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Chern numbers and symmetry
This talk is based on the joint works with B. Zhilinskii and my talk
given at RIMS 2011 together with a further study in progress:

• Energy bands: Chern numbers and symmetry,
Ann. Phys., vol.326 (2011), 3013-3066,

• Rearrangement of energy bands:
Chern numbers in the presence of cubic symmetry,
to appear in Acta Appl. Math. (2012),

• Chern numbers associated with semi-quantum systems
with symmetry,
RIMS Kôkyûroku 1774, pp. 130-146, (2012).
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Organization

1. Finite-level quantum systems

2. Finite-level semi-quantum systems

3. Chern numbrs associated with two-level semi-quantum systems
with symmetry by U(1), D3, O

4. Chern numbrs associated with three-level semi-quantum systems
with symmetry by O

5. Linear approximation on a subspace
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1. Finite-level quantum systems

• Clebsh-Gordan formula

• one-parameter Hamiltonians

• a view to rotation-vibration coupling

• redistribution of eigenvalues
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1.1 The Clebsh-Gordan formula
(Vℓ, D

ℓ): a unitary irreducible rep. of SU(2) with ℓ ∈ {0, 12, 1,
3
2, · · · }

Jk, Sk: su(2) operators acting on Vj and Vs, respectively, k = 1, 2, 3.
J = (Jk): angular momentum operators,
S = (Sk): spin operators.
SU(2) acts on Vj ⊗ Vs unitarily, and the infinitesimal generators are

N = J ⊗ 1 + 1⊗ S.

Then, according to the Clebsh-Gordan formula,
the representation space Vj ⊗ Vs is decomposed into

Vj ⊗ Vs ∼= Vj+s ⊕ · · · ⊕ V|j−s|.
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1.2 A coupling J ⊗ S

The squared operator N2 is expressed as

N2 = J2 ⊗ 1 + 2J ⊗ S + 1⊗ S2.

The Vn, |j − s| ≤ n ≤ j + s, are eigenspaces of N2 associated with
the eigenvalue n(n + 1).
The Vn are also eigenspaces of J ⊗S associated with the eigenvalue

1

2

(
n(n + 1)− j(j + 1)− s(s + 1)

)
.
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1.3 A one-parameter quantum operator on Vj ⊗ Vs

Hτ = (1− τ )1⊗ Sz + τJ ⊗ S, 0 ≤ τ ≤ 1.

The eigenspace decomposition of Vj ⊗ Vs w.r.t. Hτ changes:

Vj ⊗ |s⟩ ⊕ · · · ⊕ Vj ⊗ | − s⟩
w.r.t. H0 = 1⊗ Sz

−→ Vj+s ⊕ · · · ⊕ V|j−s|
w.r.t. H1 = J ⊗ S

,

where |r⟩ := |s r⟩, |r| ≤ s are the eigenvectors of Sz, and j > s.
The Clebsch-Gordan decomposition provides

dim(Vj ⊗ Vs) =

j+s∑
n=|j−s|

dimVn, dimVn = dimVj + 2r, |r| ≤ s.

Boris claims: 2r can be interpreted as Chern numbers, if the quantum
system is transformed into a semi-quantum system by averaging J .
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1.4 An example, V1 ⊗ |12⟩ ⊕ V1 ⊗ | − 1
2⟩ → V1

2
⊕ V3

2
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Figure 1: The redistribution of eigenvalues

dimV1
2
= dimV1 + 2 · (−1

2
), dimV3

2
= dimV1 + 2 · 1

2
The associated Chern numbers will be 2r = −1, 1.
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1.5 A view to rotation-vibration coupling

Since the SU(2) is viewed as the symmetry group of the harmonic
oscillator of two degrees of freedom, the basis of the representation
space Vs may be viewed as spanning a vibrational energy band. From
this point of view, the coupling Vj ⊗ Vs may be thought of as the
angular momentum (or rotation) and vibration coupling. Hence, the
change in the eigenspace decomposition

Vj ⊗ |s⟩ ⊕ · · · ⊕ Vj ⊗ | − s⟩ −→ Vj+s ⊕ · · · ⊕ V|j−s|

is interpreted as a a reorganization of vibrational energy bands, {|r⟩}|r|≤s,
through the interaction with rotation, and dimVn = dimVj + 2r
allows of the interpretation that the number 2r is characteristic of
rovibration in each molecular band (Vn, n = j + s, · · · , |j − s|).
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2. Finite-level semi-quantum systems

• a view to rotation-vibration coupling

• averaging with coherent states

• one-parameter Hamiltonians

• Chern numbers of eigen-line bundles
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2.1 Averaging with coherent states

J : viewed as rotational variables, being made into classical ones,
S: viewed as vibrational variables, being still quantum ones.

