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ricerca delle curve v di cui ora si & detto, giacché queste rientrano evidentemente fra
quelle (anzi vi rientrano gid le proiezioui generiche delle curve y eseguite su uno S, ).

Courmayeur, 31 agosto 1931.

ALESSANDRO TERRACINL

27) Non so se siano stati dati esempi di curve algebriche relative al caso r =3, h=1, vale a
dire di curve algebriche sghembe dello spazio ordinario le cui re'te tangenti siano tutte ulteriormente
secanti. Invece gid entro classi molto semplici di curve se ne trovano di analitiche; per es. le

Xoi¥, X1 = 1:e* ettt
dove «, B, Y sono costanti non nulle e diverse fra loro, legate a un’altra costante k520 dalle relazioni

—_1 P L ek — g

—_— —
E—

« By

Si pud certo soddisfare a queste condizioni, con k prefissato, prefissando anche il valore K comune a
queste tre frazioni: dove basta prendere come K un valore (noan nullo), non eccezionale secondo il
teorema di Picarp per la funzione intiera della variabile complessa 7

ekt —
4

assumendo poi per «, @, y tre valori di 7 per 1 quali questa funzione intiera diventa uguale a K: si
vede subito che la retta tangente nel punto corrispondente al valore ¢ del parametro si appoggia nuo-
vamente 1lla curva nel punto ove il parametro vale - &.
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We work over an algebarically closed field k£ of
arbitrary characteristic p > 0.




1 Introduction

As a celebrated result in classical projective geometry, we have

Theorem | (trisecant lemma)
Let X C PV be a smooth projective curve.
If a general secant line of X is trisecant, then
X is planar, i.e., contained in a 2-plane.
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1 Introduction

As a celebrated result in classical projective geometry, we have

Theorem | (trisecant lemma)
Let X C PV be a smooth projective curve.
If a general secant line of X is trisecant, then
X is planar, i.e., contained in a 2-plane.
By virtue of the trisecant lemma, using generic projection, one can prove

Corollary | (existence of a good plane-curve model)

A smooth projective curve is birationally equivalent to
a plane curve with at most nodes for singularities.

Definition | A line L C PV is called

e a secant line of X & #(LNX)>2.

e a trisecant line of X & #(LNX) > 3.

Question
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1 Introduction

As a celebrated result in classical projective geometry, we have

Theorem | (trisecant lemma)
Let X C PV be a smooth projective curve.
If a general secant line of X is trisecant, then
X is planar, i.e., contained in a 2-plane.
By virtue of the trisecant lemma, using generic projection, one can prove

Corollary | (existence of a good plane-curve model)

A smooth projective curve is birationally equivalent to
a plane curve with at most nodes for singularities.

Definition | A line L C PV is called

e a secant line of X & #(LNX)>2.

e a trisecant line of X & #(LNX) > 3.

Question | (naive) Does the same conclusion hold

if “secant line” is replaced by “tangent line” in the trisecant lemma? i.e.,
Is a proj curve planar if a general tangent line is tangential trisecant?
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1 Introduction

As a celebrated result in classical projective geometry, we have

Theorem | (trisecant lemma)
Let X C PV be a smooth projective curve.
If a general secant line of X is trisecant, then
X is planar, i.e., contained in a 2-plane.
By virtue of the trisecant lemma, using generic projection, one can prove

Corollary | (existence of a good plane-curve model)

A smooth projective curve is birationally equivalent to
a plane curve with at most nodes for singularities.

Definition | A line L C PV is called general P
e a secant line of X & #(LNX)>2.
def TP X

e a trisecant line of X & #(L N X) > 3.

. . : tangential trisecant line
Question | (naive) Does the same conclusion hold 5

if “secant line” is replaced by “tangent line” in the trisecant lemma? i.e.,
Is a proj curve planar if a general tangent line is tangential trisecant?

Definition | A line L C PV is called
e a tangential trisecant line of X €r tang to X & #(LNX) > 2.
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Definition | A projective curve X C P¥ is said to be

tangentially degenerate

def .. i :
S a general tangent line is tangential trisecant.

Question | (naive)

Is a projective curve X C P planar if it is tangentially degenerate?

general P

AN

Tp X
tangential trisecant line



According to C.Ciliberto [MR0850959 (87i:14027)],
such a question was explicitly posed for the first time by A.Terracini:
In fact, in the footnote 27 on p.143 of his paper,

Alessandro TERRACINI: (
“Sulla riducibilita di alcune particolari corrispondenze *
algebriche,” Rend.Circ.Mat.Palermo 56 (1932), 112-143.

Terracini wrote as follows:

2T) Non so se siano stati dati esempi di curve algebriche relative al
caso r = 3, h = 1, vale a dire di curve algebriche sghembe dello spazio
ordinario le cui rette tangenti siano tutte ulteriormente secanti.

)
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According to C.Ciliberto [MR0850959 (87i:14027)],
such a question was explicitly posed for the first time by A.Terracini:
In fact, in the footnote 27 on p.143 of his paper,

Alessandro TERRACINI: i
“Sulla riducibilita di alcune particolari corrispondenze .
algebriche,” Rend.Circ.Mat.Palermo 56 (1932), 112-143.

Terracini wrote as follows:

»

2T) Non so se siano stati dati esempi di curve algebriche relative al
caso r = 3, h = 1, vale a dire di curve algebriche sghembe dello spazio
ordinario le cui rette tangenti siano tutte ulteriormente secanti.

J http://translate.google.com/

2T) 1 don’t know if have been given examples of algebraic curves related
to the case »r = 3, h = 1, that is to say of skew algebraic curves of the
ordinary space whose tangent lines are further all secant.

r = dim of ambnt space, h = dim of linear spaces in question.

from “On the reducibility of some special algebraic correspondences”

In fact, he gave a counter-example of analytic curve in Af’é, as follows:
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Example | (Terracini (1932), tang deg but non-planar affine analytic curve)
e Let X = ¢(C) be an analytic curve parametrized by

p:C — Ct— (e™, e’t, e™),
e Then, for kK € C \ {0}, the tangent line to X at () meets X again

at p(t + k) iff

p(t+ k) —(t) || ¢(t)

(o, B,7 € C\ {0}).

as vectors in C3, where

@(t + k)

p(t)

T ) X
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Example | (Terracini (1932), tang deg but non-planar affine analytic curve)
e Let X = ¢(C) be an analytic curve parametrized by

p:C — Ct— (e™, e’t, e™),
e Then, for kK € C \ {0}, the tangent line to X at () meets X again

at p(t + k) iff

p(t + k) — (1) || ¢(t)

(o, B,7 € C\ {0}).

as vectors in C3, where

QO(t 1 k) . go(t) — (ea(t—l—k) . eat, e,@(t—l—k) . e,@t, e'y(t—i—k) _ evt)
= ((e** =1)e, (e =1)e™, (e =1)e™),

p(t) = (aeata /Beﬁta 767t)7 (¢ = dp/dt).

