Duality of（2，3，5）－distributions and Lagrangian cone structures

$(2,3,5)$－分布とラグランジュ錐構造の双対性

Goo Ishikawa（石川 剛郎）

Department of Mathematics，Hokkaido University，Japan
沼津改め静岡研究会 幾何，数理物理，そして量子論静岡大学理学部

March 7th 2018

【 $(2,3,5)$-distributions】

Let Y be a 5 -dimensional manifold and $D \subset T Y$ a distribution of rank 2 . Then D is called a ($2,3,5$)-distribution if it has small growth $(2,3,5)$, namely, if $\operatorname{rank}(\partial \mathcal{D})=3$ and $\operatorname{rank}\left(\partial^{(2)} \mathcal{D}\right)=5$, where $\partial \mathcal{D}:=[\mathcal{D}, \mathcal{D}]$ is the derived system and $\partial^{(2)} \mathcal{D}:=[\mathcal{D}, \partial \mathcal{D}](=\mathcal{D}+[\mathcal{D}, \partial \mathcal{D}])$.

Today, I would like to speak some results obtained in the joint papers:

Goo Ishikawa, Yoshinori Machida, Masatomo Takahashi, Singularities of tangent surfaces in Cartan's split G_{2}-geometry, Hokkaido Univ. Preprint Series in Math. \#1020 (2012), Asian J. of Math., 20-2, (2016), 353-382.

Goo Ishikawa, Yumiko Kitagawa, Wataru Yukuno, Duality of singular paths for $(2,3,5)$-distributions, arXiv:1308.2501 [math.DG] (2013),
J. of Dynamical and Control Systems, 21 (2015), 155-171.

Goo Ishikawa, Yumiko Kitagawa, Asahi Tsuchida, Wataru Yukuno, Duality of (2,3,5)-distributions and Lagrangian cone structures, in preparation.

【 Cartan prolongation】
Let D be a $(2,3,5)$-distribution on a (5 -dim.) manifold Y. Let $Z:=P D=(D-0) / \mathbf{R}^{\times}$be the space of tangential lines in $D, Z:=\left\{(y, \ell) \mid y \in Y, \ell \subset D_{y}\left(\subset T_{y} Y\right), \operatorname{dim}(\ell)=1\right\}$. Then $\operatorname{dim}(Z)=6$ and the projection $\pi_{Y}: Z \rightarrow Y$ is an $\mathbf{R} P^{1}$-bundle.

We define a subbundle $E \subset T Z$ of rank 2 (Cartan prolongation of $D \subset T Y$) by setting for each $(y, \ell) \in Z, \ell \subset D_{y}$,

$$
E_{(y, \ell)}:=\pi_{Y *}^{-1}(\ell)\left(\subset T_{(y, \ell)} Z\right)
$$

Then E is a distribution with (weak) growth $(2,3,4,5,6)$:

$$
\begin{aligned}
& \operatorname{rank}(E)=2, \operatorname{rank}(\partial E)=3, \operatorname{rank}\left(\partial^{(2)} E\right)=4 \\
& \quad \operatorname{rank}\left(\partial^{(3)} E\right)=5, \operatorname{rank}\left(\partial^{(4)} E\right)=6
\end{aligned}
$$

【 Pseudo product structure】
Then we see that there exists an intrinsic decomposition

$$
E=K \oplus L
$$

of E with $L:=\operatorname{Ker}\left(\pi_{Y *}\right) \subset E$ and a complementary line subbundle K of E (a pseudo-product structure in the sense of N. Tanaka).

We will explain this in terms of "geometric control theory".

【 Control systems 】
A control system $\mathbb{C}: \mathcal{U} \xrightarrow{F} T M \rightarrow M$ on a manifold M is given by a locally trivial fibration $\pi_{\mathcal{U}}: \mathcal{U} \rightarrow M$ over M and a map $F: \mathcal{U} \rightarrow T M$ such that the following diagram commutes:

$$
\begin{array}{llr}
\mathcal{U} \\
\pi_{\mathcal{U}} \searrow & \stackrel{F}{\longrightarrow} & T M \\
& \begin{array}{c}
\\
\swarrow
\end{array} \\
\pi_{T M}
\end{array}
$$

M

Locally on M, a control system is given by a family of vector fields $f_{u}(x)=F(x, u)$ over $M,(x, u) \in \mathcal{U}, x \in M$.