The SU(2) coherent states are defined to be the SU(2) orbit of the
lowest weight vector of the representation Dj,

J = Dj(g)|j⟩, g ∈ SU(2).

Averaging Jk with coherent states results in

⟨J|Jx|J⟩ =⟨j|Dj(g)∗JxDj(g)|j⟩ = j cosϕ sin θ = x,

⟨J|Jy|J⟩ =⟨j|Dj(g)∗JyDj(g)|j⟩ = j sinϕ sin θ = y,

⟨J|Jz|J⟩ =⟨j|Dj(g)∗JzDj(g)|j⟩ = j cos θ = z,

where

Dj(g) = e−iϕJze−iθJye−iψJz,
3∑
k=1

x2k = ρ2, ρ = j.
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2.2 A one-parameter semi-quantum operator on Vs
Averaged with coherent states, the operator Hτ is made into a semi-
quantum operator,

Hτ (x) := ⟨J|Hτ |J⟩ = (1− τ )Sz + τ
∑
k

xkSk, x ∈ S2(ρ) ⊂ R3.

By associating the eigenspace of Hτ (x) with x ∈ S2(ρ), one may de-
termine a one-parameter family of complex line bundles over S2(ρ).

We denote by S2(ρ)×C|r⟩ and L(r) the complex line bundles asso-
ciated with the eigenvalues r of Sz and ρr of x · S, respectively.
When t passes a critical value, the bundle structure changes;∑

|r|≤s

⊕
S2(ρ)×C|r⟩

w.r.t. H0(x) = Sz

−→

∑
|r|≤s

⊕
L(r)

w.r.t. H1(x) = x · S
A question: Ch(L(r)) = 2r ?
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2.3 An example of a semi-quantum operator with s = 1
2

The one-parameter semi-quantum Hamiltonian on V1
2
is given by

Hτ (x) =
1

2

(
1− τ + τz τ (x− iy)
τ (x + iy) −1 + τ − τz

)
, x ∈ S2(1) ⊂ R3.

The eigenvalues are

λ(τ ) = ±
√

1

4
− 1− z

2
(τ − τ2),

which are not degenerate if z ̸= −1, but degenerate at z = −1 for
τ = 1

2,

λ(τ ) = ±|τ − 1

2
|.

The splitting of S2×C2 into line bundles associated with eigenvalues
should change at τ = 1

2.
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2.4 Examples eigen-line bundles, L(±1) → S2(1)

H1(x) =
1

2

(
z x− iy

x + iy −z

)
, x ∈ S2(1) ⊂ R3.

has normalized eigenvectors associated with the eigenvalues 1/2, −1/2,

u
(−1

2)
+ :=

(
−e−iϕ sin θ2

cos θ2

)
, u

(12)
+ :=

(
cos θ2

eiϕ sin θ2

)
, x ∈ U+,

u
(−1

2)
− :=

(
− sin θ2
eiϕ cos θ2

)
, u

(12)
− :=

(
e−iϕ cos θ2

sin θ2

)
, x ∈ U−,

where U+ = {x ∈ S2(1)| θ ̸= π}, U− = {x ∈ S2(1)| θ ̸= 0}.
The transformation rules on U+ ∩ U− are

u
(−1

2)
− = eiϕu

(−1
2)

+ , u
(12)
− = e−iϕu

(12)
+ on U+ ∩ U−.
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2.5 The eigen-line bundle L(r) → S2(ρ) with |r| ≤ s

The matrix x ·S =
∑
k xkSk with x ∈ S2(ρ), which acts linearly on

Vs, has the normalized eigenvector associated with the eigenvalue rρ
and expressed as

u
(r)
+ := e−iϕSze−iθSyeiϕSz|r⟩ on U+,

u
(r)
− := e−iϕSze−iθSye−iϕSz|r⟩ on U−,

where |r| ≤ s, and where

U+ = {x ∈ S2(ρ)|, z ̸= −ρ}, U− = {x ∈ S2(ρ)|, z ̸= ρ}.
The transformation rule on U+ ∩ U− are given by

e−2irϕu
(r)
+ = u

(r)
− .

