sa contop ricerca delle curve γ di cui ora si è detto, giacchè queste rientrano evidentemente fra quelle (anzi vi rientrano gial le proiezioui generiche delle curve γ eseguite su uno S_{b+1}).

Courmayeur, 31 agosto 1931 .

Alessandro Terracini.

${ }^{27}$) Non so se siano stati dati esempi di curve algebriche relative al caso $r=3, b=1$, vale a dire di curve algebriche sghembe dello spazio ordinario le cui rette tangenti siano tutte ulteriormente secanti. Invece già entro classi molto semplici di curve se ne trovano di analitiche; per es. le

$$
x_{0}: x_{1}: x_{2}: x_{3}=\mathrm{I}: e^{x_{t}}: e^{\beta t}: e^{r^{t}}
$$

dove α, β, γ sono costanti non nulle e diverse fra loro, legate a un'altra costante $k \neq 0$ dalle relazioni

$$
\frac{e^{\alpha k}-1}{\alpha}=\frac{e^{\beta k}-1}{\beta}=\frac{e^{\gamma k}-1}{\gamma} .
$$

Si può certo soddisfare a queste condizioni, con k prefissato, prefissando anche il valore K comune a queste tre frazioni: dove basta prendere come K un valore (non nullo), non eccezionale secondo il teorema di Picard per la funzione intiera della variabile complessa z

$$
\frac{e^{k z}-1}{z},
$$

assumendo poi per α, β, γ tre valori di χ per i quali questa funzione intiera diventa uguale a K : si vede subito che la retta tangente nel punto corrispondente al valore t del parametro si appoggia nuovamente alla curva nel punto ove il parametro vale $t+k$.

三点接割線の補題1
 A tangential trisecant lemma

楫 元
横浜
第23回沼津研究会
——幾何，数理物理，そして量子論——
沼津工業高等専門学校
2016年3月8日

万葉集

第六巻：0934：朝なぎに楫の音聞こゆ御食つ国…
原文：朝名寸二 梶音所聞 三食津國野嶋乃海子乃船二四有良信
作者：山部赤人（やまべのあかひと）
よみ：朝なぎに，楫（から゙）の音（おと）聞こゆ，御食（みけ）つ国，野島（のしま）の海人（あま）の，舟にしあるらし意味：朝凪（あさなぎ）に舵（かじ）の音が聞こえます。御食（みけ）つ国の野島（のしま）の海人（あま）の舟なので しょう。

第十九巻：4240：大船に真楫しじ貫きこの我子を…
原文：大船尔 真桭繁貫 此吾子乎 韓國邊遣 伊波銊神多智
作者：光明皇后（こうみょうこうごう）
よみ：大船（おほぶね）に，楫（まから）しじ貫（ぬ）き，この我子（あこ）を，唐国（からくに）へ遣（や）る，斎（い は）へ神たち
意味：大船に櫂（かい）をたくさん取りつけて，この我が子を唐の国へ遣（つか）わします。どうかお守りくださ い，神々よ。

歌風と万葉仮名編集（https：／／ja．wikipedia．org／wiki／万葉集）
全文が漢字で書かれており，漢文の体裁をなしている。しかし，歌は，日本語の語順で書かれている。歌は，表意的に漢字で表したもの，表音的に漢字で表したもの，表意と表音とを併せたもの，文字を使っていないものな どがあり多種多柱である。編纂された頃にはまだ仮名文字は作られていなかったので，万葉仮名とよばれる独特 の表記法を用いた。つまり，漢字の意味とは関係なく，漢字の音訓だけを借用して日本語を表記しようとしたの である。その意味では，万葉仮名は，漢字を用いながらも，日本人による日本人のための最初の文字であったと言えよう。

Plan

1. Introduction
2. Tangential Trisecant Lemma
3. Recent Result
4. Sketch of Proof
5. Conjectures

We work over an algebarically closed field k of arbitrary characteristic $p \geq 0$.

1 Introduction

As a celebrated result in classical projective geometry, we have
Theorem (trisecant lemma)
Let $X \subseteq \mathbb{P}^{N}$ be a smooth projective curve.
If a general secant line of X is trisecant, then X is planar, i.e., contained in a 2 -plane.

1 Introduction

As a celebrated result in classical projective geometry, we have
Theorem (trisecant lemma)
Let $X \subseteq \mathbb{P}^{N}$ be a smooth projective curve.
If a general secant line of X is trisecant, then
X is planar, i.e., contained in a 2-plane.
By virtue of the trisecant lemma, using generic projection, one can prove
Corollary (existence of a good plane-curve model)
A smooth projective curve is birationally equivalent to a plane curve with at most nodes for singularities.
Definition A line $L \subseteq \mathbb{P}^{N}$ is called

- a secant line of $X \stackrel{\text { def }}{\Leftrightarrow} \#(L \cap X) \geq 2$.
- a trisecant line of $X \stackrel{\text { def }}{\Leftrightarrow} \#(L \cap X) \geq 3$.

Question

1 Introduction

As a celebrated result in classical projective geometry, we have
Theorem (trisecant lemma)
Let $X \subseteq \mathbb{P}^{N}$ be a smooth projective curve.
If a general secant line of X is trisecant, then
X is planar, i.e., contained in a 2-plane.
By virtue of the trisecant lemma, using generic projection, one can prove
Corollary (existence of a good plane-curve model)
A smooth projective curve is birationally equivalent to a plane curve with at most nodes for singularities.

Definition A line $L \subseteq \mathbb{P}^{N}$ is called

- a secant line of $X \stackrel{\text { def }}{\Leftrightarrow} \#(L \cap X) \geq 2$.
- a trisecant line of $X \stackrel{\text { def }}{\Leftrightarrow} \#(L \cap X) \geq 3$.

Question (naïve) Does the same conclusion hold if "secant line" is replaced by "tangent line" in the trisecant lemma? i.e., Is a proj curve planar if a general tangent line is tangential trisecant?

1 Introduction

As a celebrated result in classical projective geometry, we have
Theorem (trisecant lemma)
Let $X \subseteq \mathbb{P}^{N}$ be a smooth projective curve.
If a general secant line of X is trisecant, then
X is planar, i.e., contained in a 2-plane.
By virtue of the trisecant lemma, using generic projection, one can prove
Corollary (existence of a good plane-curve model)
A smooth projective curve is birationally equivalent to a plane curve with at most nodes for singularities.

Definition A line $L \subseteq \mathbb{P}^{N}$ is called

- a secant line of $X \stackrel{\text { def }}{\Leftrightarrow} \#(L \cap X) \geq 2$.
- a trisecant line of $X \stackrel{\text { def }}{\Leftrightarrow} \#(L \cap X) \geq 3$.

Question (naïve) Does the same conclusion hold
general P

$$
T_{P} \quad X
$$

tangential trisecant line if "secant line" is replaced by "tangent line" in the trisecant lemma? i.e., Is a proj curve planar if a general tangent line is tangential trisecant?

Definition A line $L \subseteq \mathbb{P}^{N}$ is called

- a tangential trisecant line of $X \stackrel{\text { def }}{\Leftrightarrow} L$ tang to $X \& \#(L \cap X) \geq 2$.

Definition A projective curve $X \subseteq \mathbb{P}^{N}$ is said to be

tangentially degenerate
$\stackrel{\text { def }}{\Leftrightarrow}$ a general tangent line is tangential trisecant.

Question (naïve)

Is a projective curve $X \subseteq \mathbb{P}^{N}$ planar if it is tangentially degenerate?

According to C.Ciliberto [MR0850959 (87i:14027)],
such a question was explicitly posed for the first time by A.Terracini:
In fact, in the footnote 27 on p. 143 of his paper,

Alessandro TERRACINI:

"Sulla riducibilitá di alcune particolari corrispondenze algebriche," Rend.Circ.Mat.Palermo 56 (1932), 112-143.
Terracini wrote as follows:

${ }^{27}$) Non so se siano stati dati esempi di curve algebriche relative al caso $r=3, h=1$, vale a dire di curve algebriche sghembe dello spazio ordinario le cui rette tangenti siano tutte ulteriormente secanti.

According to C.Ciliberto [MR0850959 (87i:14027)], such a question was explicitly posed for the first time by A.Terracini: In fact, in the footnote 27 on $\mathbf{p} .143$ of his paper,

Alessandro TERRACINI:

"Sulla riducibilitá di alcune particolari corrispondenze algebriche," Rend.Circ.Mat.Palermo 56 (1932), 112-143.
Terracini wrote as follows:

${ }^{27}$) Non so se siano stati dati esempi di curve algebriche relative al caso $r=3, h=1$, vale a dire di curve algebriche sghembe dello spazio ordinario le cui rette tangenti siano tutte ulteriormente secanti.

$$
\downarrow \text { http://translate.google.com/ }
$$

${ }^{27}$) I don't know if have been given examples of algebraic curves related to the case $r=3, h=1$, that is to say of skew algebraic curves of the ordinary space whose tangent lines are further all secant.
$r=\operatorname{dim}$ of ambnt space, $\quad h=\operatorname{dim}$ of linear spaces in question.
from "On the reducibility of some special algebraic correspondences"

In fact, he gave a counter-example of analytic curve in $\mathbb{A}_{\mathbb{C}}^{3}$, as follows:

Example (Terracini (1932), tang deg but non-planar affine analytic curve)

- Let $X=\varphi(\mathbb{C})$ be an analytic curve parametrized by

$$
\varphi: \mathbb{C} \rightarrow \mathbb{C}^{3} ; t \mapsto\left(e^{\alpha t}, e^{\beta t}, e^{\gamma t}\right), \quad(\alpha, \beta, \gamma \in \mathbb{C} \backslash\{0\}) .
$$

- Then, for $k \in \mathbb{C} \backslash\{0\}$, the tangent line to X at $\varphi(t)$ meets X again at $\varphi(t+k)$ iff $\varphi(t+k)-\varphi(t) \| \dot{\varphi}(t)$ as vectors in \mathbb{C}^{3}, where

Example (Terracini (1932), tang deg but non-planar affine analytic curve)

- Let $X=\varphi(\mathbb{C})$ be an analytic curve parametrized by

$$
\varphi: \mathbb{C} \rightarrow \mathbb{C}^{3} ; t \mapsto\left(e^{\alpha t}, e^{\beta t}, e^{\gamma t}\right), \quad(\alpha, \beta, \gamma \in \mathbb{C} \backslash\{0\})
$$

- Then, for $k \in \mathbb{C} \backslash\{0\}$, the tangent line to X at $\varphi(t)$ meets X again at $\varphi(t+k)$ iff $\varphi(t+k)-\varphi(t) \| \dot{\varphi}(t)$ as vectors in \mathbb{C}^{3}, where

$$
\begin{aligned}
\varphi(t+k)-\varphi(t) & =\left(e^{\alpha(t+k)}-e^{\alpha t}, e^{\beta(t+k)}-e^{\beta t}, e^{\gamma(t+k)}-e^{\gamma t}\right) \\
& =\left(\left(e^{\alpha k}-1\right) e^{\alpha t},\left(e^{\beta k}-1\right) e^{\beta t},\left(e^{\gamma k}-1\right) e^{\gamma t}\right), \\
\dot{\varphi}(t) & =\left(\alpha e^{\alpha t}, \beta e^{\beta t}, \gamma e^{\gamma t}\right), \quad(\dot{\varphi}=d \varphi / d t) .
\end{aligned}
$$

- ...

Example (Terracini (1932), tang deg but non-planar affine analytic curve)

- Let $X=\varphi(\mathbb{C})$ be an analytic curve parametrized by

$$
\varphi: \mathbb{C} \rightarrow \mathbb{C}^{3} ; t \mapsto\left(e^{\alpha t}, e^{\beta t}, e^{\gamma t}\right), \quad(\alpha, \beta, \gamma \in \mathbb{C} \backslash\{0\})
$$

- Then, for $k \in \mathbb{C} \backslash\{0\}$, the tangent line to X at $\varphi(t)$ meets X again at $\varphi(t+k)$ iff $\varphi(t+k)-\varphi(t) \| \dot{\varphi}(t)$ as vectors in \mathbb{C}^{3}, where

$$
\begin{aligned}
\varphi(t+k)-\varphi(t) & =\left(e^{\alpha(t+k)}-e^{\alpha t}, e^{\beta(t+k)}-e^{\beta t}, e^{\gamma(t+k)}-e^{\gamma t}\right) \\
& =\left(\left(e^{\alpha k}-1\right) e^{\alpha t},\left(e^{\beta k}-1\right) e^{\beta t},\left(e^{\gamma k}-1\right) e^{\gamma t}\right), \\
\dot{\varphi}(t) & =\left(\alpha e^{\alpha t}, \beta e^{\beta t}, \gamma e^{\gamma t}\right), \quad(\dot{\varphi}=d \varphi / d t) .
\end{aligned}
$$

- For given $k \in \mathbb{C}$ if $\alpha, \beta, \gamma \in \mathbb{C} \backslash\{0\}$ satisfy $\frac{e^{\alpha k}-1}{\alpha}=\frac{e^{\beta k}-1}{\beta}=\frac{e^{\gamma k}-1}{\gamma}$, then $\varphi(t+k)-\varphi(t) \| \dot{\varphi}(t)$ for any $t \in \mathbb{C}$. \leadsto Every tangent line meets X again, where X is not planar in \mathbb{C}^{3} if α, β, γ distinct.

