) = (t, t2 − tp, t3 + 2tp − 3tp+1).
...
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! {Fbj(P0)bi(P0)(X)} have a unique comm root X = ξ = 1 with mult p > 3 .

• Thetangential degenerationwould be global property.
• But in the above, the degeneration seems to be caused by a

typical phenomenon in positive char caseoccuring in one pt P0.
(somehow, similar to Terracini’s example of affine analytic curve)

...
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! {Fbj(P0)bi(P0)(X)} have a unique comm root X = ξ = 1 with mult p > 3 .

• Thetangential degenerationwould be global property.
• But in the above, the degeneration seems to be caused by a

typical phenomenon in positive char caseoccuring in one pt P0.
(somehow, similar to Terracini’s example of affine analytic curve)

This observation leads to the following ...



(25)

Conjecture

For any non-deg proj curve X ⊆ PN with N ≥ 3 in arbitrary char p,
if for any P ∈ C there exist distinct i, j, k > 0 s.t.

none of bi(P ), bj(P ) and bk(P ) is divisible by p,
then X is not tangentially degenerate.

Compare with

Theorem (K (2014), tangential trisecant lemma)

For any non-deg proj curve X ⊆ PN with N ≥ 3 in p = 0,
if for any P ∈ C there exist distinct i, j, k > 0 s.t.

bi(P ), bj(P ) and bk(P ) are relatively prime,
then X is not tangentially degenerate.

In particular, ...
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Conjecture

For any non-deg proj curve X ⊆ PN with N ≥ 3 in arbitrary char p,
if for any P ∈ C there exist distinct i, j, k > 0 s.t.

none of bi(P ), bj(P ) and bk(P ) is divisible by p,
then X is not tangentially degenerate.

Compare with

Theorem (K (2014), tangential trisecant lemma)

For any non-deg proj curve X ⊆ PN with N ≥ 3 in p = 0,
if for any P ∈ C there exist distinct i, j, k > 0 s.t.

bi(P ), bj(P ) and bk(P ) are relatively prime,
then X is not tangentially degenerate.

In particular, under the condition p = 0, the following should hold:

My Belief

For any (possibly singular) projective curve X ⊆ PN in p = 0,
if X is tangentially degenerate, then X is planar.
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Thank you for your attention!
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What follows from the tangential trisecant lemma in this context?

An immediate consequence on linear projection is

Corollary For a proj curve X ⊆ PN with normalization C, assume that

• the characteristic p = 0, and
• the induced morphism ι : C → PN is unramified.
Then ∃ P ∈ X s.t. πP ι : C → PN−1 is unramified,

where πP : PN → PN−1 a projection from P

This consequence is one of keys in a nice result due to L.Ein, as follows:

Theorem (Ein (1987))

Let Hd,g,n the open subscheme of the Hilbert scheme corresponding to
smooth irreducible curves of degree d and genus g in Pn.

Then Hd,g,4 is irreducible if d ≥ g + 4.

Remark
• Severi’s assertion (1921): “Hd,g,n irreducible if d ≥ g + n.”
• Ein (1986): Assume n ≥ 6. Then H16n−35,8n+6,n is reducible.
! Severi’s assertion is not correct.