Thus defined is the eigen-line bundle L(r) → S2(ρ).
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2.6 The connection and the curvature of L(r)

The connection form of the line bundle L(r) → S2(ρ) is defined by
and expressed as

ω
(r)
+ :=⟨r|Ds(g)∗dDs(g)|r⟩|ψ=−ϕ = −ir(−dϕ + cos θdϕ) on U+,

ω
(r)
− :=⟨r|Ds(g)∗dDs(g)|r⟩|ψ=ϕ = −ir(dϕ + cos θdϕ) on U−.

On the intersection U+ ∩ U−, the ω
(r)
+ and ω

(r)
− are related by

ω
(r)
+ − 2irdϕ = ω

(r)
− .

Since dω
(r)
+ = dω

(r)
− on U+ ∩ U−, the curvature form is defined

globally on S2(ρ),

Ω =

{
dω

(r)
+ on U+,

dω
(r)
− on U−.
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2.7 The Chern number of L(r)

Let C denote the equator of S2(ρ), and S2+(ρ), S
2
−(ρ) the northern

and southern hemispheres, respectively. Then, by applying Stokes’
theorem, one obtains∫

S2(ρ)
Ω =

∫
S2+(ρ)

dω
(r)
+ +

∫
S2−(ρ)

dω
(r)
−

=

∫
C
ω
(r)
+ −

∫
C
ω
(r)
− = 2ir

∫
C
dϕ = 4πir

Proposition 1. The Chern number of L(r) is given by

i

2π

∫
S2(ρ)

Ω = −2r.
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3. Chern numbers associated with two-level semi-quantum
systems with symmetry by U(1), D3, O

• U(1), D3, O as subgroups of SO(3)

• semi-quantum systems with U(1), D3, or O symmetry

• invariant Hamiltonians with control parameters

• Chern numbers of eigen-line bundles depending on parameters
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3.1 U(1) invariance of Hτ

We consider the U(1) action on Vj ⊗ Vs;

e−itJz ⊗ e−itSz.

Since Jk and Sk transform like the vector xk,

e−itJzJk(rep. Sk)e
itJz =

∑
ℓ

akℓJℓ(resp. Sℓ), (akℓ) = e−tê3,

Both 1⊗Sz and
∑
k Jk⊗Sk are invariant under this U(1) action, so

that the Hamiltonian Hτ = (1−τ )1⊗Sz+τ
∑
k Jk⊗Sk is invariant

under U(1) as well.
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3.2 U(1) invariance of Hτ (x)

Since Jk transform like the vector xk, the averages of Jk transform
also in the same manner;

⟨J|e−itJzJkeitJz|J⟩ =
∑
ℓ

akℓ⟨J|Jℓ|J⟩ =
∑
ℓ

akℓxℓ, (akℓ) = e−tê3

which defines an SO(2) action on S2(ρ). Thus, the induced U(1)
action on the semi-quantum system is described as

xk 7→
∑

akℓxℓ, Sk 7→
∑

akℓSℓ.

Since Sz and
∑
k xkSk are both invariant under the U(1) action,

Hτ (x) = (1− τ )Sz + τ
∑
k xkSk is invariant as well.
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3.3 U(1)-invariant Hamiltonians

In place of
∑
k xkSk, we consider a HamiltonianH(x) =

∑
k fk(x)Sk.

Since H(x) transforms according to∑
k

fk(x)Sk 7→
∑
k,ℓ

fk(Atx)akℓSℓ, At = (akℓ) = e−tê3,

the U(1) invariance condition for H(x) yields

fk(Atx) =
∑
ℓ

akℓfℓ(x),

which implies that the R3-valued function F (x) =
∑
k fk(x)ek is

SO(2)-equivariant; F (Atx) = AtF (x). Equivalently, one has

H(e−tê3x) = D(e−it/2)H(x)D(eit/2),

D(e−it/2) = diag(e−it/2, eit/2).
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3.4 Weighted U(1) symmetry

If we start with the extended U(1) action on Vj ⊗ Vs expressed as

e−itJz ⊗ e−itKSz, K ∈ {0, 1, 2, · · · },
the invariance condition,

H(e−tê3x) = D(e−iKt/2)H(x)D(eiKt/2),

results in

h(e−itw, eitw, z) = e−iKth(w,w, z), f3(e
−itw, eitw, z) = f3(w,w, z),

so that

w
∂h

∂w
= Kh,

∂h

∂w
= 0,

∂f3
∂w

=
∂f3
∂w

= 0.