Example (Terracini (1932), tang deg but non-planar affine analytic curve)

- Let $X=\varphi(\mathbb{C})$ be an analytic curve parametrized by

$$
\varphi: \mathbb{C} \rightarrow \mathbb{C}^{3} ; t \mapsto\left(e^{\alpha t}, e^{\beta t}, e^{\gamma t}\right), \quad(\alpha, \beta, \gamma \in \mathbb{C} \backslash\{0\})
$$

- Then, for $k \in \mathbb{C} \backslash\{0\}$, the tangent line to X at $\varphi(t)$ meets X again at $\varphi(t+k)$ iff $\varphi(t+k)-\varphi(t) \| \dot{\varphi}(t)$ as vectors in \mathbb{C}^{3}, where

$$
\begin{aligned}
\varphi(t+k)-\varphi(t) & =\left(e^{\alpha(t+k)}-e^{\alpha t}, e^{\beta(t+k)}-e^{\beta t}, e^{\gamma(t+k)}-e^{\gamma t}\right) \\
& =\left(\left(e^{\alpha k}-1\right) e^{\alpha t},\left(e^{\beta k}-1\right) e^{\beta t},\left(e^{\gamma k}-1\right) e^{\gamma t}\right) \\
\dot{\varphi}(t) & =\left(\alpha e^{\alpha t}, \beta e^{\beta t}, \gamma e^{\gamma t}\right), \quad(\dot{\varphi}=d \varphi / d t)
\end{aligned}
$$

- For given $k \in \mathbb{C}$ if $\alpha, \beta, \gamma \in \mathbb{C} \backslash\{0\}$ satisfy $\frac{e^{\alpha k}-1}{\alpha}=\frac{e^{\beta k}-1}{\beta}=\frac{e^{\gamma k}-1}{\gamma}$, then $\varphi(t+k)-\varphi(t) \| \dot{\varphi}(t)$ for any $t \in \mathbb{C}$. \leadsto Every tangent line meets X again, where
X is not planar in \mathbb{C}^{3} if α, β, γ distinct.
- To show \exists distinct $\alpha, \beta, \gamma \in \mathbb{C} \backslash\{0\}$ satisfying the relation above, consider a function on \mathbb{C} as follows: $f(z)=\frac{e^{k z}-1}{z}$. -...

Example (Terracini (1932), tang deg but non-planar affine analytic curve)

- Let $X=\varphi(\mathbb{C})$ be an analytic curve parametrized by

$$
\varphi: \mathbb{C} \rightarrow \mathbb{C}^{3} ; t \mapsto\left(e^{\alpha t}, e^{\beta t}, e^{\gamma t}\right), \quad(\alpha, \beta, \gamma \in \mathbb{C} \backslash\{0\}) .
$$

- Then, for $k \in \mathbb{C} \backslash\{0\}$, the tangent line to X at $\varphi(t)$ meets X again at $\varphi(t+k)$ iff $\varphi(t+k)-\varphi(t) \| \dot{\varphi}(t)$ as vectors in \mathbb{C}^{3}, where

$$
\begin{aligned}
\varphi(t+k)-\varphi(t) & =\left(e^{\alpha(t+k)}-e^{\alpha t}, e^{\beta(t+k)}-e^{\beta t}, e^{\gamma(t+k)}-e^{\gamma t}\right) \\
& =\left(\left(e^{\alpha k}-1\right) e^{\alpha t},\left(e^{\beta k}-1\right) e^{\beta t},\left(e^{\gamma k}-1\right) e^{\gamma t}\right), \\
\dot{\varphi}(t) & =\left(\alpha e^{\alpha t}, \beta e^{\beta t}, \gamma e^{\gamma t}\right), \quad(\dot{\varphi}=d \varphi / d t) .
\end{aligned}
$$

- For given $k \in \mathbb{C}$ if $\alpha, \beta, \gamma \in \mathbb{C} \backslash\{0\}$ satisfy $\frac{e^{\alpha k}-1}{\alpha}=\frac{e^{\beta k}-1}{\beta}=\frac{e^{\gamma k}-1}{\gamma}$, then $\varphi(t+k)-\varphi(t) \| \dot{\varphi}(t)$ for any $t \in \mathbb{C}$. \leadsto Every tangent line meets X again, where
X is not planar in \mathbb{C}^{3} if α, β, γ distinct.
- To show \exists distinct $\alpha, \beta, \gamma \in \mathbb{C} \backslash\{0\}$ satisfying the relation above, consider a function on \mathbb{C} as follows: $f(z)=\frac{e^{k z}-1}{z}$.
- According to Picard theorem (in complex analysis), for a general $K \in \mathbb{C}$, there exist infinitely many $z \in \mathbb{C}$ s.t. $f(z)=K$. \sim just choose distinct $\alpha, \beta, \gamma \in f^{-1}(K) . \square$

Example (Terracini (1932), tang deg but non-planar affine analytic curve)

- Let $X=\varphi(\mathbb{C})$ be an analytic curve parametrized by

$$
\varphi: \mathbb{C} \rightarrow \mathbb{C}^{3} ; t \mapsto\left(e^{\alpha t}, e^{\beta t}, e^{\gamma t}\right), \quad(\alpha, \beta, \gamma \in \mathbb{C} \backslash\{0\}) .
$$

- Then, for $k \in \mathbb{C} \backslash\{0\}$, the tangent line to X at $\varphi(t)$ meets X again at $\varphi(t+k)$ iff $\varphi(t+k)-\varphi(t) \| \dot{\varphi}(t)$ as vectors in \mathbb{C}^{3}, where

$$
\begin{aligned}
\varphi(t+k)-\varphi(t) & =\left(e^{\alpha(t+k)}-e^{\alpha t}, e^{\beta(t+k)}-e^{\beta t}, e^{\gamma(t+k)}-e^{\gamma t}\right) \\
& =\left(\left(e^{\alpha k}-1\right) e^{\alpha t},\left(e^{\beta k}-1\right) e^{\beta t},\left(e^{\gamma k}-1\right) e^{\gamma t}\right), \\
\dot{\varphi}(t) & =\left(\alpha e^{\alpha t}, \beta e^{\beta t}, \gamma e^{\gamma t}\right), \quad(\dot{\varphi}=d \varphi / d t) .
\end{aligned}
$$

- For given $k \in \mathbb{C}$ if $\alpha, \beta, \gamma \in \mathbb{C} \backslash\{0\}$ satisfy $\frac{e^{\alpha k}-1}{\alpha}=\frac{e^{\beta k-1}}{\beta}=\frac{e^{\gamma k}-1}{\gamma}$, then $\varphi(t+k)-\varphi(t) \| \dot{\varphi}(t)$ for any $t \in \mathbb{C}$. \leadsto Every tangent line meets X again, where
X is not planar in \mathbb{C}^{3} if α, β, γ distinct.
- To show \exists distinct $\alpha, \beta, \gamma \in \mathbb{C} \backslash\{0\}$ satisfying the relation above, consider a function on \mathbb{C} as follows: $f\left(z^{\prime}\right.$ What's going on at
- According to Picard theorem (in comple: the infinity $\bar{X} \backslash X \subseteq \mathbb{C P}^{3}$? for a general $K \in \mathbb{C}$, there exist infinitel e.g., $\operatorname{dim}_{\mathbb{R}}(\overline{\boldsymbol{X}} \backslash \boldsymbol{X})=0$ or 1 ? \sim just choose distinct $\alpha, \beta, \gamma \in f^{-1}(K)$. \sqcup

Theorem (trisecant lemma, slightly generalized version)

For $X \subseteq \mathbb{P}^{N}$ a projective curve with normalization C, assume that

- the characteristic $p=0$, or
- $b_{1}(P)=1(\forall P \in C)$, i.e., $\iota: C \rightarrow \mathbb{P}^{N}$ unramified (e.g., X smooth).

If a general secant line of X is trisecant, then X is planar.
Proof May assume $N=3$, by induction on N with generic projection.
\bullet Suppose X were not planar (i.e., non-degenerate in \mathbb{P}^{3}).
$\left.\sim \pi_{z}\right|_{X}: X \rightarrow \bar{X}:=\pi_{z}(X) \subseteq \mathbb{P}^{2}$ is finite morph of deg ≥ 2,
\because gen secant is trisec, where $\pi_{z}: \mathbb{P}^{3} \backslash X \rightarrow \mathbb{P}^{2}\left(\subseteq \mathbb{P}^{3}\right)$ proj from gen $z \in X$.
\sim if $\left.\pi_{z}\right|_{X}$ inseparable, then $z \in T_{x}$ for any smooth $x \in X$, namely, X is strange with center z, and
if $\left.\pi_{z}\right|_{X}$ sep, then for gen $P \in \bar{X}, \#\left(\left.\pi_{z}\right|_{X} ^{-1}(P)\right) \geq 2$.
$\sim \exists x \neq y \in X, \pi_{z}(x)=\pi_{z}(y)=P$.
$\sim T_{x}, T_{y} \subseteq\left\langle z, T_{P}\right\rangle \simeq \mathbb{P}^{2} . \sim T_{x} \cap T_{y} \neq \emptyset$.
\sim for gen $z \in X$ and for gen $x, y \in X$ s.t. $z \in\langle x, y\rangle, T_{x} \cap T_{y} \neq \emptyset$.
\sim for gen $x, y \in X, T_{x} \cap T_{y} \neq \emptyset$ (by dimension counting).
$\sim A:=T_{x} \cap T_{y}(\operatorname{gen} x, y \in X) \Rightarrow T_{w} \ni A$ for gen $w \in X \backslash\left\langle T_{x}, T_{y}\right\rangle$. $\leadsto X$ is strange with center A.
\leadsto Whether $\left.\pi_{z}\right|_{X}$ is separable or not, X would be strange.

- A strange curve X with unramified ι is classified either
a line or a conic in $p=2$. In particular, X is planar.
\therefore This is a contradiction. (Note: only strange curve in $p=0$ is a line.)

The unramifiedness of ι in $p>0$ is essential. In fact, we have

Example (J.Roberts (1980)) Assume $p>0$.

Let $X:=\overline{\varphi\left(\mathbb{A}^{1}\right)} \subseteq \mathbb{P}^{N}$ the projective closure of $\varphi\left(\mathbb{A}^{1}\right)$, where

$$
\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{N} ; t \mapsto\left(t, t^{p}, t^{p^{2}}, \ldots, t^{p^{N-2}}, t^{p^{N-1}}\right)
$$

Then

- X is non-degenerate in \mathbb{P}^{N}, hence not planar if $N \geq 3$.
- A general secant line of X is trisecant: In fact, $\varphi\left(t+t^{\prime}\right) \in\left\langle\varphi(t), \varphi\left(t^{\prime}\right)\right\rangle$ for any $t \neq t^{\prime} \in \mathbb{A}^{1}$. $\because \varphi(t)+\varphi\left(t^{\prime}\right)=\varphi\left(t+t^{\prime}\right)$ as vectors in \mathbb{A}^{N} by $p>0$.
- X is strange: In fact, $T_{\varphi(t)} \ni \dot{\varphi}(t)=(1,0, \ldots, 0)$ for any $t \in \mathbb{A}^{1}$.
- The induced morphism $\iota: \mathbb{P}^{1}=C \rightarrow X \hookrightarrow \mathbb{P}^{N}$ is
ramified at $\infty \in \mathbb{P}^{1}$ unless $N=p=2(\Leftrightarrow X$ is smooth $)$.
\because the order at $\infty: b_{1}(\infty)=p^{N-1}-p^{N-2}=p^{N-2}(p-1)$.
$\sim b_{1}(\infty)=1 \Leftrightarrow N=p=2$.

Remark

Roberts' example above is introduced in F.Zak's textbook "Tangents and Secants of Algebraic Varieties" (p.41, Remark 1.12), as in origin a counter-example in $p>0$ for "Terracini's Lemma," which asserts that $T_{z} \operatorname{Sec} X=\left\langle T_{x} X, T_{y} X\right\rangle$ for general $z \in\langle x, y\rangle$.

Corollary (existence of a good plane-curve model)
A smooth projective curve $X \subseteq \mathbb{P}^{N}$ is birationally equivalent to a plane curve with at most nodes for singularities.

Proof May assume $X \subseteq \mathbb{P}^{3}$ non-planar, and smooth (by gen projection).
Claim 1: $T_{x} \cap T_{y}=\emptyset$ for gen $x, y \in X$.
\because shown in the proof of Trisecant Lemma.
Claim 2: gen pt $z \in \mathbb{P}^{3}$ is not on any trisecant line of X.
\because The closure of the image,

$$
p_{12}:\{(P, Q, R) \mid R \in\langle P, Q\rangle\} \subseteq X \times X \times X \rightarrow X \times X
$$ is proper closed in $X \times X$ by Trisecant Lemma, hence of $\operatorname{dim} \leq 1$. $\leadsto \operatorname{dim}(\bigcup$ trisecant lines $) \leq 2$, hence a proper subset of \mathbb{P}^{3}.