Example. A distribution $D \subset T M$ (vector subbundle) is regarded as a control system $\mathbb{D}: D \hookrightarrow T M \longrightarrow M$, by the inclusion.

【Equivalences of control systems】
Two control systems $\mathbb{C}: \mathcal{U} \xrightarrow{F} T M \xrightarrow{\pi_{T M}} M$ and $\mathbb{C}^{\prime}: \mathcal{U}^{\prime} \xrightarrow{F^{\prime}}$ $T M^{\prime} \xrightarrow{\pi_{T M^{\prime}}} M^{\prime}$ are called equivalent if the diagram

$$
\begin{array}{rcccc}
\mathcal{U} & \xrightarrow{F} & T M & \xrightarrow{\pi_{T M}} & M \\
\psi \downarrow & & \varphi_{*} \downarrow & & \downarrow \varphi \\
\mathcal{U}^{\prime} & \xrightarrow{F^{\prime}} & T M^{\prime} & \xrightarrow{\pi_{T M^{\prime}}} & M^{\prime}
\end{array}
$$

commutes for some diffeomorphisms ψ and φ. The pair (ψ, φ) of diffeomorphisms is called an equivalence of the control systems \mathbb{C} and \mathbb{C}^{\prime}.

【 Controls, trajectories and paths】
Given a control system $\mathbb{C}: \mathcal{U} \xrightarrow{F} T M \rightarrow M$, an L^{∞} (measurable, essentially bounded) map $c:[a, b] \rightarrow \mathcal{U}$ is called an admissible control if the curve

$$
\gamma:=\pi_{\mathcal{U}} \circ c:[a, b] \rightarrow M
$$

satisfies the differential equation

$$
\dot{\gamma}(t)=F(c(t)) \quad(\text { a.e. } t \in[a, b]) .
$$

Then the Lipschitz curve γ is called a trajectory. If we write $c(t)=(x(t), u(t))$, then $x(t)=\gamma(t)$ and

$$
\dot{x}(t)=F(x(t), u(t)), \quad(\text { a.e. } t \in[a, b])
$$

We use the term "path" for a smooth $\left(C^{\infty}\right)$ immersive trajectory regarded up to parametrisation.

【 Endpoint mappings and singular controls 】
The totality \mathcal{C} of admissible controls $c:[a, b] \rightarrow \mathcal{U}$ with a given initial point $q_{0} \in M$ is a Banach manifold. The endpoint mapping End : $\mathcal{C} \rightarrow M$ is defined by

$$
\operatorname{End}(c):=\pi_{\mathcal{U}} \circ c(b)
$$

An admissible control $c:[a, b] \rightarrow \mathcal{U}$ with the initial point $\pi_{\mathcal{U}}(c(a))=q_{0}$ is called singular or abnormal, if $c \in \mathcal{C}$ is a singular point of End, namely if the differential End ${ }_{*}$: $T_{c} \mathcal{C} \rightarrow T_{\mathcal{E}(c)} M$ is not surjective. If c is a singular control, then the trajectory $\gamma=\pi_{\mathcal{U}} \circ c$ is called a singular trajectory or an abnormal extremal.

【 Local characterisation of singular controls】

We define the Hamiltonian function $H: \mathcal{U} \times{ }_{M} T^{*} M \rightarrow \mathbf{R}$ of the control system $F: \mathcal{U} \rightarrow T M$ by

$$
H(x, p, u):=\langle p, F(x, u)\rangle, \quad((x, u),(x, p)) \in \mathcal{U} \times_{M} T^{*} M
$$

A singular control $(x(t), u(t))$ is characterised by the liftability to an abnormal bi-extremal $(x(t), p(t), u(t))$ satisfying the constrained Hamiltonian equation

$$
\left\{\begin{array}{l}
\dot{x}_{i}(t)=\frac{\partial H}{\partial p_{i}}(x(t), p(t), u(t)), \quad(1 \leq i \leq m) \\
\dot{p}_{i}(t)=-\frac{\partial H}{\partial x_{i}}(x(t), p(t), u(t)), \quad(1 \leq i \leq m) \\
\frac{\partial H}{\partial u_{j}}(x(t), p(t), u(t))=0, \quad(1 \leq j \leq r), \quad p(t) \neq 0 .
\end{array}\right.
$$

【The space X of singular paths】

Let $D \subset T Y$ be a $(2,3,5)$-distribution.
Then, it is known that for any point y of Y and for any direction $\ell \subset D_{y}$, there exists uniquely a singular D-path (an immersed abnormal extremal for D) through y with the given direction ℓ.