We then obtain, for example,

h(w,w, z) = h(z)(x + iy)K, f3(w,w, z) = f (z).
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3.5 Examples of Hamiltonians with weighted U(1) symmetry∑
k

fk(x)Sk =

(
f (z) h(z)(x− iy)K

h(z)(x + iy)K −f (z)

)
for s =

1

2
,

and
f (z) 1√

2

(
h(z)(x− iy)K

)
0

1√
2

(
h(z)(x + iy)K

)
0 1√

2

(
h(z)(x− iy)K

)
0 1√

2

(
h(z)(x + iy)K

)
−f (z)


for s = 1, where x ∈ S2(ρ), ρ = j.
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3.6 Chern number in the presence of weighted U(1) symmetry

Proposition 2. Let K and fij be an integer and any real polyno-
mial in z = cos θ, respectively. Suppose that in the weighted SO(2)
invariant Hamiltonian

H =

(
f11(cos θ) f12(cos θ) sinK θ exp(iKϕ)

f12(cos θ) sinK θ exp(−iKϕ) −f11(cos θ)

)
,

the matrix elements f11 and sinK θf12 do not share zeros. Then
H has two eigenvalues, positive and negative, without degeneracy.
For K ̸= 0, the complex line bundle associated with each eigenvalue
is defined over the two-sphere S2. The first Chern number, which
characterizes each line bundle, is equal to 0 or ±K, depending on
whether the number of zeros of the diagonal element, counted with
their multiplicities, is even or odd.
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3.7 A dihedral group D3

TheD3 is a symmetry group of an equilateral triangle, which is known
to be isomorphic with the symmetric group S3.

π1 = (1), π2 = (1 2 3), π3 = (1 3 2),
π4 = (1 2), π5 = (2 3), π6 = (1 3).

As is well known, the E representation of D3 is given by

DE(π1) =

(
1 0
0 1

)
, DE(π2) =

(
−1
2 −

√
3
2√

3
2 −1

2

)
, DE(π3) =

(
−1
2

√
3
2

−
√
3
2 −1

2

)
,

DE(π4) =

(
1
2 −

√
3
2

−
√
3
2 −1

2

)
, DE(π5) =

(
−1 0
0 1

)
, DE(π6) =

(
1
2

√
3
2√

3
2 −1

2

)
,

and A2 representation by

DA2(πj) = 1, j = 1, 2, 3, DA2(πk) = −1, k = 4, 5, 6.
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3.8 A D3 action on R3

The E representation of D3 acts on the set H0(2) of 2 × 2 traceless
Hermitian matrices by the adjoint action, which proves to induce the
representation equivalent to E ⊕ A1. Since H0(2)

∼= R3, D3 acts on
R3 in this manner.
Taking the Pauli basis σ1, σ2, σ3 ofH0(2) as σ

′
y, σ

′
z, σ

′
x, respectively,

we identify the R2 spanned by σ′x, σ
′
y with the x-y plane as the rep-

resentation space for E and R with the z axis as the representation
space for A2.
For example, one has

DE⊕A2(π2) =

 −1
2

√
3
2 0

−
√
3
2 −1

2 0
0 0 1

 , DE⊕A2(π4) =

 −1
2 −

√
3
2 0

−
√
3
2

1
2 0

0 0 −1

 .
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3.9 D3 equivariant functions

The sets of functions (
y2 − x2

2xy

)
,

(
zy
−zx

)
are E-equivariant and the functions

z, y(y2 − 3x2)

are A2-equivariant.
The functions

z2, x(x2 − 3y2)

are known to be A1-equivariant or simply invariant.
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3.10 Hamiltonians with D3 symmetry

Since the equivariance of the above-mentioned functions and the in-
variannce of the HamiltonianDE(g)H(x)DE(g)−1 = H(DE⊕A2(g)x),
g ∈ D3, are equivalent, we obtain the invariant Hamiltonian of the
form

H(x) =

(
X Y + iZ

Y − iZ −X

)
, x ∈ S2(1) ⊂ R3,

where

X(x) =b1(y
2 − x2) + b2zy,

Y (x) =2b1yx− b2zx,

Z(x) =− (a1z + a2y(y
2 − 3x2)),

and where (a1, a2, b1, b2) are real constants.
We assume that (a1, a2) ̸= (0, 0) and (b1, b2) ̸= (0, 0).
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3.11 Chern numbers in the presence of D3 symmetry