- Set $\bar{X}:=\pi_{z}(X) \subseteq \mathbb{P}^{2}$, where $\pi_{z}: \mathbb{P}^{3} \backslash\{z\} \rightarrow \mathbb{P}^{2}\left(\subseteq \mathbb{P}^{3}\right)$ proj from $z \in \mathbb{P}^{3}$.
- for gen $z \in \mathbb{P}^{3}$,

Claim $1 \leadsto \bar{X}$ has at most ordinary pts for sing.
Claim $2 \leadsto \bar{X}$ has at most double pts for sing.
Therefore \bar{X} has at most ordinary double pts (i.e., nodes) for sing.

Theorem ('tangential trisecant lemma,' K (1986))
For a projective curve $X \subseteq \mathbb{P}^{N}$ with normalization C, assume that

- the characteristic $p=0$, and
- the induced morphism $\iota: C \rightarrow \mathbb{P}^{N}$ is unramified.

If a general tangent line of X is a tangential trisecant line, then
X is planar, that is, contained in a 2-plane.
Definition A line $L \subseteq \mathbb{P}^{N}$ is called
a tangential trisecant line of \boldsymbol{X} $\stackrel{\text { def }}{\Leftrightarrow} L$ is tangent to X and $\#(L \cap X) \geq 2$ as a set.

Remark

- Some attempts to weaken the condition on singularities of X have been given, as I explain below.
- I believe that any condition on singularities is not necessary. Namely,

My Belief

The conclusion of Theorem above holds for any (possibly singular) projective curve $X \subseteq \mathbb{P}^{N}$ if $p=0$.

On the other hand, ...

Counter examples in $p>0$ (smooth, tang degen but non-planar curves):
Example 1 ($\mathrm{K}(1986)$, Rathmann(1987), Levcovitz(1991); graph of insep morph)
For $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ of sep $\operatorname{deg} s>1$, insep $\operatorname{deg} q=p^{e}$ with $e>0$, set
$X:=\left(\right.$ the image of $\left.\Gamma_{f} \hookrightarrow \mathbb{P}^{1} \times \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{3}\right), \Gamma_{f}$ is the graph of f.
\sim for gen $P \in X, T_{P} \cap X=q \cdot P_{1}+\cdots+q \cdot P_{s}\left(\exists P_{1}, \ldots, P_{s}=P\right)$.

Counter examples in $p>0$ (smooth, tang degen but non-planar curves):
Example 1 ($\mathrm{K}(1986)$, Rathmann(1987), Levcovitz(1991); graph of insep morph)
For $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ of sep $\operatorname{deg} s>1$, insep $\operatorname{deg} q=p^{e}$ with $e>0$, set $X:=\left(\right.$ the image of $\Gamma_{f} \hookrightarrow \mathbb{P}^{1} \times \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{3}$), Γ_{f} is the graph of f. \sim for gen $P \in X, T_{P} \cap X=q \cdot P_{1}+\cdots+q \cdot P_{s}\left(\exists P_{1}, \ldots, P_{s}=P\right)$.

Example 2 ($\mathrm{K}(1989$); ordinary elliptic curves without inflection pt) For ordinary elliptic curve X and for $s>0$ s.t. $p \nmid s$, \exists embedding $\varphi: X \hookrightarrow \mathbb{P}^{N}$ with $N \geq 3$ s.t.
for all $P \in X, T_{P} \cap X=q \cdot P_{1}+\cdots+q \cdot P_{s}$, and
$\left\{P_{1}, \ldots, P_{s}=\bar{P}\right\}$ form a cyclic subgroup of X with order s.

- If $q=2$, then X has no inflection point.

An elliptic curve C in char $p>0$ is said to be supersingular if $C_{p}=\{0\}$. Otherwise C is said to be ordinary, and in that case $C_{p} \simeq \mathbb{Z} / p \mathbb{Z}$.

A point P of X is called an inflection point $\stackrel{\text { def }}{\Leftrightarrow} i\left(X, T_{P} ; P\right) \geq 3$.

Counter examples in $p>0$ (smooth, tang degen but non-planar curves):
Example 1 ($\mathrm{K}(1986)$, Rathmann(1987), Levcovitz(1991); graph of insep morph)
For $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ of sep $\operatorname{deg} s>1$, insep $\operatorname{deg} q=p^{e}$ with $e>0$, set
$X:=$ (the image of $\Gamma_{f} \hookrightarrow \mathbb{P}^{1} \times \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{3}$), Γ_{f} is the graph of f.
\sim for gen $P \in X, T_{P} \cap X=q \cdot P_{1}+\cdots+q \cdot P_{s}\left(\exists P_{1}, \ldots, P_{s}=P\right)$.

Example 2 ($\mathrm{K}(1989$); ordinary elliptic curves without inflection pt) For ordinary elliptic curve X and for $s>0$ s.t. $p \nmid s$, \exists embedding $\varphi: X \hookrightarrow \mathbb{P}^{N}$ with $N \geq 3$ s.t.
for all $P \in X, T_{P} \cap X=q \cdot P_{1}+\cdots+q \cdot P_{s}$, and
$\left\{P_{1}, \ldots, P_{s}=P\right\}$ form a cyclic subgroup of X with order s.

- If $q=2$, then X has no inflection point.

Example 3 (Garcia-Voloch(1991); Frobenius non-classical complete int)
Consider $X \subseteq \mathbb{P}^{3}: x^{q+1}+y^{q+1}=1, x^{q+1}+z^{q+1}=\lambda,\left(1 \neq \lambda \in \mathbb{F}_{q}, p>2\right)$.
\sim for gen $P \in X, T_{P} \cap X=q \cdot P+F(P), F$ a Frob morph of $\operatorname{deg} q^{2}$.

Counter examples in $p>0$ (smooth, tang degen but non-planar curves):
Example 1 ($\mathrm{K}(1986$), Rathmann(1987), Levcovitz(1991); graph of insep morph)
For $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ of sep deg $s>1$, insep $\operatorname{deg} q=p^{e}$ with $e>0$, set
$X:=\left(\right.$ the image of $\left.\Gamma_{f} \hookrightarrow \mathbb{P}^{1} \times \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{3}\right), \Gamma_{f}$ is the graph of f.
\leadsto for gen $P \in X, T_{P} \cap X=q \cdot P_{1}+\cdots+q \cdot P_{s}\left(\exists P_{1}, \ldots, P_{s}=P\right)$.

- The orders of X are $\{0,1, q, q+1\} . \sim$ non-reflexive

Example 2 ($\mathrm{K}(1989$); ordinary elliptic curves without inflection pt)
For ordinary elliptic curve X and for $s>0$ s.t. $p \nmid s$, \exists embedding $\varphi: X \hookrightarrow \mathbb{P}^{N}$ with $N \geq 3$ s.t.
for all $P \in X, T_{P} \cap X=q \cdot P_{1}+\cdots+q \cdot P_{s}$, and
$\left\{P_{1}, \ldots, P_{s}=\bar{P}\right\}$ form a cyclic subgroup of X with order s.

- If $q=2$, then X has no inflection point.
- The orders of X are $\{0,1, q, q+1\}$. \sim non-reflexive

Example 3 (Garcia-Voloch(1991); Frobenius non-classical complete int)
Consider $X \subseteq \mathbb{P}^{3}: x^{q+1}+y^{q+1}=1, x^{q+1}+z^{q+1}=\lambda,\left(1 \neq \lambda \in \mathbb{F}_{q}, p>2\right)$.
\leadsto for gen $P \in X, T_{P} \cap X=q \cdot P+F(P), F$ a Frob morph of $\operatorname{deg} q^{2}$.

- The orders of X are $\{0,1, q, 2 q\}$. \rightarrow non-reflexive

Counter examples in $p>0$ (smooth, tang degen but non-planar curves):

Example 4 (Esteves-Homma (1994))

Assume $p>3$ and set $X:=\overline{\varphi\left(\mathbb{A}^{1}\right)} \subseteq \mathbb{P}^{3}$, where
$\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{3}, \quad \varphi(t)=\left(t, t^{2}-t^{p}, t^{3}+2 t^{p}-3 t^{p+1}\right)$.
\leadsto for all $t \in \mathbb{A}^{1}, T_{\varphi(t)} \cap X=2 \cdot \varphi(t)+\varphi(t+1)$.
In fact, $\varphi(t+1)-\varphi(t)=\dot{\varphi}(t)$ as vectors for all $t \in \mathbb{A}^{1}$.

Counter examples in $p>0$ (smooth, tang degen but non-planar curves):

Example 4 (Esteves-Homma (1994))

Assume $p>3$ and set $X:=\overline{\varphi\left(\mathbb{A}^{1}\right)} \subseteq \mathbb{P}^{3}$, where

$$
\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{3}, \quad \varphi(t)=\left(t, t^{2}-t^{p}, t^{3}+2 t^{p}-3 t^{p+1}\right) .
$$

\sim for all $t \in \mathbb{A}^{1}, T_{\varphi(t)} \cap X=2 \cdot \varphi(t)+\varphi(t+1)$. In fact, $\varphi(t+1)-\varphi(t)=\dot{\varphi}(t)$ as vectors for all $t \in \mathbb{A}^{1}$.

- The orders of X are $\{0,1,2,3\}$.
- Surprisingly, it's reflexive!
(I will return to this example later)

Generalizations of the weak Tangential Trisecant Lemma in char $p=0$:

- S.González, R.Mallavibarrena: "Osculating Degeneration of Curves," Comm.Alg. 31 (2003), 3829-3845.
They treat osculating spaces instead of tangent lines for smooth curves, using computer alg system "Maple."

Generalizations of the weak Tangential Trisecant Lemma in char $p=0$:

- S.González, R.Mallavibarrena: "Osculating Degeneration of Curves," Comm.Alg. 31 (2003), 3829-3845.
They treat osculating spaces instead of tangent lines for smooth curves, using computer alg system "Maple."
- M.Bolognesi, G.Pirola: "Osculating spaces and diophantine equations," Math. Nachr. 284 (2011), 960-972.
They weaken the condition on singularities, treating locally toric curves, i.e., curves locally isomorphic to a monomial curve given by an analytical parameterization with relatively prime exponents:
$t \mapsto\left(t^{a_{1}}, \ldots, t^{a_{N}}\right)$ with $0<a_{1}<\cdots<a_{N}$ and $\left(a_{1}, \ldots, a_{N}\right)=1$.
Theorem (Bolognesi-Pirola (2011), locally toric curves)
Let $X \subseteq \mathbb{P}^{3}$ a complex projective curve.
Assume that X is locally toric.
If X is tangentially degenerate, then X is planar.

3 Recent Result

Definition A projective curve $X \subseteq \mathbb{P}^{N}$ is said to be tangentially degenerate
$\stackrel{\text { def }}{\Leftrightarrow}$ a gen tang line is tangential trisecant.
Question (naïve)
$T_{P} \quad X$
If a proj curve $X \subseteq \mathbb{P}^{N}$ is tangentially degenerate, then is X planar?

Theorem

3 Recent Result

Definition A projective curve $X \subseteq \mathbb{P}^{N}$ is said to be tangentially degenerate $\stackrel{\text { def }}{\Leftrightarrow}$ a gen tang line is tangential trisecant.

Question (naïve)

If a proj curve $X \subseteq \mathbb{P}^{N}$ is tangentially degenerate, then is X planar?
Theorem (K (2014), tangential trisecant lemma)
$X \subseteq \mathbb{P}^{N}$ a non-deg proj curve with $N \geq 3$ in $p=0$.
Assume that $\forall P \in C$ (normalization of X), \exists distinct $i, j, k>0$ s.t. the orders, $b_{i}(P), b_{j}(P)$ and $b_{k}(P)$ are relatively prime.
Then X is not tangentially degenarate.

3 Recent Result

Definition A projective curve $X \subseteq \mathbb{P}^{N}$ is said to be tangentially degenerate
$\stackrel{\text { def }}{\Leftrightarrow}$ a gen tang line is tangential trisecant.
Question (naïve)
If a proj curve $X \subseteq \mathbb{P}^{N}$ is tangentially degenerate, then is X planar?
Theorem (K (2014), tangential trisecant lemma)
$X \subseteq \mathbb{P}^{N}$ a non-deg proj curve with $N \geq 3$ in $p=0$.
Assume that $\forall P \in C$ (normalization of X), \exists distinct $i, j, k>0$ s.t. the orders, $b_{i}(P), b_{j}(P)$ and $b_{k}(P)$ are relatively prime.
Then X is not tangentially degenarate.

What is "order"?

Definition A projective curve $X \subseteq \mathbb{P}^{N}$ is said to be

tangentially degenerate

$\stackrel{\text { def }}{\Leftrightarrow}$ a gen tang line is tangential trisecant.

Question (naïve)

If a proj curve $X \subseteq \mathbb{P}^{N}$ is tangentially degenerate, then is X planar?
Theorem (K (2014), tangential trisecant lemma)
$X \subseteq \mathbb{P}^{N}$ a non-deg proj curve with $N \geq 3$ in $p=0$.
Assume that $\forall P \in C$ (normalization of X), \exists distinct $i, j, k>0$ s.t. the orders, $b_{i}(P), b_{j}(P)$ and $b_{k}(P)$ are relatively prime.
Then X is not tangentially degenarate.