@(t + k)

p(t)

T ) X
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Example | (Terracini (1932), tang deg but non-planar affine analytic curve)
e Let X = ¢(C) be an analytic curve parametrized by

p:C— (C33t = (eata eﬁta efyt)a (a, 8,7 € C\ {0}).
e Then, for kK € C \ {0}, the tangent line to X at () meets X again
at p(t + k) iff p(t+ k) — o(t) || ¢(t) as vectors in C3, where

ga(t + k) _ 90(75) _ (ea(t+k) _ eat, eBE+k) _ eﬁt’ e (k) _ e'yt)
= ((e** — 1)e*, (e’F — 1)e™, (7 — 1)e7),
p(t) = (aeata Beﬁta 'Yepyt)a (¢ = dp/dt).

@y g ePk_1 ek _1

e For given k € C if a, 3,7 € C\ {0} satisfy —— = — :

< Y
then | p(t + k) — p(t) || p(t) | for any t € C.
~» Every tangent line meets X again, where
X is not planar in C? if o, 3, v distinct.

@(t)

o (t) X
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Example | (Terracini (1932), tang deg but non-planar affine analytic curve)
e Let X = ¢(C) be an analytic curve parametrized by
@:C— Ct— (e, el e, (a,B,7 € C\ {0}).
e Then, for kK € C \ {0}, the tangent line to X at () meets X again
at p(t + k) iff p(t+ k) — o(t) || ¢(t) as vectors in C3, where

Pt + k) — p(t) = (€2t _ cat, B _ gt a(t+k) _ ety
= ((e** — 1)e™, (e — 1)e™, (e7* — 1)e7),
p(t) = (aeata Beﬁta 'Yepyt)a (¢ = dep/dt).
e For given k € C if a, 3,7 € C \ {0} satisfy ea’;—1 = eﬂkﬂ_l = 67:_1,
then p(t+ k) — o(t) || ¢(¢t) for any t € C.
~+ Every tangent line meets X again, where
X is not planar in C° if o, 3, ~ distinct.

e To show 3 distinct a, 3,~ € C \ {0} satisfying the relation above,
kz 1

e

consider a function on C as follows: f(z) =
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Example | (Terracini (1932), tang deg but non-planar affine analytic curve)
e Let X = ¢(C) be an analytic curve parametrized by
@:C— Ct— (e, el e, (a,B,7 € C\ {0}).
e Then, for kK € C \ {0}, the tangent line to X at () meets X again
at p(t + k) iff p(t+ k) — o(t) || ¢(t) as vectors in C3, where

ga(t + k) _ CP(t) _ (ea(t+k) _ eat, eBE+k) _ eﬁt’ e (k) _ e'yt)
= (e — 1)e, (% — 1), (7 — 1)),
p(t) = (aeata Beﬁta 'Yepyt)a (¢ = dep/dt).

@y g ePk_1 ek _1

e For given k € C if a, 3,7 € C\ {0} satisfy —— = 3 T 0

then p(t+ k) — o(t) || ¢(t) for any t € C.
~» Every tangent line meets X again, where
X is not planar in C° if o, 3, ~ distinct.
e To show 3 distinct a, 3,~ € C \ {0} satisfying the relation above,

ekz _ 1

consider a function on C as follows: f(z) =

e According to Picard theorem (in complex analysis),
for a general K € C, there exist infinitely many z € C s.t. f(z) = K.
~» just choose distinct o, 3,7 € f~1(K). O
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Example | (Terracini (1932), tang deg but non-planar affine analytic curve)
e Let X = ¢(C) be an analytic curve parametrized by
@:C— Ct— (e, el e, (a,B,7 € C\ {0}).
e Then, for kK € C \ {0}, the tangent line to X at () meets X again
at p(t + k) iff p(t+ k) — o(t) || ¢(t) as vectors in C3, where

ga(t + k) _ 90(75) _ (ea(t+k) _ eat, eBE+k) _ eﬁt’ e (k) _ e'yt)
= ((e** —1)e*, (e’ — 1)e™, (7" — 1)e7),
B(t) = (e, Be,ve), (p = dip/dt).

@y g ePk_1 ek _1

e For given k € C if a, 3,7 € C\ {0} satisfy —— = 3 T 0

then p(t+ k) — o(t) || ¢(t) for any t € C.
~» Every tangent line meets X again, where
X is not planar in C° if o, 3, ~ distinct.
e To show 3 distinct a, 3,~ € C \ {0} satisfying the relation above,
ek — 1
What's going on at
e According to Picard theorem (in comple: the infinity X \ X C CP°?
for a general K € C, there exist infinitel e.g., dimg(X \ X) = 0 or 17
~» just choose distinct o, 3,7 € f~1(K). L

consider a function on C as follows: f(z'



Theorem | (trisecant lemma, slightly generalized version)
For X C PV a projective curve with normalization C, assume that
e the characteristic p = 0, or

e by(P)=1 (VP € O), i.e., t : C — PN unramified (e.g., X smooth).
If a general secant line of X is trisecant, then X is planar.