Thus the singular D-paths form another five dimensional manifold X.

【The double fibrations】

Let $Z=P D=(D-0) / \mathbf{R}^{\times}$be the space of tangential lines in $D, \operatorname{dim}(Z)=6$ ．Then Z is naturally foliated by the liftings of singular D－paths，and we have locally double fibrations：

$$
Y \stackrel{\pi_{Y}}{\longleftarrow} Z \xrightarrow{\pi_{X}} X .
$$

【Cartan prolongation】

Let $E \subset T Z$ be the Cartan prolongation of $D \subset T Y$ ：
For each $(y, \ell) \in Z, \ell \subset T_{y} Y, E_{(y, \ell)}:=\pi_{Y *}^{-1}(\ell)$ ．
Then E is a distribution with growth $(2,3,4,5,6)$ ．
If we put $L=\operatorname{Ker}\left(\pi_{Y *}\right), K=\operatorname{Ker}\left(\pi_{X *}\right)$ ，then we have a decomposition $E=K \oplus L$ by integrable sub－bundles．

【 Pseudo-product structures of G_{2}-type】
Theorem. There exists a natural bijective correspondence: $\{(2,3,5)$-distributions $\} / \cong \longleftrightarrow$
pseudo-product structures of G_{2}-type (Z, E):
(2, 3, 4, 5, 6)-distributions E with a decomposition

$$
E=K \oplus L, \operatorname{rank}(K)=\operatorname{rank}(L)=1,
$$

$$
[\mathcal{K}, \mathcal{L}]=\partial \mathcal{E}(:=[\mathcal{E}, \mathcal{E}]=\mathcal{E}+[\mathcal{E}, \mathcal{E}]),
$$

$$
[\mathcal{K}, \partial \mathcal{E}]=\partial^{(2)} \mathcal{E},[\mathcal{L}, \partial \mathcal{E}]=\partial \mathcal{E},
$$

$$
\left[\mathcal{K}, \partial^{(2)} \mathcal{E}\right]=\partial^{(3)} \mathcal{E},\left[\mathcal{L}, \partial^{(2)} \mathcal{E}\right]=\partial^{(2)} \mathcal{E},
$$

$$
\left[\mathcal{K}, \partial^{(3)} \mathcal{E}\right]=\partial^{(3)} \mathcal{E},\left[\mathcal{L}, \partial^{(3)} \mathcal{E}\right]=\partial^{(4)} \mathcal{E}
$$

$$
\begin{array}{lcccccccc}
\mathcal{E} & \subset & \partial \mathcal{E} & \subset & \partial^{(2)} \mathcal{E} & \subset & \partial^{(3)} \mathcal{E} & \subset & \partial^{(4)} \mathcal{E} \\
2 & & 3 & & 4 & & 5 & & 6
\end{array}
$$

【 The symbol algebra】

Taking the gradation of the filtration on $T Z$, we have the symbol algebra:

$$
\begin{aligned}
& \mathfrak{m}=\mathfrak{g}_{-5} \oplus \mathfrak{g}_{-4} \oplus \mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \\
& \quad=\left\langle e_{6}\right\rangle \oplus\left\langle e_{5}\right\rangle \oplus\left\langle e_{4}\right\rangle \oplus\left\langle e_{3}\right\rangle \oplus\left\langle e_{1}, e_{2}\right\rangle \\
& {\left[e_{1}, e_{2}\right]=e_{3}} \\
& {\left[e_{1}, e_{3}\right]=e_{4},\left[e_{2}, e_{3}\right]=0} \\
& {\left[e_{1}, e_{4}\right]=e_{5},\left[e_{2}, e_{4}\right]=0} \\
& {\left[e_{1}, e_{5}\right]=0,\left[e_{2}, e_{5}\right]=e_{6}} \\
& \mathfrak{k}=\left\langle e_{1}\right\rangle=\operatorname{Ker}\left\{\mathfrak{g}_{-1} \rightarrow \operatorname{Hom}\left(\mathfrak{g}_{-4}, \mathfrak{g}_{-5}\right)\right\} \\
& \mathfrak{l}=\left\langle e_{2}\right\rangle=\operatorname{Ker}\left\{\mathfrak{g}_{-1} \rightarrow \operatorname{Hom}\left(\mathfrak{g}_{-2}, \mathfrak{g}_{-3}\right)\right\}
\end{aligned}
$$