Definition (orders)

The orders at $P \in C$ are a sequence of non-neg integers defined by $\left\{b_{0}(P)<b_{1}(P)<b_{2}(P)<\cdots<b_{N}(P)\right\}:=\left\{v_{P}(f) \mid 0 \neq f \in \Lambda\right\}$, where
$\Lambda \subseteq K(C)$ the linear system defining induced morph $\iota: C \rightarrow X \subseteq \mathbb{P}^{N}$
v_{P} a valuation of the local ring $\mathcal{O}_{C, P} \simeq \mathcal{O}_{C}(\Lambda)_{P}=\iota^{*} \mathcal{O}_{\mathbb{P}^{N}}(1)_{P}$.
The orders of X are defined to be the orders at a general pt of C.
Note: the function $b_{i}: P \mapsto b_{i}(P)$ is upper semi-continuous.

- The orders at $P \in C$ (normalization of $X \subseteq \mathbb{P}^{N}$):
$\left\{b_{0}(P)<b_{1}(P)<b_{2}(P)<\cdots<b_{N}(P)\right\}:=\left\{v_{P}(f) \mid 0 \neq f \in \Lambda\right\}$.
- The orders of $X:\left\{b_{i}:=b_{i}(P) \text { for general } P \in C\right\}_{0 \leq i \leq N}$.

Remark Let $\iota: C \rightarrow \mathbb{P}^{N}$ induced morph from normalization $C \rightarrow X$.

- $b_{0}=0\left(\because \operatorname{Bs}(\iota)=\emptyset \Leftrightarrow \forall P \in C, \exists f \in \Lambda, f(P) \neq 0\right.$, i.e., $\left.b_{0}(P)=0\right)$.
- $b_{1}=1\left(\because \iota\right.$ is bir \& [ι unram at $\left.\left.P \Leftrightarrow \exists f \in \Lambda, \frac{d f}{d t}(P) \neq 0 \Leftrightarrow b_{1}(P)=1\right]\right)$.
- The orders at $P \in C$ (normalization of $X \subseteq \mathbb{P}^{N}$):

$$
\left\{b_{0}(P)<b_{1}(P)<b_{2}(P)<\cdots<b_{N}(\bar{P})\right\}:=\left\{v_{P}(f) \mid 0 \neq f \in \Lambda\right\}
$$

- The orders of $X:\left\{b_{i}:=b_{i}(P) \text { for general } P \in C\right\}_{0 \leq i \leq N}$.

Remark Let $\iota: C \rightarrow \mathbb{P}^{N}$ induced morph from normalization $C \rightarrow X$.

- $b_{0}=0\left(\because \operatorname{Bs}(\iota)=\emptyset \Leftrightarrow \forall P \in C, \exists f \in \Lambda, f(P) \neq 0\right.$, i.e., $\left.b_{0}(P)=0\right)$.
- $b_{1}=1\left(\because \iota\right.$ is bir \& [ι unram at $\left.\left.P \Leftrightarrow \exists f \in \Lambda, \frac{d f}{d t}(P) \neq 0 \Leftrightarrow b_{1}(P)=1\right]\right)$.

Fact - (classical) If $p=0$, then $b_{i}=i$ for any $i \geq 0$.

- $(p>0) b_{2} \equiv 0 \bmod p \Leftrightarrow X \subseteq \mathbb{P}^{N}$ not reflexive.
- The orders at $P \in C$ (normalization of $X \subseteq \mathbb{P}^{N}$):

$$
\left\{b_{0}(P)<b_{1}(P)<b_{2}(P)<\cdots<b_{N}(\bar{P})\right\}:=\left\{v_{P}(f) \mid 0 \neq f \in \Lambda\right\}
$$

- The orders of $X:\left\{b_{i}:=b_{i}(P) \text { for general } P \in C\right\}_{0 \leq i \leq N}$.

Remark Let $\iota: C \rightarrow \mathbb{P}^{N}$ induced morph from normalization $C \rightarrow X$.

- $b_{0}=0\left(\because \operatorname{Bs}(\iota)=\emptyset \Leftrightarrow \forall P \in C, \exists f \in \Lambda, f(P) \neq 0\right.$, i.e., $\left.b_{0}(P)=0\right)$.
- $b_{1}=1\left(\because \iota\right.$ is bir \& [ι unram at $\left.\left.P \Leftrightarrow \exists f \in \Lambda, \frac{d f}{d t}(P) \neq 0 \Leftrightarrow b_{1}(P)=1\right]\right)$.

Fact - (classical) If $p=0$, then $b_{i}=i$ for any $i \geq 0$.

- $(p>0) b_{2} \equiv 0 \bmod p \Leftrightarrow X \subseteq \mathbb{P}^{N}$ not reflexive.

What is "reflexive"?

- The orders at $P \in C$ (normalization of $X \subseteq \mathbb{P}^{N}$):

$$
\left\{b_{0}(P)<b_{1}(P)<b_{2}(P)<\cdots<b_{N}(\bar{P})\right\}:=\left\{v_{P}(f) \mid 0 \neq f \in \Lambda\right\}
$$

- The orders of $X:\left\{b_{i}:=b_{i}(P) \text { for general } P \in C\right\}_{0 \leq i \leq N}$.

Remark Let $\iota: C \rightarrow \mathbb{P}^{N}$ induced morph from normalization $C \rightarrow X$.

- $b_{0}=0\left(\because \operatorname{Bs}(\iota)=\emptyset \Leftrightarrow \forall P \in C, \exists f \in \Lambda, f(P) \neq 0\right.$, i.e., $\left.b_{0}(P)=0\right)$.
- $b_{1}=1\left(\because \iota\right.$ is bir \& [ι unram at $\left.\left.P \Leftrightarrow \exists f \in \Lambda, \frac{d f}{d t}(P) \neq 0 \Leftrightarrow b_{1}(P)=1\right]\right)$.

Fact - (classical) If $p=0$, then $b_{i}=i$ for any $i \geq 0$.

- $(p>0) b_{2} \equiv 0 \bmod p \Leftrightarrow X \subseteq \mathbb{P}^{N}$ not reflexive.

Definition (reflexivity) A projective variety $X \subseteq \mathbb{P}^{N}$ said to be reflexive if $C(X)=C\left(X^{*}\right)$ via $\mathbb{P}^{N} \times \check{\mathbb{P}}^{N} \simeq \check{\mathscr{P}}^{N} \times \check{\mathbb{P}}^{N}$,
where X^{*} the dual variety of X, and $C(X)$ the conormal variety of X.

- If X is reflexive, then one can expect $\left\{T_{P}\right\}_{P \in X}$ 'behaves' as in char $p=0$.
- The orders at $P \in C$ (normalization of $X \subseteq \mathbb{P}^{N}$):

$$
\left\{b_{0}(P)<b_{1}(P)<b_{2}(P)<\cdots<b_{N}(\bar{P})\right\}:=\left\{v_{P}(f) \mid 0 \neq f \in \Lambda\right\}
$$

- The orders of $X:\left\{b_{i}:=b_{i}(P) \text { for general } P \in C\right\}_{0 \leq i \leq N}$.

Remark Let $\iota: C \rightarrow \mathbb{P}^{N}$ induced morph from normalization $C \rightarrow X$.

- $b_{0}=0\left(\because \operatorname{Bs}(\iota)=\emptyset \Leftrightarrow \forall P \in C, \exists f \in \Lambda, f(P) \neq 0\right.$, i.e., $\left.b_{0}(P)=0\right)$.
- $b_{1}=1\left(\because \iota\right.$ is bir \& [ι unram at $\left.\left.P \Leftrightarrow \exists f \in \Lambda, \frac{d f}{d t}(P) \neq 0 \Leftrightarrow b_{1}(P)=1\right]\right)$.

Fact - (classical) If $p=0$, then $b_{i}=i$ for any $i \geq 0$.

- $(p>0) b_{2} \equiv 0 \bmod p \Leftrightarrow X \subseteq \mathbb{P}^{N}$ not reflexive.

Definition (reflexivity) A projective variety $X \subseteq \mathbb{P}^{N}$ said to be reflexive if $C(X)=C\left(X^{*}\right)$ via $\mathbb{P}^{N} \times \check{\mathbb{P}}^{N} \simeq \check{\mathbb{P}}^{N} \times \check{\mathbb{P}}^{N}$,
where X^{*} the dual variety of X, and $C(X)$ the conormal variety of X.

- If X is reflexive, then one can expect $\left\{T_{P}\right\}_{P \in X}$ 'behaves' as in char $p=0$.

Fact (Hefez-Kakuta(1992), Homma-K(1992), K(1992)) [not used below]
Let b_{i}^{\prime} be the highest power of p dividing b_{i},

$$
\begin{aligned}
& \iota^{(i)}: X \rightarrow \mathbb{G}\left(i, \mathbb{P}^{N}\right) \text { the } i \text {-th Gauss map, and } \\
& \pi^{(i)}: C^{(i)} X \rightarrow X^{*(i)} \text { the } i \text {-th conormal map of } X
\end{aligned}
$$

defined by osculating i-planes of X. Then for each $i \geq 1$, we have

$$
b_{i+1}^{\prime}=\text { insep-deg }\left(\iota^{(i)}\right)=\text { insep-deg }\left(\pi^{(i)}\right) .
$$

In particular, $b_{i+1} \equiv 0 \bmod p \Leftrightarrow \iota^{(i)}$ insep $\Leftrightarrow \pi^{(i)}$ insep. [Endof $\S 2$:Main Result]

4 Sketch of Proof

Theorem (K (2014), tangential trisecant lemma)
$X \subseteq \mathbb{P}^{N}$ a non-deg proj curve with $N \geq 3$ in $p=0$. Assume that $\forall P \in C$ (normalization of X),
\exists distinct $i, j, k>0$ s.t. $\left(b_{i}(P), b_{j}(P), b_{k}(P)\right)=1$. Then X is not tangentially degenarate.

4 Sketch of Proof

Theorem (K (2014), tangential trisecant lemma)
$X \subseteq \mathbb{P}^{N}$ a non-deg proj curve with $N \geq 3$ in $p=0$. Assume that $\forall P \in C$ (normalization of X),
\exists distinct $i, j, k>0$ s.t. $\left(b_{i}(P), b_{j}(P), b_{k}(P)\right)=1$.
Then X is not tangentially degenarate.
To prove the above,
assuming $X \subseteq \mathbb{P}^{N}$ tangentially degenerate, we deduce contradiction.

Plan:

...

4 Sketch of Proof

Theorem (K (2014), tangential trisecant lemma)
$X \subseteq \mathbb{P}^{N}$ a non-deg proj curve with $N \geq 3$ in $p=0$.
Assume that $\forall P \in C$ (normalization of X),
\exists distinct $i, j, k>0$ s.t. $\left(b_{i}(P), b_{j}(P), b_{k}(P)\right)=1$.
Then X is not tangentially degenarate.
To prove the above,
assuming $X \subseteq \mathbb{P}^{N}$ tangentially degenerate, we deduce contradiction.
Plan:
Step 1: rephrase "tangential degeneration"

Step 2: parametrize the pts of contact P and of intersection Q on X
Step 3: find an inflection point P_{0} of X where a tangential trisecant line becomes flex tangent as a limit.
Step 4: study the parametrization locally around the inflection point P_{0}, to deduce a certain necessary condition for tangential degeneration
Step 5: deduce contradiction

4 Sketch of Proof

Theorem (K (2014), tangential trisecant lemma)
$X \subseteq \mathbb{P}^{N}$ a non-deg proj curve with $N \geq 3$ in $p=0$.
Assume that $\forall P \in C$ (normalization of X),
\exists distinct $i, j, k>0$ s.t. $\left(b_{i}(P), b_{j}(P), b_{k}(P)\right)=1$.
Then X is not tangentially degenarate.
To prove the above, assuming $X \subseteq \mathbb{P}^{N}$ tangentially degenerate, we deduce contradiction.

Plan:

Step 1: rephrase "tangential degeneration"
Step 2: parametrize the pts of contact P and of intersection Q on X
Step 3: find an inflection point P_{0} of \boldsymbol{X} where a tangential trisecant line becomes flex tangent as a limit.
Step 4: study the parametrization locally around the inflection point P_{0}, to deduce a certain necessary condition for tangential degeneration
Step 5: deduce contradiction

Remark

- The proof here is different from the one for "trisecant lemma".
- The arguments here are similar to the ones of the weak version, except for Steps 3 and 5 in the plan above.

Step 1: rephrase "tangential degeneration".

- Let $C \rightarrow X$ the normal of $X \subseteq \mathbb{P}^{N}, \iota: C \rightarrow \mathbb{P}^{N}$ the induced morph.
- One can assign any $P \in C$ to a 'tangent line' T_{P} to X at $\iota(P)$. (just extend a rational map $C \rightarrow \mathbb{G}\left(1, \mathbb{P}^{N}\right) ; P \mapsto T_{P}$, to a morphism)
- Set

Step 1: rephrase "tangential degeneration".

- Let $C \rightarrow X$ the normal of $X \subseteq \mathbb{P}^{N}, \iota: C \rightarrow \mathbb{P}^{N}$ the induced morph.
- One can assign any $P \in C$ to a 'tangent line' T_{P} to X at $\iota(P)$. (just extend a rational map $C \rightarrow \mathbb{G}\left(1, \mathbb{P}^{N}\right) ; P \mapsto \boldsymbol{T}_{P}$, to a morphism)
- Set

$$
\begin{aligned}
& T(C):=\text { (projective tangent bundle) }=\coprod_{P \in C} T_{P} \subseteq C \times \mathbb{P}^{N} \\
& \text { with } \pi: T(C) \rightarrow C \text { canonical projection, } \\
& \operatorname{Tan} X:=(\text { tangential surface })=\bigcup_{P \in C} T_{P} \subseteq \mathbb{P}^{N} \\
& \text { with } \eta: T(C) \rightarrow \text { Tan } X \text { natural projection, } \\
& C_{0}:=(\text { the locus of pts of contact }) \subseteq T(C) \text { a section of } \pi,
\end{aligned}
$$

- Then, ...