Proof May assume IN = 3, by induction on IN with generic projection.
e Suppose X were not planar (i.e., non-degenerate in P?).
~ m,|x : X - X 1= m,(X) C P? is finite morph of deg > 2,
.- gen secant is trisec, where 7, : P°\ X — P?(C P°) proj from gen [z € X.
~» |if 7r,|x inseparable,| then z € T, for any smooth = € X,
namely, X is strange with center z, and
if .| x sep,|then for gen P € X, #(m.|%x (P)) > 2.
~ dx # Yy € Xaﬂ-z(w) — 7"-z(y) = P.
~ Ty, T, C (2,Tp) 2 P?. ~ T, NT, # 0.
~> for gen z € X and for gen =,y € X s.t. z € (z,y), T, N T,, # 0.
~> for gen z,y € X, T, N T, # 0 (by dimension counting).
~A:=T,NT, (genz,y € X) =T, > Aforgen w € X\ (T, T,).
~» X is strange with center A.
~» Whether 7,|x is separable or not, X would be strange.
e A strange curve X with unramified ¢ is classified either
a line or a conic in p = 2. In particular, X is planar.
. This is a contradiction. (Note: only strange curve in p = 0 is a line.) []




(9)
The unramifiedness of ¢ in p > 0 is essential. In fact, we have

Example | (J.Roberts (1980)) Assume p > 0.
Let X := p(Al) C PV the projective closure of ¢(Al), where

N —2 N—-1
)

@AY = ANt s (8,82, 17, . .., P, tP
Then
e X is non-degenerate in PV, hence not planar if N > 3.
e A general secant line of X is trisecant: In fact,

p(t +1') € (p(t), p(t)) |for any t ' € A

() + (') = o(t + t') as vectors in AN by p > 0.
e X is strange: In fact, T, 3 ¢(t) = (1,0,...,0) for any t € A'.
e The induced morphism ¢ : P =C — X «— PV is

ramified at co € P! unless N = p = 2 (< X is smooth).

- the order at co: by(c0) = pV 71 — pN =2 = pN2(p — 1).

~ bij(cc) =1 N=p=2.0

Remark

Roberts’ example above is introduced in F.Zak’s textbook

“Tangents and Secants of Algebraic Varieties” (p.41, Remark 1.12),

as in origin a counter-example in p > 0 for “Terracini’'s Lemma,” which
asserts that T, Sec X = (T, X, T, X) for general z € (z,y).
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Corollary | (existence of a good plane-curve model)

A smooth projective curve X C P¥ is birationally equivalent to
a plane curve with at most nodes for singularities.

Proof| May assume X C 3 non-planar, and smooth (by gen projection).
Claim1: T, NT, = 0 for gen =,y € X.
*.* shown in the proof of Trisecant Lemma.
Claim 2: gen pt z € P° is not on any trisecant line of X. O
*.* The closure of the image,
pi2: {(PQ,R)IR€ (P,Q)} C X X X XX — X X X,
is proper closed in X X X by Trisecant Lemma, hence of dim < 1.
~» dim(| J trisecant lines) < 2, hence a proper subset of P°. ]
e Set X := m,(X) C P?, where 7, : P3\ {2z} — P%(C P3) proj from z € P3.
e for gen z € P?,
Claim 1 ~» X has at most ordinary pts for sing.
Claim 2 ~» X has at most double pts for sing.
Therefore X has at most ordinary double pts (i.e., nodes) for sing. [




2 Tangential Trisecant Lemma

Theorem | (‘tangential trisecant lemma,’ K (1986))
For a projective curve X C P" with normalization C, assume that
e the characteristic p = 0, and
e the induced morphism ¢ : C — P¥ is unramified.
If a general tangent line of X is a tangential trisecant line, then
X is planar, that is, contained in a 2-plane.

Definition | A line L C PV is called

a tangential trisecant line of X p

& L is tangent to X and #(L N X) > 2 as a set. \

Remark | L X
e Some attempts to weaken the condition on singularities of X

have been given, as | explain below.
e | believe that any condition on singularities is not necessary. Namely,

My Belief

The conclusion of Theorem above holds for
any (possibly singular) projective curve X C PV if p = 0.

On the other hand, ...

(LY)
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Counter examples in p > 0 (smooth, tang degen but non-planar curves):

Example 1 (K(1986), Rathmann(1987), Levcovitz(1991); graph of insep morph)
For f : P! — P! of sep deg s > 1, insep deg ¢ = p® with e > 0, set
X := (the image of 'y < P* X P* < %), I'; is the graph of f.

~» for gen P € X,

TpNX=q-P+--+q-P,

ap,...,P, = P).
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Counter examples in p > 0 (smooth, tang degen but non-planar curves):

Example 1 (K(1986), Rathmann(1987), Levcovitz(1991); graph of insep morph)
For f : P! — P! of sep deg s > 1, insep deg ¢ = p® with e > 0, set
X := (the image of 'y — P! x P! < P?), I's is the graph of f.

~» for gen P € X,

TprNX=q-P+--+q-P,

ap,...,P, = P).

Example 2| (K(1989); ordinary elliptic curves without inflection pt)

For ordinary elliptic curve X and for s > 0 s.t. p/f s,
3 embedding ¢ : X < PV with N > 3 s.t.

for all P € X,

TPﬂX:q.P1+..._|_q.PS’

and

{P,,..., P, = P} form a cyclic subgroup of X with order s.
e If ¢ = 2, then X has no inflection point.

An elliptic curve C in char p > 0 is said to be supersingular if C), = {0}.
Otherwise C'is said to be ordinary, and in that case C, ~ Z/pZ.

A point P of X is called an inflection point & (X, Tp; P) > 3.
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Counter examples in p > 0 (smooth, tang degen but non-planar curves):

Example 1 (K(1986), Rathmann(1987), Levcovitz(1991); graph of insep morph)
For f : P! — P! of sep deg s > 1, insep deg ¢ = p® with e > 0, set
X := (the image of 'y — P! x P! < P?), I's is the graph of f.
~ forgen P€ X,[TpNX=q-P,+---+q-P,|(3P,,...,P, = P).

Example 2| (K(1989); ordinary elliptic curves without inflection pt)

For ordinary elliptic curve X and for s > 0 s.t. p/f s,
3 embedding ¢ : X — PV with N > 3 s.t.

foral Pe X, |ITpNX =q-PL+---+q- P,|, and

{P,,..., P, = P} form a cyclic subgroup of X with order s.
e If ¢ = 2, then X has no inflection point.