【 Simple Lie algebras of rank 2】

Root systems of types A_{2}, B_{2} and G_{2}

Fundamental roots for A_{2}, B_{2} and G_{2}

【 A_{2} geometry】
$Y^{2}=P^{2} \stackrel{\pi_{Y}}{\longleftarrow} Z^{3}=P T^{*}\left(P^{2}\right)=P T^{*}\left(P^{2 *}\right) \xrightarrow{\pi_{X}} X^{2}=P^{2 *}$,
$E:=\operatorname{Ker}\left(\pi_{Y *}\right) \oplus \operatorname{Ker}\left(\pi_{X *}\right) \subset T Z:$ contact structure.

$$
\mathfrak{m}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}=\left\langle e_{3}\right\rangle \oplus\left\langle e_{1}, e_{2}\right\rangle, \quad\left[e_{1}, e_{2}\right]=e_{3}
$$

There is no canonical decomposition of \mathfrak{g}_{-1} (from geometric control theory nor from the theory of graded Lie algebras).

【 B_{2} geometry】

$$
\left(Z^{4}, E=K \oplus L\right)
$$

pseudo-product Engel structure

3rd order ODE

$$
\left(Y^{3}, D\right)
$$

projective contact structure
$\left(X^{3}, C\right)$
non-degenerate (strictly convex) cone structure

Classification of geometric structures, contact geometry of 3rd order ODE, by E. Cartan, S.-S. Chern(1940), N. Tanaka, ...
"Wünschmann invariant" $=0 \Longleftrightarrow C$: metric cone.

【 Engel Lie algebra】

$$
\begin{gathered}
\mathfrak{m}=\mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}=\left\langle e_{4}\right\rangle \oplus\left\langle e_{3}\right\rangle \oplus\left\langle e_{1}, e_{2}\right\rangle, \\
{\left[e_{1}, e_{2}\right]=e_{3},\left[e_{1}, e_{3}\right]=e_{4},\left[e_{2}, e_{3}\right]=0 .} \\
\mathfrak{l}=\left\langle e_{2}\right\rangle=\operatorname{Ker}\left\{\mathfrak{g}_{-1} \rightarrow \operatorname{Hom}\left(\mathfrak{g}_{-2}, \mathfrak{g}_{-3}\right)\right\},
\end{gathered}
$$

There exists just the canonical line sub-bundle $L \subset E(\subset T Z)$ (from geometric control theory or from the theory of graded Lie algebras).

【 G_{2}-geometry — The cone fields 】
The original $(2,3,5)$-distribution D is obtained as the linear hull of the cone field ("bowtie") induced from K :

$$
D_{y}=\text { linear hull }\left(\bigcup_{z \in \pi_{Y}^{-1}(y)} \pi_{Y *}\left(K_{z}\right) \subset T_{y} Y\right)
$$

Also, the $(2,3,5)$-distribution D is obtained as the reduction of ∂E by Cauchy characteristic $L=\operatorname{Ker}\left(\pi_{Y *}\right)$.

Moreover we have the cone field $C \subset T X$ on X by setting, for each $x \in X$,

$$
C_{x}:=\bigcup_{z \in \pi_{X}^{-1}(x)} \pi_{X *}\left(L_{z}\right) \subset T_{x} X
$$

【 The cone fields (continued)】
Then the linear full $D^{\prime} \subset T X$ of the cone field C turns to be a contact structure on X induced from $\partial^{(3)} E$ via π_{X}. Thus (X, C) is a "Lagrangian cone structure".