Step 1: rephrase "tangential degeneration".

- Let $C \rightarrow X$ the normal of $X \subseteq \mathbb{P}^{N}, \iota: C \rightarrow \mathbb{P}^{N}$ the induced morph.
- One can assign any $P \in C$ to a 'tangent line' T_{P} to X at $\iota(P)$. (just extend a rational map $C \rightarrow \mathbb{G}\left(1, \mathbb{P}^{N}\right) ; P \mapsto \boldsymbol{T}_{P}$, to a morphism)
- Set

$$
\begin{aligned}
T(C):= & \text { (projective tangent bundle) }=\coprod_{P \in C} T_{P} \subseteq C \times \mathbb{P}^{N} \\
& \text { with } \pi: T(C) \rightarrow C \text { canonical projection, } \\
\text { Tan } X:= & (\text { tangential surface })=\bigcup_{P \in C} T_{P} \subseteq \mathbb{P}^{N} \\
& \text { with } \eta: T(C) \rightarrow \text { Tan } X \text { natural projection, } \\
C_{0}:= & (\text { the locus of pts of contact }) \subseteq T(C) \text { a section of } \pi, \\
& C_{0} \longrightarrow X
\end{aligned}
$$

- Then, \boldsymbol{X} tangentially degenerate $\Leftrightarrow \operatorname{dim} \eta^{-1} X \backslash C_{0}=1$.

Step 1: rephrase "tangential degeneration".

- Let $C \rightarrow X$ the normal of $X \subseteq \mathbb{P}^{N}, \iota: C \rightarrow \mathbb{P}^{N}$ the induced morph.
- One can assign any $P \in C$ to a 'tangent line' T_{P} to X at $\iota(P)$. (just extend a rational map $C \rightarrow \mathbb{G}\left(1, \mathbb{P}^{N}\right) ; P \mapsto T_{P}$, to a morphism)
- Set

$$
\begin{aligned}
T(C):= & (\text { projective tangent bundle })=\coprod_{P \in C} T_{P} \subseteq C \times \mathbb{P}^{N} \\
& \text { with } \pi: T(C) \rightarrow C \text { canonical projection },
\end{aligned}
$$

$\operatorname{Tan} X:=($ tangential surface $)=\bigcup_{P \in C} T_{P} \subseteq \mathbb{P}^{N}$ with $\eta: T(C) \rightarrow$ Tan X natural projection,
$C_{0}:=($ the locus of pts of contact) $\subseteq T(C)$ a section of π,

- Then, X tangentially degenerate $\Leftrightarrow \operatorname{dim} \eta^{-1} X \backslash C_{0}=1$.
- Assume $X \subseteq \mathbb{P}^{N}(N \geq 3)$ tangentially degenerate. $\sim \exists$ 1-dim irred comp in $\eta^{-1} X \backslash C_{0}$.

Step 2: parametrize the pts of contact and of intersection.

- Consider
- D a 1-dim irred component of $\overline{\eta^{-1} X \backslash C_{0}}$ with reduced str, $\sim D$ is not a fibre of $\pi: T(C) \rightarrow C$,
$-\nu: \widetilde{D} \rightarrow D$ the normalization,
$-\widetilde{\pi}:=\pi \nu: \widetilde{D} \rightarrow C$, and
$-\widetilde{\eta}: \widetilde{D} \rightarrow C$ the natural morphism s.t. $\eta \nu=\iota \widetilde{\eta}$.
$\sim \eta \nu: \widetilde{D} \rightarrow X$ factors thru the normalization $C \rightarrow X$.

- Then for each $Q \in \widetilde{D}, \quad \iota \widetilde{\eta}(Q) \in T_{\iota \widetilde{\pi}(Q)}$

Step 2: parametrize the pts of contact and of intersection.

- Consider
- D a 1-dim irred component of $\overline{\eta^{-1} X \backslash C_{0}}$ with reduced str, $\sim D$ is not a fibre of $\pi: T(C) \rightarrow C$,
$-\nu: \widetilde{D} \rightarrow D$ the normalization,
$-\widetilde{\pi}:=\pi \nu: \widetilde{D} \rightarrow C$, and
$-\widetilde{\eta}: \widetilde{D} \rightarrow C$ the natural morphism s.t. $\eta \nu=\iota \widetilde{\eta}$. $\sim \eta \nu: \widetilde{D} \rightarrow X$ factors thru the normalization $C \rightarrow X$.

- Then for each $Q \in \widetilde{D}, \stackrel{\rightharpoonup}{\eta}(Q) \in T_{\imath \widetilde{\pi}(Q)}$

```
\(\because \pi \nu(Q)=\tilde{\pi}(Q)\)
    \(\sim \nu(Q) \in \pi^{-1} \widetilde{\pi}(Q)\)
        \(\sim \iota \widetilde{\eta}(Q)=\eta \nu(Q) \in \eta\left(\pi^{-1} \widetilde{\pi}(Q)\right)=T_{\iota \widetilde{\pi}(Q)}\).
```


Step 3: $D \cap C_{0} \neq \emptyset$ (i.e., \exists inflection pt).

- Let $\mathcal{P}_{C}^{1}\left(\mathcal{O}_{C}(1)\right)$ the bdle of prin parts of $\mathcal{O}_{C}(1):=\iota^{*} \mathcal{O}_{\mathbb{P}^{N}}(1)$ of 1 st ord, with natural homo a ${ }^{1}: H^{0}\left(C, \mathcal{O}_{C}(1)\right) \otimes \mathcal{O}_{C} \rightarrow \mathcal{P}_{C}^{1}\left(\mathcal{O}_{C}(1)\right)$ and the canonical exact sequence:
(ξ)
$0 \rightarrow \Omega_{C}^{1} \otimes \mathcal{O}_{C}(1) \rightarrow \mathcal{P}_{C}^{1}\left(\mathcal{O}_{C}(1)\right) \rightarrow \mathcal{O}_{C}(1) \rightarrow 0$.

Step 3: $D \cap C_{0} \neq \emptyset$ (i.e., \exists inflection pt).

- Let $\mathcal{P}_{C}^{1}\left(\mathcal{O}_{C}(1)\right)$ the bdle of prin parts of $\mathcal{O}_{C}(1):=\iota^{*} \mathcal{O}_{\mathbb{P}^{N}}(1)$ of 1 st ord, with natural homo a ${ }^{1}: H^{0}\left(C, \mathcal{O}_{C}(1)\right) \otimes \mathcal{O}_{C} \rightarrow \mathcal{P}_{C}^{1}\left(\mathcal{O}_{C}(1)\right)$ and the canonical exact sequence:

$$
(\xi) \quad 0 \rightarrow \Omega_{C}^{1} \otimes \mathcal{O}_{C}(1) \rightarrow \mathcal{P}_{C}^{1}\left(\mathcal{O}_{C}(1)\right) \rightarrow \mathcal{O}_{C}(1) \rightarrow 0
$$

- Set $\mathcal{P}:=\operatorname{Ima}{ }^{1}$, locally free of rk 2 .
$\because \iota: C \rightarrow \mathbb{P}^{N}$ gener unramified $\leadsto d \iota$ gener surj $\leadsto a^{1}$ gener surj.
- Note that $T_{C}=\mathbb{P}(\mathcal{P})$, and (sect $\left.\left.T(C) \hookleftarrow C_{0}\right) \xrightarrow{\text { (1-quot }} \mathcal{P} \rightarrow \mathcal{O}_{C}(1)\right)$.
- ...

$$
\begin{array}{rlrlll}
0 & \rightarrow \iota^{*} \Omega_{\mathbb{P}^{N}}^{1} \otimes \mathcal{O}_{C}(1) \rightarrow H^{0}\left(C, \mathcal{O}_{C}(1)\right) \otimes \mathcal{O}_{C} & \rightarrow \mathcal{O}_{C}(1) & \rightarrow 0 \text { (exact) } \\
& \downarrow d \iota \otimes 1_{\mathcal{O}_{C}(1)} & \downarrow \mathbf{a}^{1} & \| \\
(\xi) \quad 0 & \rightarrow \Omega_{C}^{1} \otimes \mathcal{O}_{C}(1) & \rightarrow & \mathcal{P}_{C}^{1}\left(\mathcal{O}_{C}(1)\right) & \rightarrow \mathcal{O}_{C}(1) & \rightarrow 0 \text { (exact) }
\end{array}
$$

Step 3: $D \cap C_{0} \neq \emptyset$ (i.e., \exists inflection pt).

- Let $\mathcal{P}_{C}^{1}\left(\mathcal{O}_{C}(1)\right)$ the bdle of prin parts of $\mathcal{O}_{C}(1):=\iota^{*} \mathcal{O}_{\mathbb{P}^{N}}(1)$ of 1 st ord, with natural homo $\mathbf{a}^{1}: H^{0}\left(C, \mathcal{O}_{C}(1)\right) \otimes \mathcal{O}_{C} \rightarrow \mathcal{P}_{C}^{1}\left(\mathcal{O}_{C}(1)\right)$ and the canonical exact sequence:

$$
(\xi) \quad 0 \rightarrow \Omega_{C}^{1} \otimes \mathcal{O}_{C}(1) \rightarrow \mathcal{P}_{C}^{1}\left(\mathcal{O}_{C}(1)\right) \rightarrow \mathcal{O}_{C}(1) \rightarrow 0
$$

- Set $\mathcal{P}:=\operatorname{Ima}{ }^{1}$, locally free of rk 2 .
$\because \iota: C \rightarrow \mathbb{P}^{N}$ gener unramified $\leadsto d \iota$ gener surj $\leadsto \mathbf{a}^{1}$ gener surj.
- Note that $T_{C}=\mathbb{P}(\mathcal{P})$, and (sect $T(C) \hookleftarrow C_{0}$) \quad (1-quot $\mathcal{P} \rightarrow \mathcal{O}_{C}(1)$).
- Suppose $D \cap C_{0}=\emptyset$.
\sim the pull-back of $\mathcal{P} \rightarrow \mathcal{O}_{C}(1)$ to the normalization \widetilde{D} splits.
\because bs-chg of C_{0} and D by $\tilde{\pi}$ give disjoint sections of $T_{C} \times{ }_{C} \tilde{D}=\mathbb{P}\left(\widetilde{\pi}^{*} \mathcal{P}\right)$.
$\sim \mathcal{P} \rightarrow \mathcal{O}_{C}(1)$ itself splits by the assumption $p=0$.
In fact, $\tilde{\pi}$ is separable.
\leadsto can surj $\mathcal{P}_{C}^{1}\left(\mathcal{O}_{C}(1)\right) \rightarrow \mathcal{O}_{C}(1)$ splits, i.e., (ξ) would split.
-...

$$
\begin{aligned}
& \mathcal{P} \\
\downarrow & \rightarrow \mathcal{O}_{C}(1)
\end{aligned} \rightarrow 0 \text { (exact) }
$$

Step 3: $D \cap C_{0} \neq \emptyset$ (i.e., \exists inflection pt).

- Let $\mathcal{P}_{C}^{1}\left(\mathcal{O}_{C}(1)\right)$ the bdle of prin parts of $\mathcal{O}_{C}(1):=\iota^{*} \mathcal{O}_{\mathbb{P}^{N}}(1)$ of 1 st ord, with natural homo $\mathrm{a}^{1}: H^{0}\left(C, \mathcal{O}_{C}(1)\right) \otimes \mathcal{O}_{C} \rightarrow \mathcal{P}_{C}^{1}\left(\mathcal{O}_{C}(1)\right)$ and the canonical exact sequence:

$$
0 \rightarrow \Omega_{C}^{1} \otimes \mathcal{O}_{C}(1) \rightarrow \mathcal{P}_{C}^{1}\left(\mathcal{O}_{C}(1)\right) \rightarrow \mathcal{O}_{C}(1) \rightarrow 0
$$

- Set $\mathcal{P}:=\operatorname{Im} a^{1}$, locally free of $\mathbf{r k} 2$.
$\because \iota: C \rightarrow \mathbb{P}^{N}$ gener unramified $\leadsto d \iota$ gener surj $\leadsto \mathbf{a}^{1}$ gener surj.

- Suppose $D \cap C_{0}=\emptyset$.
\leadsto the pull-back of $\mathcal{P} \rightarrow \mathcal{O}_{C}(1)$ to the normalization \widetilde{D} splits.
\because bs-chg of C_{0} and D by $\widetilde{\pi}$ give disjoint sections of $T_{C} \times{ }_{C} \widetilde{D}=\mathbb{P}\left(\widetilde{\pi}^{*} \mathcal{P}\right)$.
$\leadsto \mathcal{P} \rightarrow \mathcal{O}_{C}(1)$ itself splits by the assumption $p=0$.
In fact, $\widetilde{\pi}$ is separable.
\sim can surj $\mathcal{P}_{C}^{1}\left(\mathcal{O}_{C}(1)\right) \rightarrow \mathcal{O}_{C}(1)$ splits, i.e., (ξ) would split.
- But (ξ) does not splits: Indeed, according to a theorem of Atiyah,

$$
\leftrightarrow \quad c_{1}\left(\mathcal{O}_{C}(1)\right)=\operatorname{deg} \mathcal{O}_{C}(1) \cdot 1_{k}
$$

$$
\left.\operatorname{Ext}_{\mathcal{O}_{C}}^{1}\left(\mathcal{O}_{C}(1) \stackrel{\uparrow}{\Omega_{C}^{1}} \otimes \mathcal{O}_{C}(1)\right)\right)=H^{1}\left(C, \Omega_{C}^{1}\right) \simeq \stackrel{\oplus}{k}
$$

where $\operatorname{deg} \mathcal{O}_{C}(1) \cdot 1_{k} \neq 0$ by $p=0$.