Example 3| (Garcia-Voloch(1991); Frobenius non-classical complete int)
Consider X C P? : g2t  ¢2tt = 1,29 4 297 = X\, (1 # X € F,, p > 2).
~> forgen P € X, |TpNX =q-P+ F(P)|, F a Frob morph of deg ¢°.
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Counter examples in p > 0 (smooth, tang degen but non-planar curves):

Example 1 (K(1986), Rathmann(1987), Levcovitz(1991); graph of insep morph)
For f : P! — P! of sep deg s > 1, insep deg ¢ = p® with e > 0, set
X := (the image of 'y — P! x P! < P?), I's is the graph of f.
~ forgen P€ X,|[TpNX=q-P,+---+q-P,|(3P,...,P, = P).
e The orders of X are {0,1,q,q + 1}. ~ non-reflexive

Example 2| (K(1989); ordinary elliptic curves without inflection pt)
For ordinary elliptic curve X and for s > 0 s.t. p/f s,
3 embedding ¢ : X — PV with N > 3 s.t.
foral Pe X, |ITpNX =q-PL+---+q- P,|, and
{P,,..., P, = P} form a cyclic subgroup of X with order s.

o If g = 2, then X has no inflection point.
e The orders of X are {0,1,q,q + 1}. ~ non-reflexive

Example 3| (Garcia-Voloch(1991); Frobenius non-classical complete int)
Consider X C P? : 9! 4 y9tl = 1,291 4 29t = X\, (1 £ X € Fy,p > 2).
~> forgen P€ X,|TpNX =q-P+ F(P)|, F a Frob morph of deg ¢°.
e The orders of X are {0,1,g,2q}. ~ non-reflexive
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Counter examples in p > 0 (smooth, tang degen but non-planar curves):

Example 4 (Esteves-Homma (1994))

Assume p > 3 and set X := p(Al) C P3, where
@: Al — A3, p(t) = (t,t2 — tP, 13 + 2tP — 3tPT1),
~ forallt € A', [T,y N X =2 ¢(t) + p(t+ 1)|.
In fact, p(t + 1) — p(t) = &(t) as vectors for all t € A'.
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Counter examples in p > 0 (smooth, tang degen but non-planar curves):

Example 4 (Esteves-Homma (1994))

Assume p > 3 and set X := p(Al) C P3, where
@: Al — A3, p(t) = (t,t° — tP, t° + 2tP — 3tPT1),
~ forallt € A', [T,y N X =2 ¢(t) + p(t+ 1)|.
In fact, p(t + 1) — p(t) = ¢(t) as vectors for all t € A'.
e The orders of X are {0,1,2,3}.
e Surprisingly, it’s reflexive!
(1 will return to this example later)
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Generalizations of the weak Tangential Trisecant Lemma in char p = 0:

e S.Gonzalez, R.Mallavibarrena: “Osculating Degeneration of Curves,”
Comm.Alg. 31 (2003), 3829-3845.
They treat osculating spaces instead of tangent lines for smooth curves,
using computer alg system “Maple.”
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Generalizations of the weak Tangential Trisecant Lemma in char p = 0:

e S.Gonzalez, R.Mallavibarrena: “Osculating Degeneration of Curves,”
Comm.Alg. 31 (2003), 3829-3845.

They treat osculating spaces instead of tangent lines for smooth curves,
using computer alg system “Maple.”

e M.Bolognesi, G.Pirola: “Osculating spaces and diophantine equations,”
Math.Nachr. 284 (2011), 960-972.

They weaken the condition on singularities, treating locally toric curves,
i.e., curves locally isomorphic to a monomial curve given by an
analytical parameterization with relatively prime exponents:

t— (t,...,t*V)with0< a; <:--- < any and (ay,...,an) = 1.

Theorem | (Bolognesi-Pirola (2011), locally toric curves)

Let X C P° a complex projective curve.
Assume that X is locally toric.

If X is tangentially degenerate, then X is planar.



3 Recent Result

Definition | A projective curve X C P¥ is said to be

tangentially degenerate

def .. : .
S a gen tang line is tangential trisecant.

Question | (naive)
If a proj curve X C PV is tangentially degenerate, then is X planar?

Theorem




3 Recent Result

Definition | A projective curve X C P¥ is said to be

tangentially degenerate

def .. : .
S a gen tang line is tangential trisecant.

Question | (naive)
If a proj curve X C PV is tangentially degenerate, then is X planar?

Theorem | (K (2014), tangential trisecant lemma)

X C PV a non-deg proj curve with N > 3 in p = 0.

Assume that VP € C (normalization of X'), 3 distinct ¢, 5,k > O s.t.
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Definition | A projective curve X C P¥ is said to be

tangentially degenerate

def .. : .
S a gen tang line is tangential trisecant.

Question | (naive)
If a proj curve X C PV is tangentially degenerate, then is X planar?

Theorem | (K (2014), tangential trisecant lemma)

X C PV a non-deg proj curve with N > 3 in p = 0.

Assume that VP € C (normalization of X'), 3 distinct ¢, 5,k > O s.t.
the orders, b;(P), b;(P) and bi(P) are relatively prime.
Then X is not tangentially degenarate.

Definition | (orders)

The orders at P € C are a sequence of non-neg integers defined by
{bo(P) < b1(P) < by(P) <--- <bn(P)}:={vp(f)|0# f € A},
where
A C K(C) the linear system defining induced morph . : C — X C PV
vp a valuation of the local ring Ocp >~ Oc(A)p = ¢*Opn (1) p.
The orders of X are defined to be the orders at a general pt of C.
Note: the function b; : P — b;(P) is upper semi-continuous.
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e The orders at P € C (normalization of X C PV):

{bo(P) < b1(P) < b2(P) <--- <bn(P)}:={vp(f)[0# f €A}
e The orders of X: {b; := b;(P) for general P € C}o<;<n.

Remark | Let . : C — P¥ induced morph from normalization C — X.

® by =1 (. ¢is bir & [t unram at P < 3f € A, 2 (P) # 0 by (P) = 1]).
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e The orders at P € C (normalization of X C PV):

{bo(P) < b1(P) < b2(P) <--- <bn(P)}:={vp(f)[0# f €A}
e The orders of X: {b; := b;(P) for general P € C}o<;<n.

Remark | Let . : C — P¥ induced morph from normalization C — X.
e by =0 (Bs(t) =D VP € C,3f € A, f(P) £ 0, i.e., bo(P) = 0).
® by =1 (. ¢is bir & [t unram at P < 3f € A, 2 (P) # 0 by (P) = 1]).

Fact | e (classical) If p = 0, then b; = ¢ for any 7 > 0.

Q(p>0) bzzOmodp

& X C PY not reflexive.

Definition | (reflexivity) A projective variety X C PV said to be reflexive if
C(X) = C(X*) via PN x PN ~ PN x PN,

where X* the dual variety of X, and C(X) the conormal variety of X.

e If X is reflexive, then one can expect {Tp}pcx ‘behaves’ as in char p = 0.
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e The orders at P € C (normalization of X C PV):

{bo(P) < b1(P) < b2(P) <--- <bn(P)}:={vp(f)[0# f €A}
e The orders of X: {b; := b;(P) for general P € C}o<;<n.