Proposition 3. For the D3 invariant Hamiltonian H(x), owing
to the invariance of the Chern numbers with respect the scaling of
the parameters (a1, a2, b1, b2), the parameter space R4−{0} reduces
to the two-torus T 2 determined by a1 = cosϕ1, a2 = sinϕ1 and
b1 = cosϕ2, b2 = sinϕ2, on which the iso-Chern diagram for the
eigen-line bundle associated with positive eigenvalue is described in
the following figure. The iso-Chern diagram for the eigen-line bundle
associated with negative eigenvalue is obtained by opposing the sign
of the Chern number assigned to each iso-Chern domain.
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Figure 2: The iso-Chern diagram for the D3 invariant Hamiltonian

In each iso-Chern domain, the Chern number for eigen-line bundle
with positive eigenvalue is indicated. The read and blue lines (ϕ1 =
±π

2 , ϕ2 = ±π
2) and black curves (cosϕ1 cosϕ2 = sinϕ1 sin

3 ϕ2) are
the sets of degeneracy points.
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3.12 The octahedral group O

The octahedral groupO is the orientation-preserving symmetry group
for the regular octahedron, which is known to be isomorphic to the
symmetric group S4 and further to be generated by

CZ4 7→

 −1
1

1

 , C
[−1−1−1]
3 7→

 1
1

1

 , CX2 7→

1
−1

−1

 .

This representation on R3 is known as the T1 (or F1) representation.
The two-dimensional representation E is generated by

CZ4 7→
(
1
−1

)
, C

[−1−1−1]
3 7→

(
−1
2 −

√
3
2√

3
2 −1

2

)
, CX2 7→

(
1
1

)
.
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3.13 Actions of the group O

The E representation of the groupO acts on the setH0(2) of traceless
2× 2 Hermitian matrices, which induces the reducible representation
E ⊕ A2, where the representation space for E is spanned by σ3, σ1
and that for A2 by σ2.
The functions (

2z2 − x2 − y2√
3(x2 − y2)

)
, xyz

are known as E-equivariant and A2-equivariant, respectively, where
the group O acts on R3 by T1 (or F1) representation.
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3.14 Hamiltonians with O symmetry

Let

ϕ1 = 2z2 − x2 − y2, ϕ2 =
√
3(x2 − y2), ϕ3 = xyz.

Then, the Hamiltonian

H(x) =

(
aϕ1 aϕ2 − ibϕ3

aϕ2 + ibϕ3 −aϕ1

)
proves to be invariant under theO group action,DE(g)H(x)DE(g)−1 =
H(DT1(g)x), g ∈ O, where a, b are real parameters with (a, b) ̸=
(0, 0).
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3.15 Chern numbers in the presence of O symmetry

Proposition 4. The parameter space R2−{0} for the O-invariant
Hamiltonian H(x) reduces to a circle, and the degeneracy points on
this circle are (a, b) = (±1, 0), (0,±1). The Chern numbers are shown
in the figure,

-

6

a

b

Ch = −4

Ch = 4Ch = 4

Ch = −4

Figure 3: Chen numbers on the unit circle
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3.16 A sketch of the proof

The condition of the degeneracy is described as

detH(x) = 0 ⇔ a2(ϕ21 + ϕ22) = 0, b2ϕ23 = 0.

Since the condition is scale invariant, we may restrict the parameters
to the circle a2 + b2 = 1. There are four degeneracy points (±1,±1)
on this circle, for which the eigenvalues of H(x) are degenerate on
some points of S2. For regular values of the parameter, line bundles
are associated with each eigenvalue. The exceptional points at which
the normalized eigenvector for the positive eigenvalue is not defined
are

n± =

 0
0
±1

 , a± =


1√
2

± 1√
2

0

 , b± =


− 1√

2

± 1√
2

0

 .
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3.17 A sketch of the proof, continued

In the case of a > 0, the domains of normalized eigenvectors v± are

U+ = S2 − {n±}, U− = S2 − {a±, b±},
respectively. The v± are related by

v+ = Φv−, Φ =
aϕ2 − ibϕ3√
a2ϕ2 + b2ϕ23

on U+ ∩ U−.

The local connection form are defined to be

ω+ = v
†
+dv+, ω− = v

†
−dv−,

and related by

ω+ = Φ−1dΦ + ω− on U+ ∩ U−.
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3.18 A sketch of the proof, continued further

Let C1 and C2 be two circles at the levels z = ±h with 0 < h < 1.
Let S2+ and S2− be regions separated by C1 and C2. The S2 is the

region containing the equator and S2− is the union of two regions
containing either of the north or the south pole. The orientation of
Ci is in keeping with that of S2+.
The Chedrn number is then evaluated as

c1 =
i

2π

∫
S2

Ω = − 1

2πi

∫
C1+C2

Φ−1dΦ.