We have sequences of cones on Y, Z, X respectively: $(\underline{2}, 2,3, \underline{5}, 5)$ on $\mathrm{Y} \longleftarrow(2,3,4,5,6)$ on $\mathrm{Z} \longrightarrow(\underline{2}, \underline{3}, \underline{4}, 4,5)$ on X .

So far, we have distributions D, E, L, K and the cone filed C from the double fibration $Y \stackrel{\pi_{Y}}{\longleftarrow} Z \xrightarrow{\pi_{X}} X$:

Now, we regard the cone field as a control system over X :

$$
\mathbb{C}: L \xrightarrow{\left.\pi_{X *}\right|_{L}} T X \rightarrow X
$$

Then we have the following main theorem:

【 G_{2}-Duality】

Theorem (Duality [IKY]).

Singular paths of the control system

$$
\mathbb{C}: L \xrightarrow{\pi_{X * \mid L}} T X \rightarrow X
$$

are given by π_{X}-images of π_{Y}-fibres.
Therefore, for any $x \in X$ and for any direction $\ell \subset C_{x}$, there exists uniquely a singular \mathbb{C}-paths passing through x with the direction ℓ at x.
The original space Y is identified with the space of singular paths for (X, C), while X is the space of singular paths for (Y, D).

【 A remaining problem on G_{2}-duality】
The description of the duality on $(2,3,5)$-distributions (Y, D) and Lagrangian cone structures (X, C) via (Z, E) should be completed by answering the question:

What kinds of Lagrangian cone structures do they correspond to (2, 3, 5)-distributions ?

【 Cone structures 】

Let $C \subset T X$ be a two dimensional cone field ($=\mathbf{R}^{\times}$invariant, locally trivial subset of $T X$) on a 5 -dimensional manifold X. Suppose that $C_{x} \subset T_{x} X$ has singularity just at 0 , for any $x \in X$. Then $Z=P C:=(C \backslash\{0\}) / \mathbf{R}^{\times}$is a 6-dimensional manifold and $\pi_{X}: Z \rightarrow X$ is a C^{∞}-fibration with non-singular projective curves $P C_{x} \subset P\left(T_{x} X\right) \cong P^{4}$ as fibres.
As a non-degeneracy condition, we assume that the first, second and third derivatives are linearly independent everywhere on $P C_{x}$, for any $x \in X$.

【 The cone structure as a control system】
Let $L \subset\left(\pi_{X}\right)^{-1}(T X)$ be the "tautological line bundle" over $Z=P C: L:=\left\{((x, \ell), v) \in Z \times T X \mid v \in \ell \subset T_{x} X\right\}$, which is regarded also as a fibration over X by $\pi_{L}: L \rightarrow X,((x, \ell), v) \mapsto x$, with 2-dimensional fibres.

Then we regard the cone structure C in X as the control system over X :

$$
\mathbb{C}: L \rightarrow T X \rightarrow X, \quad L \ni((x, \ell), v) \mapsto(x, v) \mapsto x,
$$

with 2-control parameters.
Each section $s: X \rightarrow L \backslash\{0\}$ of the fibration $\pi_{L}: L \rightarrow X$ defines a direction field in C over X and the control-linear approximation $T_{s} C$ of C along s, which is a subbundle of $T X$ of rank 2 .

Moreover, for each section $s: X \rightarrow L \backslash\{0\}$, we define osculating bundles $O_{s}^{(2)} C \subset T X$ of rank 3 and $O_{s}^{(3)} C \subset$ $T X$ of rank 4, generated by osculating planes O_{2} and 3dimensional osculating spaces O_{3} to $P C_{x}$ with direction s :

【 non-degenerate Lagrangian cone structure】

Definition.

A cone field $C \subset T X$ is called a non-degenerate Lagrangian cone structure on a 5 -dimensional manifold X if
(i) $D^{\prime}:=O_{s}^{(3)} C \subset T X$ is independent of choice of direction field $s: X \rightarrow L \backslash\{0\}$ and is a contact structure on X,
(ii) $T_{s} C$ is a Lagrangian sub-bundle of D^{\prime}, i.e. the derived system $\partial\left(T_{s} C\right) \subset D^{\prime}$, for any direction field s.