Remark | Let ¢ : C — PV induced morph from normalization C — X.

eby=0 (. Bs(t) =0 VP

€ C,3f € A, f(P) # 0, i.e., by(P) = 0).

® by =1 (" ¢is bir & [t unram at P < 3f € A, L (P) # 0< by (P) = 1)).

’dt

 Fact | e (classical) If p = 0, then b; = i for any ¢ > 0.
e (p>0)|b=0mod p| < X C PN not reflexive.

Definition | (reflexivity) A projective variety X C PV said to be reflexive if
C(X) = C(X*) via PN x PN ~ PN x PN,

where X* the dual variety of X, and C(X) the conormal variety of X.
e If X is reflexive, then one can expect {Tp}pcx ‘behaves’ as in char p = 0.
Fact | (Hefez-Kakuta(1992), Homma-K(1992), K(1992)) [not used below]
Let b be the highest power of p dividing b;,

@ : X --s G(i,PYN) the i-th Gauss map, and

7@ : COX — X*® the i-th conormal map of X
defined by osculating z-planes of X. Then for each : > 1, we have

b, = insep-deg(¢()) = insep-deg(w).

In particular, b;, 1 = 0 mod p

& 1Winsep e w@insep. [Endof§2:MainResult]



4 Sketch of Proof

Theorem | (K (2014), tangential trisecant lemma)

X C PN a non-deg proj curve with N > 3 in p = 0.
Assume that VP € C (normalization of X)),
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Then X is not tangentially degenarate.
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4 Sketch of Proof

Theorem | (K (2014), tangential trisecant lemma)
X C PN a non-deg proj curve with N > 3 in p = 0.
Assume that VP € C (normalization of X)),

3 distinct ¢, 3,k > 0 s.t. (b;(P),b;(P),br(P)) = 1.
Then X is not tangentially degenarate.

To prove the above,
assuming X C P¥ tangentially degenerate, T
- .. Py
we deduce contradiction.
Plan: Tp X

Step 1: rephrase “tangential degeneration” inflection point
Step 2: parametrize the pts of contact P and of intersection Q on X
Step 3: find an inflection point P, of X where
a tangential trisecant line becomes flex tangent as a limit.
Step 4: study the parametrization locally around the inflection point P,
to deduce a certain necessary condition for tangential degeneration
Step 5: deduce contradiction

Remark

e The proof here is different from the one for “trisecant lemma”.
e The arguments here are similar to the ones of the weak version,
except for Steps 3 and 5 in the plan above.



Step 1: rephrase “tangential degeneration”.

e Let C — X the normal of X C PV, +: C — P the induced morph.

e One can assign any P € C to a ‘tangent line’ Tp to X at ¢(P).
(just extend a rational map C --» G(1,PN); P — Tp, to a morphism)

e Set
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e Let C — X the normal of X C PV, +: C — P the induced morph.

e One can assign any P € C to a ‘tangent line’ Tp to X at ¢(P).
(just extend a rational map C --» G(1,PN); P — Tp, to a morphism)

e Set
T (C) := (projective tangent bundle) = [[,..Tp C C x PV
with 7 : T (C') — C canonical projection,
Tan X := (tangential surface) = Jp.o Tp C PV
with 1 : T (C) — Tan X natural projection,
Cy := (the locus of pts of contact) C T'(C) a section of ,

Co X

isom Q(C) 1 Tan X

C

IP)N

e Then, ...
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e Set
T (C) := (projective tangent bundle) = [[,..Tp C C x PV
with 7 : T (C') — C canonical projection,
Tan X := (tangential surface) = Jp.o Tp C PV
with 1 : T (C) — Tan X natural projection,
Cy := (the locus of pts of contact) C T'(C) a section of ,

Co X

isom Q(C) 1 Tan X
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e Then, X tangentially degenerate < dimn !X \ Cy = 1.
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Step 1: rephrase “tangential degeneration”.

e Let C — X the normal of X C PV, +: C — P the induced morph.

e One can assign any P € C to a ‘tangent line’ Tp to X at ¢(P).
(just extend a rational map C --» G(1,PN); P — Tp, to a morphism)

e Set
T (C) := (projective tangent bundle) = [[,..Tp C C x PV
with 7 : T (C') — C canonical projection,
Tan X := (tangential surface) = Jp.o Tp C PV
with 1 : T (C) — Tan X natural projection,
Cy := (the locus of pts of contact) C T'(C) a section of ,

Co X

isom Q(C) 1 Tan X

C

]P)N

e Then, X tangentially degenerate < dimn !X \ Cy = 1.
e Assume X C P (IN > 3) tangentially degenerate.
~» 3| 1-dim irred comp | in 7' X \ C.




Step 2: parametrize the pts of contact and of intersection.

e Consider

— | D |a 1-dim irred component of n—1X \ C, with reduced str,
~» D is not a fibre of 7 : T(C) — C,

—v:D — D the normalization,

-m:=7nv:D — C, and

— 1 : D — C the natural morphism s.t. nv = 1.
«~ nv : D — X factors thru the normalization C — X.

e Then for each Q € D, 17j(Q) € T.7(Q)
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Step 2: parametrize the pts of contact and of intersection.

e Consider
— | D |a 1-dim irred component of n—1X \ C, with reduced str,
~» D is not a fibre of 7 : T(C) — C,

—v:D — D the normalization,
-m:=7nv:D — C, and
— 1 : D — C the natural morphism s.t. nv = 1.
«~ nv : D — X factors thru the normalization C — X.

e Then for each (Q € 15. m(Q) € T, )
Q) =7(Q)
~> I/(QN) - 7T_17T(Q) »
~ n(Q) = nv(Q) € ?7(W_17T(Q)) = T.7(qQ)-



Step 3: DN Cy # O (i.e., I inflection pt).

o Let P;(Oc(1)) the bdle of prin parts of O¢(1):= ¢*Opn (1) of 1st ord,
with natural homo a': H%(C,0¢(1)) ® Oc — P;(0¢(1)) and

the canonical exact sequence:
(€) 0 = QL ®0Oc(1) = PL(Oc(1)) = Oc(1) — 0.
° ...

(1)
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Step 3: DN Cy # O (i.e., I inflection pt).

o Let P;(Oc(1)) the bdle of prin parts of O¢(1):= t*Opn(1) of 1st ord,
with natural homo a': H%(C,0¢(1)) ® Oc — P;(0¢(1)) and
the canonical exact sequence:
(&) 0 — QL QR Oc(1) = Pr(Oc(1)) — Oc(1) — 0.

e Set P :=Ima!, locally free of rk 2.