- Therefore $D \cap C_{0} \neq \emptyset$.

Step 4: local study around $C_{0} \cap D$.

- Take a point $P_{0} \in C_{0} \cap D$,
assume $x_{1}, \ldots, x_{N} \in \mathcal{O}_{P_{0}, C}$ defines $\iota: C \rightarrow \mathbb{A}^{N} \subseteq \mathbb{P}^{N}$ around P_{0},
set $\mathrm{x}:=\left(x_{1}, \ldots, x_{N}\right)$, and fix a point $Q_{0} \in \widetilde{D}$ s.t. $\widetilde{\pi}\left(Q_{0}\right)=\widetilde{\eta}\left(Q_{0}\right)=P_{0}$. $\sim \iota \widetilde{\pi}, \iota \widetilde{\eta}: \widetilde{D} \longrightarrow \mathbb{A}^{N}$ resp given locally by

$$
\widetilde{\pi}^{*} x=\left(\widetilde{\pi}^{*} x_{1}, \ldots, \widetilde{\pi}^{*} x_{N}\right), \widetilde{\eta}^{*} x=\left(\widetilde{\eta}^{*} x_{1}, \ldots, \widetilde{\eta}^{*} x_{N}\right) \text { around } Q_{0} .
$$

- ...

Step 4: local study around $C_{0} \cap D$.

- Take a point $P_{0} \in C_{0} \cap D$,
assume $x_{1}, \ldots, x_{N} \in \mathcal{O}_{P_{0}, C}$ defines $\iota: C \rightarrow \mathbb{A}^{N} \subseteq \mathbb{P}^{N}$ around P_{0}, set $\mathrm{x}:=\left(x_{1}, \ldots, x_{N}\right)$, and fix a point $Q_{0} \in \widetilde{D}$ s.t. $\widetilde{\pi}\left(Q_{0}\right)=\widetilde{\eta}\left(Q_{0}\right)=P_{0}$. $\leadsto \iota \widetilde{\pi}, \iota \widetilde{\eta}: \widetilde{D} \longrightarrow \mathbb{A}^{N}$ resp given locally by
$\widetilde{\pi}^{*} x=\left(\widetilde{\pi}^{*} x_{1}, \ldots, \widetilde{\pi}^{*} x_{N}\right), \widetilde{\eta}^{*} x=\left(\widetilde{\eta}^{*} x_{1}, \ldots, \widetilde{\eta}^{*} x_{N}\right)$ around Q_{0}.
- Choosing a suitable change of coordinates, one may assume

$$
\left\{\begin{aligned}
x_{1} & =t^{b_{1}}+\cdots \\
x_{2} & =t^{b_{2}}+\cdots \\
& \vdots \\
x_{N} & =t^{b_{N}}+\cdots
\end{aligned}\right.
$$

in the completion $\widehat{\mathcal{O}_{C, P_{0}}} \simeq k[[t]]$ with some reg para t of C at P_{0}, where $b_{i}:=b_{i}\left(P_{0}\right)$ the orders at P_{0}.

Step 4: local study around $C_{0} \cap D$.

- Take a point $P_{0} \in C_{0} \cap D$,
assume $x_{1}, \ldots, x_{N} \in \mathcal{O}_{P_{0}, C}$ defines $\iota: C \rightarrow \mathbb{A}^{N} \subseteq \mathbb{P}^{N}$ around P_{0}, set $\mathrm{x}:=\left(x_{1}, \ldots, x_{N}\right)$, and fix a point $Q_{0} \in \widetilde{D}$ s.t. $\widetilde{\pi}\left(Q_{0}\right)=\widetilde{\eta}\left(Q_{0}\right)=P_{0}$. $\sim \iota \widetilde{\pi}, \iota \widetilde{\eta}: \widetilde{D} \longrightarrow \mathbb{A}^{N}$ resp given locally by

$$
\tilde{\pi}^{*} x=\left(\widetilde{\pi}^{*} x_{1}, \ldots, \widetilde{\pi}^{*} x_{N}\right), \widetilde{\eta}^{*} x=\left(\widetilde{\eta}^{*} x_{1}, \ldots, \widetilde{\eta}^{*} x_{N}\right) \text { around } Q_{0} .
$$

- Choosing a suitable change of coordinates, one may assume

$$
\left\{\begin{aligned}
x_{1} & =t^{b_{1}}+\cdots \\
x_{2} & =t^{b_{2}}+\cdots \\
& \vdots \\
x_{N} & =t^{b_{N}}+\cdots
\end{aligned}\right.
$$

in the completion $\widehat{\mathcal{O}_{C, P_{0}}} \simeq k[[t]]$ with some reg para t of C at P_{0}, where $b_{i}:=b_{i}\left(P_{0}\right)$ the orders at P_{0}.

- Moreover may assume that

$$
\tilde{\boldsymbol{\pi}}^{*} t=u^{d}+\cdots, \quad \tilde{\boldsymbol{\eta}}^{*} t=\boldsymbol{\xi} u^{d^{\prime}}+\cdots \quad \text { in } \widehat{\mathcal{O}_{\tilde{D}, Q_{0}}} \simeq k[[u]]
$$

with some $d \geq 1, d^{\prime} \geq 1, \xi \in k^{\times}$and some reg para u of \widetilde{D} at Q_{0}.

Step 4: local study around $C_{0} \cap D$ (continued).

- $\iota \widetilde{\boldsymbol{\eta}}(Q) \in T_{\iota \widetilde{\pi}(Q)}$ for each $Q \in \widetilde{D}$
$\leadsto \widetilde{\boldsymbol{\pi}}^{*} \dot{\mathrm{x}} \| \widetilde{\boldsymbol{\eta}}^{*} \mathrm{x}-\widetilde{\boldsymbol{\pi}}^{*} \mathrm{x}$ as vectors in \mathbb{A}^{N}, where $\mathrm{x}:=\left(x_{1}, \ldots, x_{N}\right)$ and $\dot{x}_{i}:=d x_{i} / d t$.

Step 4: local study around $C_{0} \cap D$ (continued).

$\leadsto \Gamma_{i j}=0$ in $k[[u]](1 \leq i<j \leq N)$, where

$$
\Gamma_{i j}:=\operatorname{det}\left[\begin{array}{ll}
\widetilde{\pi}^{*} \dot{x}_{i} & \widetilde{\boldsymbol{\eta}}^{*} x_{i}-\widetilde{\pi}^{*} x_{i} \\
\widetilde{\pi}^{*} \dot{x}_{j} & \widetilde{\boldsymbol{\eta}}^{*} x_{i}-\widetilde{\pi}^{*} x_{j}
\end{array}\right]:(i, j) \text {-minor of }\left[\widetilde{\pi}^{*} \dot{x}, \widetilde{\eta}^{*} x-\widetilde{\pi}^{*} x\right]
$$

- $\iota \widetilde{\eta}(Q) \in T_{\iota \widetilde{\pi}(Q)}$ for each $Q \in \widetilde{D}$
$\widetilde{D} \ni Q$

$\leadsto \Gamma_{i j}=0$ in $k[[u]](1 \leq i<j \leq N)$, where

$$
\begin{aligned}
& \Gamma_{i j}:=\operatorname{det}\left[\begin{array}{ll}
\widetilde{\boldsymbol{\pi}}^{*} \dot{x}_{i} & \widetilde{\boldsymbol{\eta}}^{*} x_{i}-\widetilde{\pi}^{*} x_{i} \\
\widetilde{\boldsymbol{\pi}}^{*} \dot{x}_{j} & \widetilde{\boldsymbol{\eta}}^{*} x_{i}-\widetilde{\boldsymbol{\pi}}^{*} x_{j}
\end{array}\right]:(i, j) \text {-minor of }\left[\widetilde{\pi}^{*} \dot{\mathrm{x}}, \widetilde{\boldsymbol{\eta}}^{*} \mathrm{x}-\widetilde{\boldsymbol{\pi}}^{*} \mathrm{x}\right] \\
& =\operatorname{det}\left[\begin{array}{cc}
b_{i}\left(u^{d}+\cdots\right)^{b_{i}-1}+\cdots & \left\{\left(\xi u^{d^{\prime}}+\cdots\right)^{b_{i}}+\cdots\right\} \\
b_{j}\left(u^{d}+\cdots\right)^{b_{j}-1}+\cdots & \left\{\left(\xi u^{d^{\prime}}+\cdots u^{d}+\cdots\right)^{b_{i}}+\cdots\right\} \\
-\left\{\left(u^{d}+\cdots\right)^{b_{j}}+\cdots\right\}
\end{array}\right] \\
& = \begin{cases}\xi^{b_{j}} u^{d\left(b_{i}-1\right)+d^{\prime} b_{j}}+\cdots, & \text { if } d^{\prime}<d, \\
\left(b_{i}\left(\xi^{b_{j}}-1\right)-b_{j}\left(\xi^{b_{i}}-1\right)\right) u^{d\left(b_{i}+b_{j}+1\right)}+\cdots, & \text { if } d^{\prime}=d, \\
\left(b_{i}-b_{j}\right) u^{d\left(b_{i}+b_{j}-1\right)}+\cdots, & \text { if } d^{\prime}>d .\end{cases}
\end{aligned}
$$

- $\iota \widetilde{\eta}(Q) \in T_{\iota \widetilde{\pi}(Q)}$ for each $Q \in \widetilde{D}$
$\widetilde{D} \ni Q$

$\leadsto \Gamma_{i j}=0$ in $k[[u]](1 \leq i<j \leq N)$, where

$$
\Gamma_{i j}:=\operatorname{det}\left[\begin{array}{ll}
\widetilde{\pi}^{*} \dot{x}_{i} & \widetilde{\boldsymbol{\eta}}^{*} x_{i}-\widetilde{\pi}^{*} x_{i} \\
\widetilde{\pi}^{*} \dot{x_{j}} & \widetilde{\boldsymbol{\eta}}^{*} x_{i}-\widetilde{\pi}^{*} x_{j}
\end{array}\right]:(i, j) \text {-minor of }\left[\widetilde{\pi}^{*} \dot{x}, \widetilde{\eta}^{*} x-\widetilde{\pi}^{*} x\right]
$$

$$
=\operatorname{det}\left[\begin{array}{cc}
b_{i}\left(u^{d}+\cdots\right)^{b_{i}-1}+\cdots & \left\{\left(\xi u^{d^{\prime}}+\cdots\right)^{b_{i}}+\cdots\right\} \\
b_{j}\left(u^{d}+\cdots\right)^{b_{j}-1}+\cdots & \left\{\left(\xi u^{d^{\prime}}+\cdots u^{d}+\cdots\right)^{b_{i}}+\cdots\right\} \\
-\left\{\left(u^{d}+\cdots\right)^{b_{j}}+\cdots\right\}
\end{array}\right]
$$

$$
= \begin{cases}\xi^{b_{j}} \boldsymbol{u}^{d\left(b_{i}-1\right)+d^{\prime} b_{j}}+\cdots, & \text { if } \boldsymbol{d}^{\prime}<\boldsymbol{d} \\ \left(b_{i}\left(\xi^{b_{j}}-1\right)-b_{j}\left(\xi^{b_{i}}-1\right)\right) \boldsymbol{u}^{d\left(b_{i}+b_{j}+1\right)}+\cdots, & \text { if } \boldsymbol{d}^{\prime}=\boldsymbol{d} \\ \left(\boldsymbol{b}_{i}-\boldsymbol{b}_{j}\right) \boldsymbol{u}^{d\left(b_{i}+b_{j}-1\right)}+\cdots, & \text { if } \boldsymbol{d}^{\prime}>\boldsymbol{d}\end{cases}
$$

$\leadsto d=d^{\prime}$ and $b_{i}\left(\xi^{b_{j}}-1\right)-b_{j}\left(\xi^{b_{i}}-1\right)=0$, where $\left\{b_{i}:=b_{i}\left(P_{0}\right)\right\}$ the orders at P_{0} and $\widetilde{\eta}^{*} t=\xi u^{d}+\cdots$.