The right-hand side is minus the sum of the winding numbers of the
maps Ck → U(1) by Φ with k = 1, 2. The winding numbers are
computable directly. A linearization method is applicable if the cir-
cles are deformed suitably without changing the value of the contour
integrals.
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4. Chern numbers associatd wtih three-level semi-quantum
systems with O symmetry

• the octahedral group O ∼= S4

• a choice of the action of O and
the irreducible representations T1 and E.

• O invariant semi-quantum Hamiltonians

• the iso-Chern diagram
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4.1 The space of traceless 3× 3 traceless Hermitian matrices
as a (reducible) representation space of the O group

H0(3) =


 0 c1 b1
c1 0 a1
b1 a1 0


⊕


 0 −ic2 ib2
ic2 0 −ia2
−ib2 ia2 0


⊕


d1 0 0

0 d2 0
0 0 d3

 ,

where ak, bk, ck ∈ R, dj ∈ R with d1 + d2 + d3 = 0.
Each subspace carries two- or three dimensional irreducible (E or T1)
representation of O under the adjoint action in the T1 matrix form.
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4.2 O-Invariant Hamiltonians

Let H(x) ∈ H0(3) with x ∈ S2 ⊂ R3.
The H(x) is O-invariant if and only if

gH(x)g−1 = H(gx) for g ∈ O,

where g is represented in the T1 matrix form.
A simple example of O-invariant Hamiltonian is

H(x) =

 0 −iz iy
iz 0 −ix
−iy ix 0

 .
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4.3 Examples of O-Invariant Hamiltonians

H(x) =

 0 −iz(z2 − 3
5r

2) iy(y2 − 3
5r

2)

iz(z2 − 3
5r

2) 0 −ix(x2 − 3
5r

2)

−iy(y2 − 3
5r

2) ix(x2 − 3
5r

2) 0

 ,

where r2 = x2 + y2 + z2.

H(x) =

 0 xy zx
xy 0 yz
zx yz 0

 , H(x) =

 0 z(x2 − y2) y(z2 − x2)

z(x2 − y2) 0 x(y2 − z2)

y(x2 − x2) x(y2 − z2) 0

 .

H(x) =

2x2 − y2 − z2

2y2 − z2 − x2

2z2 − x2 − y2

 .
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4.4 A remark
The Hamiltonian of the diagonal matrix form is expressed as2x2 − y2 − z2

2y2 − z2 − x2

2z2 − x2 − y2


= (2z2 − x2 − y2)

−1
2
−1
2
1

 +
√
3(x2 − y2)


√
3
2

−
√
3
2

0

 ,

where ϕ1 = 2z2− x2− y2 and ϕ2 =
√
3(x2− y2) are known to form

an E-equivariant vector-valued function.
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4.5 A model Hamiltonian with O symmetry
We consider the Hamiltonian of the form

H(x) =

 0 −iZ iY
iZ 0 −iX
−iY iX 0

 , x ∈ S2 ⊂ R3,

where X,Y, Z are functions given by

X =ax + bx(x2 − 3

5
r2),

Y =ay + by(y2 − 3

5
r2),

Z =az + bz(z2 − 3

5
r2),

respectively, where r2 = x2 + y2 + z2, and where a, b are real pa-
rameters with (a, b) ̸= (0, 0). The constraint r = 1 is imposed, of
course.
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4.6 Degeneracy

The eigenvalues of H(x) are λ = 0,±R with R2 = X2 + Y 2 + Z2.

Degeneracy occurs iff R = 0, which provides degeneracy points, 0
0
±1

 ,

 0
±1
0

 ,

±1
0
0

 , if and only if
a

2
= −b

5
.


0

± 1√
2

± 1√
2

 ,


± 1√

2
0

± 1√
2

 ,


± 1√

2

± 1√
2

0

 , if and only if
a

1
=

b

10
.


± 1√

3

± 1√
3

± 1√
3

 , if and only if
a

4
=

b

15
.
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4.7 Chern numbers in the presence of O symmetry

Proposition 4. The parameter space R2−{0} for the O-invariant

Hamiltonian H(x) reduces to the unit circle. In association with
the positive eigenvalue λ = R, an eigen-line bundle is determined on
each arc between consecutive degeneracy points on the unit circle.
The Chern numbers of the eigen-line bundles are shown as follows:

-

6

a

b

Ch = −2

Ch = 10

Ch = 14
Ch = −10

Ch = 2

Ch = −14

Figure 4: Chern numbers on the unit cycle: Chern numbers are assigned to arcs separated by degeneracy points.
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5. Linearization method on a subspace

In order to work with eigen-line bundles, we need to know eigenvalues
and eigenvectors by solving eigenvalue equation.
However, algebraic equations of degree greater than two are not easy
to solve.