‘-1 : C — PN gener unramified ~» d. gener surj ~» a! gener surj.
e Note that T = P(P), and (sect T'(C') +— Cy) «~ (1-quot P — Oc(1)).

0 — L*Q%)N@Oc(l) — HO(C, Oc(l))®00 — Oc(l) — 0 (exact)

L de® loga) } a |
(&) 0 - Q®0c(1) — PL(O¢c(1)) — O¢c(1) — 0 (exact)
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Step 3: DN Cy # O (i.e., I inflection pt).

o Let P;(Oc(1)) the bdle of prin parts of O¢(1):= t*Opn(1) of 1st ord,
with natural homo a': H%(C,0¢(1)) ® Oc — P;(0¢(1)) and
the canonical exact sequence:
(&) 0 — QL QR Oc(1) = Pr(Oc(1)) — Oc(1) — 0.
e Set P :=Ima!, locally free of rk 2.
‘-t : C — PN gener unramified ~» d. gener surj ~> a' gener surj.
e Note that T = P(P), and (sect T'(C') +— Cy) «~ (1-quot P — Oc(1)).
e Suppose D N Cy = 0. 5
~» the pull-back of P — O¢(1) to the normalization D splits.
. bs-chg of Cy and D by 7 give disjoint sections of T xoD = P(7*P).
~» P — O¢(1) itself splits by the assumption p = 0.
In fact, 7 is separable.
~> can surj P;(0c(1)) - Oc¢(1) splits, i.e., (£) would split.
o ...

P — O¢(1) — 0 (exact)

¢ ||
€) 0 — QL®Oc(1) — PL(Oc(1)) — Oc(l) — 0 (exact)
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Step 3: DN Cy # O (i.e., I inflection pt).

o Let P (Oc(1)) the bdle of prin parts of O¢(1):= ¢*Opn (1) of 1st ord,
with natural homo a': H?(C,0¢(1)) ® Oc — P;(0¢(1)) and
the canonical exact sequence:
(&) 0 — QL ®Oc(1) = Pr(Oc(1)) — Oc(1) — O.
e Set P :=Ima?, locally free of rk 2.
‘-t : C — PY gener unramified ~» d. gener surj ~» a' gener surj.
e Note that T = P(P), and (sect T(C') + Cy) «~ (1-quot P — O¢(1)).
e Suppose D N Cy = 0. N
~» the pull-back of P — O¢(1) to the normalization D splits.
' bs-chg of Cy and D by 7 give disjoint sections of T xcD = P(7*P).
~ P — O¢(1) itself splits by the assumption p = 0.
In fact, 7 is separable.
~> can surj P;(0c(1)) - Oc(1) splits, i.e., (£) would split.
e But (&) does not splits: Indeed, according to a theorem of Atiyah,

(€) < ¢1(0c(1)) = deg Oc(1) - 1y
M M
Exty (0c(1), 2L ® Oc(1))) = HY(C,QL) ~k
where |deg O¢(1) - 1, # 0| by p = 0. A e

e Therefore D N Cy # 0. [ ~dlog: 05 > Qi f = F
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Step 4: local study around Cy N D.

e Take a point P, € Cy N D,
assume x,...,rn € Op c definest: C --» AN C PV around P,
set x:= (&1,. . . ,£n), and fix a point Qy € D s.t. #(Qo) = 7(Qo) = Po.

~s 1w, 2 D --» AN resp given locally by

X = (7T *x1y. . .y TN), X = (N*T1,. .., xN) around Q.
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Step 4: local study around Cy N D.

e Take a point P, € Cy N D,
assume x,...,rn € Op c definest: C --» AN C PV around P,
set x:= (&1,. . . ,£n), and fix a point Qy € D s.t. #(Qo) = 7(Qo) = Po.

~s 1w, 2 D --» AN resp given locally by

X = (7T *x1y. . .y TN), X = (N*T1,. .., xN) around Q.

e Choosing a suitable change of coordinates, one may assume

(wlztb1_|_...
< ajzztb2+...
. TPO
lzny = tOV 4 ... Tp X

in the completion (‘TCE ~ k[[t]] with some reg para t of C at P,

where | b; := b;(P,) the orders at P |.
o ...
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Step 4: local study around Cy N D.

e Take a point P, € Cy N D,
assume x,...,rn € Op c definest: C --» AN C PV around P,
set x:= (&1,. . . ,£n), and fix a point Qy € D s.t. #(Qo) = 7(Qo) = Po.

~s 1w, 2 D --» AN resp given locally by

X = (7T *x1y. . .y TN), X = (N*T1,. .., xN) around Q.

e Choosing a suitable change of coordinates, one may assume

(wlztb1_|_...
< ajzztb2+...
. TPO
lzny = tOV 4 ... Tp X

in the completion (‘TCE ~ k[[t]] with some reg para t of C at P,
where | b; := b;(P,) the orders at P |.
e Moreover may assume that

t=ut+ ..., n*t = tu? + ... in Op , ~ k[[u]]

with some d > 1,d > 1, £ € kX and some reg para u of D at Qo.
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Step 4: local study around Cy N D (continued).

® 1(Q) € T,7q) for each Q € D

~ T*Xx || *x — T*x as vectors in A,
where x := (x1,...,xyN) and z; := dx;/dt.

’\» L N )
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Step 4: local study around Cy N D (continued).

® 1(Q) € T,7q) for each Q € D

~ T*Xx || *x — T*x as vectors in A,
where x := (x1,...,xyN) and z; := dx;/dt.
~ i =0in k[[u]] (1 <7< 3 < N), where

ﬂ'wznwz 77':13,

T.%Q) X

I';; :=det : (2,9)-minor of [7™x, n*x — 7*X]
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Step 4: local study around Cy N D (continued).

® 1(Q) € T,7q) for each Q € D

~ T*Xx || *x — T*x as vectors in A,

where x := (x1,...,xyN) and z; := dx;/dt.
~ I =0in kf[u]] (1 <2< 3 < N), where
_77'*:153- ﬁ*mz — 77'*:1:]-

T.%Q) X

I';; :=det : (2,7)-minor of [7w™x, n*x — 7*X]
R (GO EEED L RSy '
—J(ud .- ).}
od ety fEut )b )
_b](u S )3 + —{(ud+)bj—|—}_
gbjud(bi—l)%—d’bj 4+ .., of d’ < d,
= ¢ (b;(&% — 1) — b, (€% — 1))udCitbit) ... if d' = d,
(bz — bj)ud(bi+bj_1) + ..., if d > d.

bi(ud + ... )bi_l +
= det
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Step 4: local study around Cy N D (continued).