【 The complete description of the duality】
Theorem. There exist natural bijective correspondences:
$\{(2,3,5)$-distributions $(Y, D)\} / \cong \longleftrightarrow$
pseudo-product structures of G_{2}-type (Z, E):
(2, 3, 4, 5, 6)-distributions E with a decomposition

$$
\begin{gathered}
E=K \oplus L, \operatorname{rank}(K)=\operatorname{rank}(L)=1, \\
{[\mathcal{K}, \mathcal{L}]=\partial \mathcal{E}(:=[\mathcal{E}, \mathcal{E}]=\mathcal{E}+[\mathcal{E}, \mathcal{E}]),} \\
{[\mathcal{K}, \partial \mathcal{E}]=\partial^{(2)} \mathcal{E},[\mathcal{L}, \partial \mathcal{E}]=\partial \mathcal{E},} \\
{\left[\mathcal{K}, \partial^{(2)} \mathcal{E}\right]=\partial^{(3)} \mathcal{E},\left[\mathcal{L}, \partial^{(2)} \mathcal{E}\right]=\partial^{(2)} \mathcal{E},} \\
{\left[\mathcal{K}, \partial^{(3)} \mathcal{E}\right]=\partial^{(3)} \mathcal{E},\left[\mathcal{L}, \partial^{(3)} \mathcal{E}\right]=\partial^{(4)} \mathcal{E} .}
\end{gathered}
$$

$\longleftrightarrow\left\{\begin{array}{c}\text { non-degenerate Lagrangian cone structures }(X, C) \\ \text { on } 5 \text {-dimensional manifolds } X \text { with the condition }\end{array}\right\} / \cong$ $\partial\left(T_{s} C\right) \subset O_{s}^{(2)} C$, for any section $s: X \rightarrow L \backslash\{0\}$.

【 The complete description of the duality】

> pseudo-product structures of type G_{2}

(2, 3, 5)-distributions
non-degenerate Lagrangian cone structures satisfying $\partial\left(T_{s} C\right) \subset O_{s}^{(2)} C$, for any s

【 From Lagrangian cone to pseudo-product of G_{2}-type】

Suppose (X, C) is a non-degenerate Lagrangian cone structure. Then we define a subbundle $E \subset T Z$ of rank 2 by setting

$$
E_{(x, \ell)}:=\left(\pi_{X}\right)_{*}^{-1}(\ell)
$$

Then we have that E has weak growth $(2,3,4,5,6)$.
Set $K=\operatorname{Ker}\left(\pi_{X}\right)_{*} \subset E$.
Moreover the tautological line-bundle L is embedded in E as the Cauchy characteristic of the derived system ∂E, and we have the decomposition $E=K \oplus L$. Moreover it is a pseudo-product structure of G_{2}-type if and only if the condition $\partial\left(T_{s} C\right) \subset O_{s}^{(2)} C$ is fulfilled, for any $s: X \rightarrow L \backslash\{0\}$.

This completes the explanation on duality.

【 Example of G_{2}-flat case [MIT] 】

$G=\operatorname{Aut}\left(\mathbf{O}^{\prime}\right)$, the split $G_{2} . \mathbf{O}^{\prime}$ the split octonions.
Let $\mathbf{H}=\{a=x+y i+z j+w k \mid x, y, z, w \in \mathbf{R}\}$ be
Hamilton's quarternion algebra and define the split octonions by $\mathbf{O}^{\prime}=\mathbf{H} \oplus \mathbf{H}$ with the multiplication
as

$$
(a, b)(c, d):=(a c+\bar{d} b, d a+b \bar{c})
$$

Note that \mathbf{O}^{\prime} is a non-associative algebra.
We set $V:=\operatorname{Im}\left(\mathbf{O}^{\prime}\right)$, the imaginary part, $\operatorname{dim}(V)=7$.
Then $G=\operatorname{Aut}\left(\mathbf{O}^{\prime}\right)$ acts on V irreducibly.

Consider the split G_{2} flag manifold $Z:=\left\{\left(V_{1}, V_{2}\right) \mid V_{1} \subset V_{2} \subset V, V_{1}, V_{2}\right.$ are oriented null subalgebras $\}$, where an \mathbf{R}-subspace $W \subset V$ is called a null subalgebra if $w w^{\prime}=0$, for any $w, w^{\prime} \in W$.