Is it possible to evaluate a Chern number by linear approximation on
a two-dimensional subspace assigned to a degeneracy point on S2 ?
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5.1 A more general model of O-invariant Hamiltonian

H(x)

=

 0 iz −iy
−iz 0 ix
iy −ix 0


+a

y2 + z2 − 2x2 0 0

0 z2 + x2 − 2y2 0

0 0 x2 + y2 − 2z2


+b

 0 xy zx
xy 0 yz
zx yz 0

 .
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5.2 Toward the iso-Chern diagram

Figure 5: The iso-Chern diagaram

To each point of a degeneracy curve, there corresponds a set of degeneracy points on S2, which forms an orbit

of the group O. The symbol Ck attached to each degeneracy curve denote the associated isotropy subgroup.

Hence the order of the orbit in question is 24/#Ck. ∆kChern = ±24/#Ck ?
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5.3 Eigenspace decomposition at a degeneracy point
Let |ek(x)⟩ denote the normalized eigenvector associated with the
disjoint eigenvalue λk = λk(x) of the Hamiltonian H(x). Then,

C3 = span{|e1(x)⟩} ⊕ span{|e2(x)⟩} ⊕ span{|e3(x)⟩}.
If λ1(x0) ̸= λ2(x0) = λ3(x0) at x0, the decomposition becomes

C3 = span{|e1(x0)⟩} ⊕ span{|e2(x0)⟩, |e3(x0)⟩},
where the basis {|e2(x0)⟩, |e3(x0)⟩} is determined up to U(2).

Can one use the subspace span{|e2(x0)⟩, |e3(x0)⟩} with x0 being
isolated, in order to evaluate a change in Chern numbers against the
variation of control parameters by means of the linear approximation
of the Hamiltonian on this subspace ?
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5.4 The Hamiltonian at a degeneracy point

For a = 1
3, the model Hamiltonian have a degeneracy point x0 =

(0, 0, 1)T , at which the Hamiltonian takes the form

H(x0) =

 1
3 i 0

−i 1
3 0

0 0 −2
3

 ,

and has the eigenvalues and the associated eigenvectors,

λ1 =
4

3
, λ2 = λ3 = −2

3
,

|e1(x0)⟩ =
1√
2

i1
0

 , |e2(x0)⟩ =
1√
2

−i
1
0

 , |e3(x0)⟩ =

0
0
1

 ,

respectively. Note that the orbit of x0 by the action of the O group
forms a set of degeneracy points.
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5.5 Linearization at the degeneracy point x0
With respect to the basis |ek(x0)⟩, k = 1, 2, 3, the Hamiltonian is
linearized at x0 to be

Hfl(q) =


a + 1 0 b−1√

2
(y − ix)

0 a− 1 b+1√
2
(y + ix)

b−1√
2
(y + ix) b+1√

2
(y − ix) −2a

 ,

where q is a point of the tangent plane Π0 to S2 at x0, which is
endowed with the Cartesian coordinates (x, y).

The Hfl(q) does not take a block diagonal form, i.e., does not fit
the decomposition span{|e1(x0)⟩} ⊕ span{|e2(x0)⟩, |e3(x0)⟩}.
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5.6 Restriction on a subspace
Restricted on V2 := span{|e2(x0⟩, |e3(x0)⟩}, the Hfl(q) reduces to

H2l(q) =

 a− 1 1+b√
2
(y + ix)

1+b√
2
(y − ix) −2a

 ,

which has the eigenvalues

λ± := −a + 1

2
± 1

2

√
(3a− 1)2 + 2(1 + b)2(x2 + y2).

Does λ± approximate to eigenvalues of Hfl(q) ?
If so, the linearization on the subspace V2 may work.
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5.7 Linearizable on the subspace V2 ?
Let F (λ) = det(Hfl(q)− λI3). Then, for λ±, one has

F (λ±) = (λ± − a + 1)
(b− 1√

2

)2
(x2 + y2).

If the factor λ± − a + 1 is small enough for a sufficiently close to 1
3,

the λ± will approximate to eigenvalues of Hfl(q).

Let a = 1
3 + t. We can show that if (1 + b)2(x2 + y2) ≪ 9t2 then

λ+ − a + 1 ≈ −3

2
t +

3

2
|t| =

{
0 for t > 0,

−4
3t for t < 0,

λ− − a + 1 ≈ −3

2
t− 3

2
|t| =

{
−4
3t for t > 0,

0 for t < 0,

which means that λ+ approximates to an eigenvalue of Hfl(q) for
t > 0, but not for t < 0.