® 1(Q) € T,7q) for each Q € D

~ T*Xx || *x — T*x as vectors in A,

where x := (x1,...,xyN) and z; := dx;/dt.
~ I =0in kf[u]] (1 <2< 3 < N), where
_77'*:153- ﬁ*mz — 77'*:1:]-

T.%Q) X

I';; :=det : (2,7)-minor of [7™x, n*x — 7*X]
R (GO EEED L RSy '
—J(ud .- ).}
od ety fEut )b )
_b](u S )3 + —{(ud+)bj—|—}_
gbjud(bi—l)%—d’bj 4+ .., of d’ < d,
= ¢ (bi(€% — 1) — b;(&% — 1))ud®itbi+h) L ... " if d' = d,
(bz — bj)ud(bi+bj_1) + ..., if d > d.

bi(ud + ... )bi_l +
= det

~> d=d and |b;(¢% — 1) — b;(¢% — 1) =0,
where {b; := b;(P)} the orders at P, and 7j*t = u® + .- ..
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Step 4: local study around Cy N D (continued).

e tn(Q) € T,z for each Q € D

~ 7% || 7*x — 7*x as vectors in A,

where x := (x1,...,xN) and x; := dx;/dt.
~ I'ii =0in k[[u]] (1 <2< 3 < N), where
_%*aij ’ﬁ*.’IJz — %*ZBJ'

T7Q) X

I';; :==det : (2, 7)-minor of [7™x, n*x — 7*X]
. {(u® + .. )i ...}
_{(ud_|_...)b’i_|_...}
(ot L LT ) )
_bﬂ(u )T+ —f(ud ) )
€bjud(bi—1)—|—d/bj oo if d < d,
= ¢ (bs (€% — 1) — b (&% — 1))ud®itb+Y) ... [ if d' =d,
(b; — bj)udlitbi=) ... if d’ > d.

bij(ud + ... )07l ..
= det

~ d=d and | b;(e% — 1) — b;(¢% — 1) = 0,
where {b; := b;(P)} the orders at P, and 7j*t = u® + - - -.
e Now, set F(X) :=b(X%—1) —a(X®—1) € Q[X] fora > b > 1.
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Step 5: deduce contradiction. | F,;(X) := b(X* — 1) — a(X? —1) € Q[X]

e The polynomials {Fbjbi(X)}1§i<j§N in X (bz = bz(Pg)) have
— irrelevant common root X = 1 with mult > 2 |« Cj the pts P of contact,

and
— other common roots X = £ [« D the pts @ of intersection of Tp and X.

(Note: £ might be equal to 1.) Q
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Step 5: deduce contradiction. | F,;(X) := b(X* — 1) — a(X? —1) € Q[X]

e The polynomials {Fbjbi(X)}1§i<j§N in X (bz = bz(P())) have
— irrelevant common root X = 1 with mult > 2 |«| Cj the pts P of contact,

and
— other common roots X = £ [«| D the pts Q of intersection of T and X.

(Note: £ might be equal to 1.) Q

e But this contradicts to
(our assumption: (b;,b;,b;) =1 (F2 < 3 < k).) P

Lemma If a > b > c > 1 are relatively prime, then T \
F,,, F,., Fp. have a unique common root X =1 in C and P X
its multiplicity is exactly equal to 2.
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Step 5: deduce contradiction. | F,;(X) := b(X* — 1) — a(X? —1) € Q[X]

e The polynomials {Fbjbi(X)}1§i<j§N in X (bz = bz(Pg)) have
— irrelevant common root X = 1 with mult > 2 |«| Cj the pts P of contact,

and
— other common roots X = £ [«| D the pts Q of intersection of T and X.

(Note: £ might be equal to 1.) Q

e But this contradicts to
(our assumption: (b;,b;,b;) =1 (F2 < 3 < k).) P

Lemma If a > b > c > 1 are relatively prime, then T \
F,,, F,., Fp. have a unique common root X =1 in C and P X
its multiplicity is exactly equal to 2.

Proof
e According to a lemma by Bolognesi-Pirola,
F.p, Fyc, EFp. have a unique common root X = 1 in C.
(elementary calculus (Rolle’s theorem) with a clever argument)
e On the other hand, X = 1 is a root of F,;(X) of multiplicity exactly 2

since Fpp(1) = F/,(1) =0 and F/ (1) = ab(a — b) # 0. O



Case: b; = 1 (< X smooth or nordal < ¢ unramified) [K(1986)]

Claim: F,;(X) and Fp1(X) (@ > b > ¢ = 1) have a unique common root
X = 1 in C and its multiplicity is exactly equal to 2.

Fou(X)=(X*—1) —a(X —1)
= (X —1)*(X 42X 2 +... 4 (a—2)X + (a — 1))

o Set fu(X):= X" +2X" 4.+ (a=2)X +(a—1). [Xfo(1/X) = 725

X-1

Claim & f,(X) and f,(X) (a > b > 1) have no common root.
& BEECst fo(€) — &£ (§) = fo(§) =0 (a > b > 1).

Here
fh()()'_')(a_bj%()():: b)(a_b_1'+'(b'+'1))(a_b_2'%""+'(a'_'1)7
fo(X) = X014+ 2X072 4 ... 4 (b —1).

@_1

(£9)
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Case: b; = 1 (< X smooth or nordal < ¢ unramified) [K(1986)]

Claim: F,(X) and Fp1(X) (@ > b > ¢ = 1) have a unique common root
X = 1 in C and its multiplicity is exactly equal to 2.

Fa(X)=(X*—1)—a(X —1)
= (X —1D*(X“ ' 42X 24+ ...+ (a—2)X + (a —1))

o Set fo(X) = X1 42X 2 4. 4 (a—2)X + (a—1). [X* T fu(1/X) = 75 (5]

Claim & f,(X) and f3(X) (a > b > 1) have no common root.
& At e Csat. fo(8) —€470f,(6) = f(€) =0 (a > b > 1).