- $\iota \widetilde{\eta}(Q) \in T_{\iota \widetilde{\pi}(Q)}$ for each $Q \in \widetilde{D}$
$\widetilde{D} \ni Q$
$\leadsto \widetilde{\boldsymbol{\pi}}^{*} \dot{\mathrm{x}} \| \widetilde{\boldsymbol{\eta}}^{*} \mathrm{x}-\widetilde{\boldsymbol{\pi}}^{*} \mathrm{x}$ as vectors in \mathbb{A}^{N}, where $\mathrm{x}:=\left(x_{1}, \ldots, x_{N}\right)$ and $\dot{x}_{i}:=d x_{i} / d t$.

$$
T_{\iota \tilde{\pi}(Q)} \quad X
$$

$\leadsto \Gamma_{i j}=0$ in $k[[u]](1 \leq i<j \leq N)$, where

$$
\Gamma_{i j}:=\operatorname{det}\left[\begin{array}{ll}
\widetilde{\pi}^{*} \dot{x}_{i} & \widetilde{\eta}^{*} x_{i}-\widetilde{\pi}^{*} x_{i} \\
\widetilde{\pi}^{*} \dot{x_{j}} & \widetilde{\boldsymbol{\eta}}^{*} x_{i}-\widetilde{\pi}^{*} x_{j}
\end{array}\right]:(i, j) \text {-minor of }\left[\widetilde{\pi}^{*} \dot{x}, \widetilde{\eta}^{*} x-\widetilde{\pi}^{*} x\right]
$$

$$
=\operatorname{det}\left[\begin{array}{cc}
b_{i}\left(u^{d}+\cdots\right)^{b_{i}-1}+\cdots & \left\{\left(\xi u^{d^{\prime}}+\cdots\right)^{b_{i}}+\cdots\right\} \\
b_{j}\left(u^{d}+\cdots\right)^{b_{j}-1}+\cdots & \left\{\left(\boldsymbol{u}^{d}+\cdots u^{d^{\prime}}+\cdots\right)^{b_{i}}+\cdots\right\} \\
-\left\{\left(u^{d}+\cdots\right)^{b_{j}}+\cdots\right\}
\end{array}\right]
$$

$$
= \begin{cases}\xi^{b_{j}} u^{d\left(b_{i}-1\right)+d^{\prime} b_{j}}+\cdots, & \text { if } d^{\prime}<d \\ \left(b_{i}\left(\xi^{b_{j}}-1\right)-b_{j}\left(\xi^{b_{i}}-1\right)\right) u^{d\left(b_{i}+b_{j}+1\right)}+\cdots, & \text { if } d^{\prime}=d \\ \left(b_{i}-b_{j}\right) u^{d\left(b_{i}+b_{j}-1\right)}+\cdots, & \text { if } d^{\prime}>d\end{cases}
$$

$\leadsto d=d^{\prime}$ and $b_{i}\left(\xi^{b_{j}}-1\right)-b_{j}\left(\xi^{b_{i}}-1\right)=0$, where $\left\{b_{i}:=b_{i}\left(P_{0}\right)\right\}$ the orders at P_{0} and $\widetilde{\eta}^{*} t=\xi u^{d}+\cdots$.

- Now, set $F_{a b}(X):=b\left(X^{a}-1\right)-a\left(X^{b}-1\right) \in \mathbb{Q}[X]$ for $a>b \geq 1$.

Step 5: deduce contradiction. $\quad F_{a b}(X):=b\left(X^{a}-1\right)-a\left(X^{b}-1\right) \in \mathbb{Q}[X]$

- The polynomials $\left\{F_{b_{j} b_{i}}(X)\right\}_{1 \leq i<j \leq N}$ in $X\left(b_{i}:=b_{i}\left(P_{0}\right)\right)$ have - irrelevant common root $X=1$ with mult ≥ 2 an C_{0} the pts P of contact, and
- other common roots $X=\xi \leadsto D$ the pts Q of intersection of T_{P} and X.
(Note: $\boldsymbol{\xi}$ might be equal to 1.)
- ...

Step 5: deduce contradiction. $F_{a b}(X):=b\left(X^{a}-1\right)-a\left(X^{b}-1\right) \in \mathbb{Q}[X]$

- The polynomials $\left\{F_{b_{j} b_{i}}(X)\right\}_{1 \leq i<j \leq N}$ in $X\left(b_{i}:=b_{i}\left(P_{0}\right)\right)$ have
irrelevant common root $X=1$ with mult ≥ 2, C_{0} the pts P of contact, and
other common roots $X=\xi$ m the pts Q of intersection of T_{P} and X.
(Note: $\boldsymbol{\xi}$ might be equal to 1.)
- But this contradicts to
(our assumption: $\left(b_{i}, b_{j}, b_{k}\right)=1(\exists i<j<k)$.)
Lemma If $a>b>c \geq 1$ are relatively prime, then
$F_{a b}, F_{a c}, F_{b c}$ have a unique common root $X=1$ in \mathbb{C} and $T_{P} \quad X$ its multiplicity is exactly equal to 2 .

Step 5: deduce contradiction. $F_{a b}(X):=b\left(X^{a}-1\right)-a\left(X^{b}-1\right) \in \mathbb{Q}[X]$

- The polynomials $\left\{F_{b_{j} b_{i}}(X)\right\}_{1 \leq i<j \leq N}$ in $X\left(b_{i}:=b_{i}\left(P_{0}\right)\right)$ have
-irrelevant common root $X=1$ with mult ≥ 2, C_{0} the pts P of contact,
and
other common roots $X=\xi m, D$ the pts Q of intersection of T_{P} and X.
(Note: ξ might be equal to 1.)
- But this contradicts to
(our assumption: $\left(b_{i}, b_{j}, b_{k}\right)=1(\exists i<j<k)$.)
Lemma If $a>b>c \geq 1$ are relatively prime, then
$F_{a b}, F_{a c}, F_{b c}$ have a unique common root $X=1$ in \mathbb{C} and $T_{P} \quad X$ its multiplicity is exactly equal to 2 .

Proof

- According to a lemma by Bolognesi-Pirola, $F_{a b}, F_{a c}, F_{b c}$ have a unique common root $X=1$ in \mathbb{C}. (elementary calculus (Rolle's theorem) with a clever argument)
- On the other hand, $\boldsymbol{X}=1$ is a root of $\boldsymbol{F}_{a b}(\boldsymbol{X})$ of multiplicity exactly 2 since $F_{a b}(1)=F_{a b}^{\prime}(1)=0$ and $F_{a b}^{\prime \prime}(1)=a b(a-b) \neq 0$. \square

Case: $b_{1}=1$ ($\Leftrightarrow X$ smooth or nordal $\Leftrightarrow \iota$ unramified) [K(1986)]
Claim: $F_{a 1}(X)$ and $F_{b 1}(X)(a>b>c=1)$ have a unique common root $X=1$ in \mathbb{C} and its multiplicity is exactly equal to 2 .

$$
\begin{aligned}
F_{a 1}(X) & =\left(X^{a}-1\right)-a(X-1) \\
& =(X-1)^{2}\left(X^{a-1}+2 X^{a-2}+\cdots+(a-2) X+(a-1)\right)
\end{aligned}
$$

- Set $f_{a}(X):=X^{a-1}+2 X^{a-2}+\cdots+(a-2) X+(a-1) .\left[X^{a-1} f_{a}(1 / X)=\frac{d}{d X}\left(\frac{X^{a}-1}{X-1}\right)\right]$

Claim $\Leftrightarrow f_{a}(X)$ and $f_{b}(X)(a>b>1)$ have no common root.

$$
\Leftrightarrow \nexists \xi \in \mathbb{C} \text { s.t. } f_{a}(\xi)-\xi^{a-b} f_{b}(\xi)=f_{b}(\xi)=0(a>b>1) .
$$

Here

$$
\begin{aligned}
f_{a}(X)-X^{a-b} f_{b}(X) & =b X^{a-b-1}+(b+1) X^{a-b-2}+\cdots+(a-1), \\
f_{b}(X) & =X^{b-1}+2 X^{b-2}+\cdots+(b-1) .
\end{aligned}
$$

Case：$b_{1}=1$（ $\Leftrightarrow X$ smooth or nordal $\Leftrightarrow \iota$ unramified）［K（1986）］
Claim：$F_{a 1}(X)$ and $F_{b 1}(X)(a>b>c=1)$ have a unique common root $X=1$ in \mathbb{C} and its multiplicity is exactly equal to 2 ．

$$
\begin{aligned}
F_{a 1}(X) & =\left(X^{a}-1\right)-a(X-1) \\
& =(X-1)^{2}\left(X^{a-1}+2 X^{a-2}+\cdots+(a-2) X+(a-1)\right)
\end{aligned}
$$

－Set $f_{a}(X):=X^{a-1}+2 X^{a-2}+\cdots+(a-2) X+(a-1) .\left[X^{a-1} f_{a}(1 / X)=\frac{d}{d X}\left(\frac{X^{a}-1}{X-1}\right)\right]$
Claim $\Leftrightarrow f_{a}(X)$ and $f_{b}(X)(a>b>1)$ have no common root．

$$
\Leftrightarrow \nexists \xi \in \mathbb{C} \text { s.t. } f_{a}(\xi)-\xi^{a-b} f_{b}(\xi)=f_{b}(\xi)=0(a>b>1) .
$$

Here

$$
\begin{aligned}
f_{a}(X)-X^{a-b} f_{b}(X) & =b X^{a-b-1}+(b+1) X^{a-b-2}+\cdots+(a-1), \\
f_{b}(X) & =X^{b-1}+2 X^{b-2}+\cdots+(b-1) .
\end{aligned}
$$

－According to Kakeya＇s theorem，if $f_{a}(\xi)-\xi^{a-b} f_{b}(\xi)=f_{b}(\zeta)=0 \quad(\xi, \zeta \in \mathbb{C})$ ，then

$$
\frac{1}{2} \leq|\zeta| \leq \frac{b-2}{b-1}<\frac{b}{b+1} \leq|\xi| \leq \frac{a-2}{a-1}
$$

$\sim \xi \neq \zeta$ ．Thus the claim is proved．

Fact（Kakeya＇s theorem（掛谷の定理））

Let $f(X)=c_{0}+c_{1} X+\cdots+c_{n} X^{n} \in \mathbb{R}[X]$ with $c_{i}>0(\forall i)$ ．
If $f(\xi)=0(\xi \in \mathbb{C})$ ，then

$$
\min \left\{\frac{c_{0}}{c_{1}}, \frac{c_{1}}{c_{2}}, \ldots, \frac{c_{n-1}}{c_{n}}\right\} \leq|\xi| \leq \max \left\{\frac{c_{0}}{c_{1}}, \frac{c_{1}}{c_{2}}, \ldots, \frac{c_{n-1}}{c_{n}}\right\} .
$$

Problem Is $f_{a}(X) \in \mathbb{Z}[X]$ irreducible over \mathbb{Q} ？

5 Conjectures

$$
F_{a b}(X)=b\left(X^{a}-1\right)-a\left(X^{b}-1\right)
$$

Observation (Esteves-Homma's example, revisited)

Assume $p>3$ and set $X:=\overline{\varphi\left(\mathbb{A}^{1}\right)} \subseteq \mathbb{P}^{3}$, where $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{3}$ is defined by

$$
\varphi(t)=\left(t, t^{2}-t^{p}, \bar{t}^{3}+2 t^{p}-3 t^{p+1}\right) .
$$

5 Conjectures

$$
F_{a b}(X)=b\left(X^{a}-1\right)-a\left(X^{b}-1\right)
$$

Observation (Esteves-Homma's example, revisited)

Assume $p>3$ and set $X:=\overline{\varphi\left(\mathbb{A}^{1}\right)} \subseteq \mathbb{P}^{3}$, where $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{3}$ is defined by

$$
\varphi(t)=\left(t, t^{2}-t^{p}, \bar{t}^{3}+2 t^{p}-3 t^{p+1}\right) .
$$

As (partly) explained before,

$$
\varphi(t+1)-\varphi(t)=\dot{\varphi}(t)
$$

- X is smooth, non-planar, reflexive and tangentially degenerate!
- the orders at $P \in X \cap \mathbb{A}^{3}$ are $\left\{b_{i}(P)\right\}=\{0,1,2,3\}$.
\sim the orders of X are $\left\{b_{i}\right\}=\{0,1,2,3\}$ (classical type).

$$
F_{a b}(X)=b\left(X^{a}-1\right)-a\left(X^{b}-1\right)
$$

Observation (Esteves-Homma's example, revisited)

Assume $p>3$ and set $X:=\overline{\varphi\left(\mathbb{A}^{1}\right)} \subseteq \mathbb{P}^{3}$, where $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{3}$ is defined by

$$
\varphi(t)=\left(t, t^{2}-t^{p}, \bar{t}^{3}+2 t^{p}-3 t^{p+1}\right)
$$

As (partly) explained before,

$$
\varphi(t+1)-\varphi(t)=\dot{\varphi}(t)
$$

- X is smooth, non-planar, reflexive and tangentially degenerate!
- the orders at $P \in X \cap \mathbb{A}^{3}$ are $\left\{b_{i}(P)\right\}=\{0,1,2,3\}$.
\leadsto the orders of X are $\left\{b_{i}\right\}=\{0,1,2,3\}$ (classical type).
Now,
- the point at infinity $P_{0}:=\varphi(\infty) \in X$ is a unique inflection point.
- the orders at P_{0} are $\left\{b_{i}\left(P_{0}\right)\right\}=\{0,1, p, p+1\}$ (easily checked), and

$$
\begin{aligned}
& F_{b_{2}\left(P_{0}\right) b_{1}\left(P_{0}\right)}(\boldsymbol{X})=F_{p, 1}(X)=\left(X^{p}-1\right)-p(X-1)=(X-1)^{p} \\
& F_{b_{3}\left(P_{0}\right) b_{1}\left(P_{0}\right)}(X)=F_{p+1,1}(X)=\left(X^{p+1}-1\right)-(p+1)(X-1)=X(X-1)^{p}, \\
& F_{b_{3}\left(P_{0}\right) b_{2}\left(P_{0}\right)}(X)=F_{p+1, p}(X)=p\left(X^{p+1}-1\right)-(p+1)\left(X^{p}-1\right)=-(X-1)^{p} .
\end{aligned}
$$