53



5.8 Normalized eigenvector of Hfl(q)
For the eigenvalue λ sufficiently close to λ+, if (x, y) ̸= (0, 0), the
Hfl(q) has the normalized eigenvector expressed in two ways as

|vup(q)⟩ =
1

Nup

 (a− 1− λ)Y
(a + 1− λ)X

−(a + 1− λ)(a− 1− λ)

 ,

|vdown(q)⟩ =
1

Ndown

 −XY
|Y |2 + (a + 1− λ)(λ + 2a)

(a + 1− λ)X

 ,

where

X =
b + 1√

2
(y + ix), Y =

b− 1√
2
(y − ix),

N2
up = (a− 1− λ)2|Y |2 + (a + 1− λ)2|X|2 + (a + 1− λ)2(a− 1− λ)2,

N2
down = |X|2|Y |2 +

(
|Y |2 + (a + 1− λ)(λ + 2a)

)2
+ (a + 1− λ)2|X|2.
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5.9 An eigen-line bundle on the tangent plane Π0
For t > 0, Nup vanishes at (x, y) = (0, 0), but Ndown does not.

Outside of (x, y) = (0, 0), |vup(q)⟩ and |vdown(q)⟩ are related by

|vup(q)⟩ = Φfl|vdown(q)⟩, Φfl =
Ndown

Nup

(a + 1− λ)X

|Y |2 + (a + 1− λ)(λ + 2a)
.

Since a+ 1− λ, λ+ 2a, Nup, and Ndown are positive if t > 0 for the
eigenvalue λ sufficiently close to λ+, the winding number associated
with Φfl for a circle enclosing the origin is the same as that associated
with X/|X|.
The winding number for X/|X| is associated with the eigen-line bun-
dle corresponding to the eigenvalue λ+ of H2l(q).
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5.10 A linearization method on the subspace V2 for Chern number

A generic setting for an eigen-line bundle over S2:
For a non-degenerate eigenvalue, let S2+ and S2− be open subsets of

S2 in which the normalized eigenvectors |v+⟩ and |v−⟩ are defined,
respectively. These eigenvector are related with each other by a tran-
sition function Φ on the intersection S2+ ∩ S2−; |v+⟩ = Φ|v−⟩.
The (first) Chern number of the eigen-line bundle is equal to minus
the sum of the winding number for a small circle centered at each
exceptional point at which the normalized eigenvector, say |v+⟩, is
not defined.

The linearization method on the subspce V2:
If the circle enclosing an exceptional point for Φ is small enough,
the winding number (or mapping degree) assigned to the exceptional
point is equal to that for Φfl and then to that for X/|X|.
Then, the linearization method serves the Chern number calculation.
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5.11 A Change in eigen-line bundles
For a regular point of the parameter space, we have the eigen-line
bundles Lk, k = 1, 2, 3, associated with eigenvalues λk, k = 1, 2, 3,
for the full Hamiltonian. We here assume that λ1 > λ2 > λ3 for
simplicity. If we cross the line a = 1

3 with |b| < 1 from the domain

with a < 1
3 to the domain with a > 1

3 in the parameter space (see
Fig.5), the direct sum of the bundles L1 ⊕ L2 ⊕ L3 changes into
L1 ⊕ L′2 ⊕ L′3 after the crossing. This is because in crossing the line

a = 1
3 the degeneracy in eigenvalues occurs in the form λ1 ̸= λ2 =

λ3 at x0 = (0, 0, 1)T and at the orbit of x0 by the group O with
λ1 = 4

3, λ2 = λ3 = −2
3. The eigen-line bundle L1 do not undergo a

topological change.
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5.12 A Change in Chern numbers
We are interested in the eigen-line bundle associated with the eigen-
value which approximates to λ+. The change we will observe is a
change in the Chern number according to the topological change of
L2 → L′2. According to the linearization method, we are allowed
to consider the exceptional point for |vup(p)⟩ with t > 0. Since the
circle C0 enclosing the exceptional point in question is clockwise ori-
ented, the map X/|X| = sin t+ i cos t : C0 → U(1) has the winding
number −1. Hence, the Chern number components to be assigned is
+1. To obtain a full change in the Chern number, we have to sum up
all the components attached to all the exceptional points concerned,
the number of which is #O = 24/#C4 = 6.
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