Here
fo(X) = XPf(X) =bX* 1+ (b+ 1) X224 4 (a — 1),
fo(X) = X014+ 2X02 ...+ (b—1).
e According to Kakeya’s theorem, if [ £, (&) — €270 £, (&) = fb(C) = 0| (& ¢ € €), then

S <Idl < i <y < lf <
—b—-1 b—l—l_ —1
~ & # (. Thus the clalm is proved. L]

Fact | (Kakeya’s theorem (BIBDEIE))

Let f(X)=co+ a1 X + -+ 4 c, X" € R[X] with ¢; > 0 (V2).
If (&) =0 (£ € C), then

. Co C1 Cpn— Co C1 Cn—1
mln —, —,.0., < |E| < maX — —,.. ., [ ]
C1 C2 Cn C1 C2 Cn

Problem | Is f,(X) € Z[X] irreducible over Q7
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5 Conjectures F,(X)=b(X*—1) —a(X®—1)

Observation @ (Esteves-Homma’s example, revisited)
Assume p > 3 and set X := @(Al) C P3, where ¢ : A' — A3 is defined by
p(t) = (t, 1% — tP, 3 + 2tP — 3tPT1).
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e the orders at P € X N A® are {b;(P)} = {0, 1,2, 3}.

~» the orders of X are {b;} = {0,1, 2,3} (classical type).

Now,

e the point at infinity P, := ¢(oco) € X is a unique inflection point.

e the orders at P, are {b;(FP;)} = {0,1,p,p + 1} (easily checked), and

Foo(po)oy (pp) (X) = Fp1(X) = (XP — 1) — p(X — 1) = (X — 1)%,

Fb3(P0)b1(P0)(X) = Fpi1,1(X) = (Xp+1 —1)—(p+1)(X —1) = X(X —1)%,

Fog(Po)by(Py) (X ) = Fpr1p(X) = p(XPH—1)—(p+1)(XP—1) = — (X —1)*.

~> { Fp,(y)b; () (X ) } have a unique comm root X = £ = 1 with mult p > 3.
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o ...
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e Thetangential degenerationwould be global property.

e But in the above, the degeneration seems to be caused by a
typical phenomenon in positive char caseoccuring in one pt F,.

(somehow, similar to Terracini's example of affine analytic curve)
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5 Conjectures F,(X)=b(X*—1) —a(X®—1)

Observation | (Esteves-Homma’s example, revisited)

Assume p > 3 and set X := @(Al) C P3, where ¢ : A! — A3 is defined by
p(t) = (t,t? — tP, 3 + 2tP — 3tPT1).

As (partly) explained before, e(t+1) — p(t) = ()

e X is smooth, non-planar, reflexive and tangentially degenerate!

e the orders at P € X N A° are {b;(P)} = {0, 1, 2, 3}.

~» the orders of X are {b;} = {0, 1, 2,3} (classical type).

Now,

e the point at infinity Py := p(oc0) € X is a unique inflection point.

e the orders at P, are {b;(FPy)} = {0,1,p,p + 1} (easily checked), and

Foy(Po)by () (X) = Fpa(X) = (XP — 1) — p(X — 1) = (X — 1),

Fb3(P0)b1(P0)(X) — Fp—l—l,l(X) — (Xp+1 — 1) — (p"l_ 1)(X — 1) — X(X — 1)p’

Fiog(Po)by(po) (X) = Fpr1p(X) = p(XPT1—1)—(p+1)(XP—1) = — (X —1)P.

~> { Fp,(py)b; () (X ) } have a unique comm root X = £ = 1 with mult p > 3.

e Thetangential degenerationwould be global property.

e But in the above, the degeneration seems to be caused by a
typical phenomenon in positive char caseoccuring in one pt F,.

(somehow, similar to Terracini's example of affine analytic curve)

This observation leads to the following ...



Conjecture

For any non-deg proj curve X C P¥ with N > 3 in arbitrary char p,
if for any P € C there exist distinct 2,7,k > O s.t.

none of b;(P), b;(P) and b, (P) is divisible by p,
then X is not tangentially degenerate.

Compare with

Theorem | (K (2014), tangential trisecant lemma)

For any non-deg proj curve X C P¥ with N > 3 in p = 0,
if for any P € C there exist distinct 2,7,k > O s.t.

b;(P), bj(P) and b, (P) are relatively prime,
then X is not tangentially degenerate.

In particular, ...

(£9)
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Conjecture

For any non-deg proj curve X C P¥ with N > 3 in arbitrary char p,
if for any P € C there exist distinct 2,7,k > O s.t.

none of b;(P), b;(P) and b, (P) is divisible by p,
then X is not tangentially degenerate.

Compare with

Theorem | (K (2014), tangential trisecant lemma)

For any non-deg proj curve X C P¥ with N > 3 in p = 0,
if for any P € C there exist distinct 2,7,k > O s.t.

b;(P), bj(P) and b, (P) are relatively prime,
then X is not tangentially degenerate.

In particular, under the condition p = 0, the following should hold:
My Belief

For any (possibly singular) projective curve X C PV in p = 0,
if X is tangentially degenerate, then X is planar.



Thank you for your attention!
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Generic projection:

The existence of good plane-curve models follows from the trisecant lemma,
by using general linear projections.
What follows from the tangential trisecant lemma in this context?
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An immediate consequence on linear projection is

Corollary For a proj curve X C PY with normalization C, assume that

e the characteristic p = 0, and

e the induced morphism ¢ : C — P¥ is unramified.

Then 3 P € X s.t. wpt : C — PV~ is unramified,
where p : PV — PV—1 3 projection from P
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Generic projection:

The existence of good plane-curve models follows from the trisecant lemma,
by using general linear projections.
What follows from the tangential trisecant lemma in this context?

An immediate consequence on linear projection is

Corollary | For a proj curve X C PV with normalization C, assume that

e the characteristic p = 0, and

e the induced morphism ¢ : C — P¥ is unramified.
Then 3 P € X s.t. wpt : C — PN~ is unramified,
where p : PV — PVN—1 3 projection from P

This consequence is one of keys in a nice result due to L.Ein, as follows:

Theorem | (Ein (1987))

Let H,, ., the open subscheme of the Hilbert scheme corresponding to
smooth irreducible curves of degree d and genus g in P".

Then Hd’g,4 is irreducible if d > g + 4.

Remark |
e Severi’'s assertion (1921): “H,, , irreducible if d > g + n.”

e Ein (1986): Assume n > 6. Then Hig,_358n+6,n iS reducible.
~» Severi’s assertion is not correct.