$\leadsto\left\{F_{b_{j}\left(P_{0}\right) b_{i}\left(P_{0}\right)}(X)\right\}$ have a unique comm root $X=\xi=1$ with mult $p>3$.

$$
F_{a b}(X)=b\left(X^{a}-1\right)-a\left(X^{b}-1\right)
$$

Observation (Esteves-Homma's example, revisited)

Assume $p>3$ and set $X:=\overline{\varphi\left(\mathbb{A}^{1}\right)} \subseteq \mathbb{P}^{3}$, where $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{3}$ is defined by

$$
\varphi(t)=\left(t, t^{2}-t^{p}, \bar{t}^{3}+2 t^{p}-3 t^{p+1}\right)
$$

As (partly) explained before,

$$
\varphi(t+1)-\varphi(t)=\dot{\varphi}(t)
$$

- X is smooth, non-planar, reflexive and tangentially degenerate!
- the orders at $P \in X \cap \mathbb{A}^{3}$ are $\left\{b_{i}(P)\right\}=\{0,1,2,3\}$.
\leadsto the orders of X are $\left\{b_{i}\right\}=\{0,1,2,3\}$ (classical type).
Now,
- the point at infinity $P_{0}:=\varphi(\infty) \in X$ is a unique inflection point.
- the orders at P_{0} are $\left\{b_{i}\left(P_{0}\right)\right\}=\{0,1, p, p+1\}$ (easily checked), and $F_{b_{2}\left(P_{0}\right) b_{1}\left(P_{0}\right)}(X)=F_{p, 1}(X)=\left(X^{p}-1\right)-p(X-1)=(X-1)^{p}$,
$F_{b_{3}\left(P_{0}\right) b_{1}\left(P_{0}\right)}(X)=F_{p+1,1}(X)=\left(X^{p+1}-1\right)-(p+1)(X-1)=X(X-1)^{p}$,
$F_{b_{3}\left(P_{0}\right) b_{2}\left(P_{0}\right)}(X)=F_{p+1, p}(X)=p\left(X^{p+1}-1\right)-(p+1)\left(X^{p}-1\right)=-(X-1)^{p}$.
$\leadsto\left\{F_{b_{j}\left(P_{0}\right) b_{i}\left(P_{0}\right)}(X)\right\}$ have a unique comm root $X=\xi=1$ with mult $p>3$.
- Thetangential degeneration would be global property.
- ...

$$
F_{a b}(X)=b\left(X^{a}-1\right)-a\left(X^{b}-1\right)
$$

Observation (Esteves-Homma's example, revisited)

Assume $p>3$ and set $X:=\overline{\varphi\left(\mathbb{A}^{1}\right)} \subseteq \mathbb{P}^{3}$, where $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{3}$ is defined by

$$
\varphi(t)=\left(t, t^{2}-t^{p}, \bar{t}^{3}+2 t^{p}-3 t^{p+1}\right)
$$

As (partly) explained before,

$$
\varphi(t+1)-\varphi(t)=\dot{\varphi}(t)
$$

- X is smooth, non-planar, reflexive and tangentially degenerate!
- the orders at $P \in X \cap \mathbb{A}^{3}$ are $\left\{b_{i}(P)\right\}=\{0,1,2,3\}$.
\leadsto the orders of X are $\left\{b_{i}\right\}=\{0,1,2,3\}$ (classical type).
Now,
- the point at infinity $P_{0}:=\varphi(\infty) \in X$ is a unique inflection point.
- the orders at P_{0} are $\left\{b_{i}\left(P_{0}\right)\right\}=\{0,1, p, p+1\}$ (easily checked), and $F_{b_{2}\left(P_{0}\right) b_{1}\left(P_{0}\right)}(X)=F_{p, 1}(X)=\left(X^{p}-1\right)-p(X-1)=(X-1)^{p}$, $F_{b_{3}\left(P_{0}\right) b_{1}\left(P_{0}\right)}(X)=F_{p+1,1}(X)=\left(X^{p+1}-1\right)-(p+1)(X-1)=X(X-1)^{p}$, $F_{b_{3}\left(P_{0}\right) b_{2}\left(P_{0}\right)}(X)=F_{p+1, p}(X)=p\left(X^{p+1}-1\right)-(p+1)\left(X^{p}-1\right)=-(X-1)^{p}$.
$\leadsto\left\{F_{b_{j}\left(P_{0}\right) b_{i}\left(P_{0}\right)}(X)\right\}$ have a unique comm root $X=\xi=1$ with mult $p>3$.
- Thetangential degeneration would be global property.
- But in the above, the degeneration seems to be caused by a typical phenomenon in positive char caseoccuring in one pt P_{0}. (somehow, similar to Terracini's example of affine analytic curve)

$$
F_{a b}(X)=b\left(X^{a}-1\right)-a\left(X^{b}-1\right)
$$

Observation (Esteves-Homma's example, revisited)

Assume $p>3$ and set $X:=\overline{\varphi\left(\mathbb{A}^{1}\right)} \subseteq \mathbb{P}^{3}$, where $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{3}$ is defined by

$$
\varphi(t)=\left(t, t^{2}-t^{p}, t^{3}+2 t^{p}-3 t^{p+1}\right)
$$

As (partly) explained before,

$$
\varphi(t+1)-\varphi(t)=\dot{\varphi}(t)
$$

- X is smooth, non-planar, reflexive and tangentially degenerate!
- the orders at $P \in X \cap \mathbb{A}^{3}$ are $\left\{b_{i}(P)\right\}=\{0,1,2,3\}$. \sim the orders of X are $\left\{b_{i}\right\}=\{0,1,2,3\}$ (classical type).
Now,
- the point at infinity $P_{0}:=\varphi(\infty) \in X$ is a unique inflection point.
- the orders at P_{0} are $\left\{b_{i}\left(P_{0}\right)\right\}=\{0,1, p, p+1\}$ (easily checked), and

$$
\begin{aligned}
& F_{b_{2}\left(P_{0}\right) b_{1}\left(P_{0}\right)}(X)=F_{p, 1}(X)=\left(X^{p}-1\right)-p(X-1)=(X-1)^{p} \\
& F_{b_{3}\left(P_{0}\right) b_{1}\left(P_{0}\right)}(X)=F_{p+1,1}(X)=\left(X^{p+1}-1\right)-(p+1)(X-1)=X(X-1)^{p}, \\
& F_{b_{3}\left(P_{0}\right) b_{2}\left(P_{0}\right)}(X)=F_{p+1, p}(X)=p\left(X^{p+1}-1\right)-(p+1)\left(X^{p}-1\right)=-(X-1)^{p} .
\end{aligned}
$$

$\leadsto\left\{F_{b_{j}\left(P_{0}\right) b_{i}\left(P_{0}\right)}(X)\right\}$ have a unique comm root $X=\xi=1$ with mult $p>3$.

- Thetangential degeneration would be global property.
- But in the above, the degeneration seems to be caused by a typical phenomenon in positive char caseoccuring in one pt P_{0}. (somehow, similar to Terracini's example of affine analytic curve)

This observation leads to the following ...

Conjecture

For any non-deg proj curve $X \subseteq \mathbb{P}^{N}$ with $N \geq 3$ in arbitrary char p, if for any $P \in C$ there exist distinct $i, j, k>0$ s.t. none of $b_{i}(P), b_{j}(P)$ and $b_{k}(P)$ is divisible by p, then X is not tangentially degenerate.

Compare with
Theorem (K (2014), tangential trisecant lemma)
For any non-deg proj curve $X \subseteq \mathbb{P}^{N}$ with $N \geq 3$ in $p=0$, if for any $P \in C$ there exist distinct $i, j, k>0$ s.t. $b_{i}(P), b_{j}(P)$ and $b_{k}(P)$ are relatively prime, then X is not tangentially degenerate.

In particular, ...

Conjecture

For any non-deg proj curve $X \subseteq \mathbb{P}^{N}$ with $N \geq 3$ in arbitrary char p, if for any $P \in C$ there exist distinct $i, j, k>0$ s.t. none of $b_{i}(P), b_{j}(P)$ and $b_{k}(P)$ is divisible by p, then X is not tangentially degenerate.

Compare with
Theorem (K (2014), tangential trisecant lemma)
For any non-deg proj curve $X \subseteq \mathbb{P}^{N}$ with $N \geq 3$ in $p=0$, if for any $P \in C$ there exist distinct $i, j, k>0$ s.t. $b_{i}(P), b_{j}(P)$ and $b_{k}(P)$ are relatively prime, then X is not tangentially degenerate.

In particular, under the condition $p=0$, the following should hold:

My Belief

For any (possibly singular) projective curve $X \subseteq \mathbb{P}^{N}$ in $p=0$, if X is tangentially degenerate, then X is planar.

Thank you for your attention!

References

[1] M. Bolognesi, G. Pirola, Osculating spaces and diophantine equations, Math. Nachr. 284 (2011), 960-972.
[2] C. Ciliberto, Review of [8], Math. Reviews, MR0850959 (87i:14027).
[3] E. Esteves, M. Homma, Order sequences and rational curves, In: Projective geometry with applications, Lecture Notes in Pure and Appl. Math., 166, Dekker, New York, 1994, pp.27-42.
[4] A. Garcia, J. F. Voloch, Duality for projective curves, Bol. Soc. Brasil. Mat. (N.S.) 21 (1991), 159-175.
[5] S. González, R. Mallavibarrena, Osculating degeneration of curves, Comm. Alg. 31 (2003), 3829-3845.
[6] A. Hefez, N. Kakuta, On the geometry of nonclassical curves. Bol. Soc. Brasil. Mat. (N.S.) 23 (1992), 79-91.
[7] M. Homma, H. Kaji, On the inseparable degree of the Gauss map of higher order for space curves. Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), 11-14.
[8] H. Kaji, On the tangentially degenerate curves, J. London Math. Soc. (2) 33 (1986), 430-440.
[9] - , On the Gauss maps of space curves in characteristic p, Compos. Math. 70 (1989), 177-197.
[10] - , On the inseparable degrees of the Gauss map and the projection of the conormal variety to the dual of higher order for space curves. Math. Ann. 292 (1992), 529-532.
[11] - , On the tangentially degenerate curves, II, "the Kleiman-Simis volume," Bull. Braz. Math. Soc. (N.S.) 45 (2014), 748-752.
[12] D. Levcovitz, Bounds for the number of fixed points of automorphisms of curves, Proc. London Math. Soc. (3) 62 (1991), 133-150.
[13] J. Rathmann, The uniform position principle for curves in characteristic p, Math. Ann. 276 (1987), 565-579.
[14] A. Terracini, Sulla riducibilitá di alcune particolari corrispondenze algebriche, Rend. Circ. Mat. Palermo 56 (1932), 112-143.

Department of Mathematics
School of Science and Engineering
Waseda University

KAJI, Hajime
kaji@waseda.jp

Generic projection:
The existence of good plane-curve models follows from the trisecant lemma, by using general linear projections.
What follows from the tangential trisecant lemma in this context?

Generic projection:

The existence of good plane-curve models follows from the trisecant lemma, by using general linear projections.
What follows from the tangential trisecant lemma in this context?
An immediate consequence on linear projection is
Corollary For a proj curve $X \subseteq \mathbb{P}^{N}$ with normalization C, assume that

- the characteristic $p=0$, and
- the induced morphism $\iota: \bar{C} \mathbb{P}^{N}$ is unramified.

Then $\exists P \in X$ s.t. $\pi_{P} \iota: C \rightarrow \mathbb{P}^{N-1}$ is unramified, where $\pi_{P}: \mathbb{P}^{N} \rightarrow \mathbb{P}^{N-1}$ a projection from P

Generic projection:
The existence of good plane-curve models follows from the trisecant lemma, by using general linear projections.
What follows from the tangential trisecant lemma in this context?
An immediate consequence on linear projection is
Corollary For a proj curve $X \subseteq \mathbb{P}^{N}$ with normalization C, assume that

- the characteristic $p=0$, and
- the induced morphism $\iota: \bar{C} \mathbb{P}^{N}$ is unramified.

Then $\exists P \in X$ s.t. $\pi_{P} \iota: C \rightarrow \mathbb{P}^{N-1}$ is unramified, where $\pi_{P}: \mathbb{P}^{N} \rightarrow \mathbb{P}^{N-1}$ a projection from P

This consequence is one of keys in a nice result due to L.Ein, as follows:

Theorem (Ein (1987))

Let $H_{d, g, n}$ the open subscheme of the Hilbert scheme corresponding to smooth irreducible curves of degree d and genus g in \mathbb{P}^{n}.
Then $H_{d, g, 4}$ is irreducible if $d \geq g+4$.

Remark

- Severi's assertion (1921): " $H_{d, g, n}$ irreducible if $d \geq g+n$."
- Ein (1986): Assume $n \geq 6$. Then $H_{16 n-35,8 n+6, n}$ is reducible.
\leadsto Severi's assertion is not correct.