Set
$Y:=\left\{V_{1} \mid V_{1} \subset V\right.$, 1-dimensional oriented null subalgebra $\}$, $X:=\left\{V_{2} \mid V_{2} \subset V, 2\right.$-dimensional oriented null subalgebra $\}$. Then $Z \cong S^{3} \times S^{3}, Y \cong S^{3} \times S^{2}, X \cong S^{3} \times S^{2}$.

Consider the double fibrations: $Y \stackrel{\Pi_{Y}}{\longleftarrow} Z \xrightarrow{\Pi_{X}} X$, Set

$$
E:=\operatorname{Ker}\left(\Pi_{Y *}\right) \oplus \operatorname{Ker}\left(\Pi_{X *}\right) \subset T Z
$$

which is called the ($\operatorname{split} G_{2}$) Engel distribution, which is of rank 2 and with weak growth ($2,3,4,5,6$).

Just from the split G_{2} double fibrations, we can obtain:
On the projective space Y of null vectors, a ($2,4,5$)-distribution $D \subset T Y$, called a Cartan structure.

On the Grassmannian X of null subalgebras, the Lagrange cubic non-degenerate Lagrangian cone field $C \subset D^{\prime} \subset T X$ contained in a contact distribution D^{\prime}. Such a structure is called a Monge structure.

The double fibration $Y \stackrel{\Pi_{Y}}{\longleftrightarrow} Z \xrightarrow{\Pi_{X}} X$ is described via some local coordinates λ, x, y, z, u, v of the split G_{2} flag manifold Z explicitly by $\Pi_{Y}(\lambda, x, y, z, u, v)=\left(\lambda, y+\lambda z, x+\lambda y, v+\lambda x, u+\lambda\left(y^{2}-x z\right)\right)$, and $\Pi_{X}(\lambda, x, y, z, u, v)=(x, y, z, u, v)$.

The (2, 3, 4, 5, 6)-G G_{2}-Engel structure E on Z is given by

$$
\begin{gathered}
\alpha_{1}:=d y+\lambda d z=0, \quad \alpha_{2}:=d x-\lambda^{2} d z=0 \\
\alpha_{3}:=d v+\lambda^{3} d z=0, \quad \alpha_{4}:=d u-\left(\lambda^{3} z+2 \lambda^{2} y+\lambda x\right) d z=0 .
\end{gathered}
$$

A local frame $\left(\xi_{1}, \xi_{2}\right)$ of E is given by
$\xi_{1}=\frac{\partial}{\partial \lambda}, \quad \xi_{2}=\frac{\partial}{\partial z}-\lambda \frac{\partial}{\partial y}+\lambda^{2} \frac{\partial}{\partial x}-\lambda^{3} \frac{\partial}{\partial v}+\left(\lambda^{3} z+2 \lambda^{2} y+\lambda x\right) \frac{\partial}{\partial u}$.
The $(2,3,5)$ Cartan structure $D \subset T Y$ is given, in terms of local coordinates $(\lambda, \nu, \mu, \tau, \sigma)$, by

$$
\begin{aligned}
& \beta_{1}:=\quad-\nu d \lambda+\lambda d \nu+d \mu=0 \\
& \beta_{2}:=\quad(\lambda \nu-\mu) d \lambda-\lambda^{2} d \nu+d \tau=0 \\
& \beta_{3}:=\quad-\nu^{2} d \lambda+(\lambda \nu+\mu) d \nu+d \sigma=0 .
\end{aligned}
$$

The local frame of D is given by

$$
\begin{aligned}
\eta_{1} & =\frac{\partial}{\partial \lambda}+\nu \frac{\partial}{\partial \mu}-(\lambda \nu-\mu) \frac{\partial}{\partial \tau}+\nu^{2} \frac{\partial}{\partial \sigma} \\
\eta_{2} & =\frac{\partial}{\partial \nu}-\lambda \frac{\partial}{\partial \mu}+\lambda^{2} \frac{\partial}{\partial \tau}-(\lambda \nu+\mu) \frac{\partial}{\partial \sigma}
\end{aligned}
$$

The Monge structure $C \subset D^{\prime} \subset T X$ on the Grassmannian X is given in terms of local coordinates (x, y, z, u, v) of X

$$
\begin{aligned}
C \quad: \quad & d x d y-d z d v=0, d x d z-(d y)^{2}=0,(d x)^{2}-d y d v=0 \\
& d u-2 y d x+x d y+z d v=0 \\
D^{\prime} \quad: \quad & d u-2 y d x+x d y+z d v=0
\end{aligned}
$$

【 The Lagrangian cone structure in G_{2}-flat case】
Consider the cone structure C on $\left(\mathbf{R}^{5}, 0\right)$,

$$
\begin{aligned}
F(x ; r, \theta)=r\left(\frac{\partial}{\partial x_{1}}+\theta \frac{\partial}{\partial x_{2}}\right. & +\theta^{2} \frac{\partial}{\partial x_{3}}+\theta^{3} \frac{\partial}{\partial x_{4}} \\
& \left.+\left(x_{3} \theta-2 x_{2} \theta^{2}+x_{1} \theta^{3}\right) \frac{\partial}{\partial x_{5}}\right),
\end{aligned}
$$

with control parameter r, θ. Then C is a non-degenerate Lagrangian cone structure for the contact structure D^{\prime} : $d x_{5}-x_{3} d x_{2}+2 x_{2} d x_{3}-x_{1} d x_{4}=0$. Moreover C satisfies the condition $\partial\left(T_{s} C\right) \subset O_{s}^{(2)} C$ for any $s: X \rightarrow L \backslash\{0\}$ and it corresponds to the G_{2}-flat ($2,3,5$)-distribution.

【 Cartan geometries (parabolic geometries)】

pseudo-product structures of type G_{2}

(2, 3, 5)-distributions
G_{2}-contact structures

A G_{2}-contact structure on a 5 -dimensional manifold X is a contact structure $D^{\prime} \subset T X$ with a "cubic non-degenerate Lagrangian cone structure" $C \subset T X$ parametrised by a vector bundle F of rank 2 over X such that the Levi bracket $\mathfrak{L}: D^{\prime} \times D^{\prime} \rightarrow T X / D^{\prime}$ is $\mathfrak{g l}(F)$-invariant.

Theorem. Any $(2,3,5)$-distribution (Y, D) which corresponds to a cubic cone structure (X, C) must be flat.

This fact is suggested by Professor Hajime Sato from the calculations of curvatures of psuedo-product G_{2}-structure and of G_{2} contact structures. Here we provide alternative proof.

Proof. For each $x \in X$, the cone $C_{x} \subset D_{x}^{\prime}\left(\subset T_{x} X\right)$ gives the (reduced) "Jacobi curve" in the sense of Agrachev and Zelenko. Then it is known that "Cartan tensor" of D is recovered by a projective invariant, the fundamental invariant, a kind of cross ratio, of $P\left(C_{x}\right)$ point-wise. All non-degenerate cubic cones are projectively equivalent. If D corresponds to a cubic cone structure, then Cartan tensor D vanishes, and therefore D is flat.

【 Fundamental invariants】

For the cone $C_{x} \subset D_{x} \cong \mathbf{R}^{4}$, there is associated a curve $\Lambda(\theta)$ in Grassmannian $\operatorname{Gr}\left(2, \mathbf{R}^{4}\right)$.

For $\Delta, \Gamma, \Lambda \in \operatorname{Gr}\left(2, \mathbf{R}^{4}\right)$ such that Δ and Γ are transverse to Λ, we consider 2×2 matrix $\langle\Delta, \Gamma, \Lambda\rangle$ such that

$$
\Gamma=\{v+\langle\Delta, \Gamma, \Lambda\rangle v \mid v \in \Delta\} .
$$

Then we set

$$
\begin{aligned}
\operatorname{trace}\left(\left.\frac{d}{d s}\left\langle\Lambda\left(\theta_{1}\right), \Lambda(s), \Lambda\left(\theta_{0}\right)\right\rangle\right|_{s=\theta_{1}}\right. & \left.\left.\circ \frac{d}{d s}\left\langle\Lambda\left(\theta_{0}\right), \Lambda(s), \Lambda\left(\theta_{1}\right)\right\rangle\right|_{s=\theta_{0}}\right) \\
& =-\frac{4}{\left(\theta_{0}-\theta_{1}\right)^{2}}-g_{\Lambda}\left(\theta_{0}, \theta_{1}\right) .
\end{aligned}
$$

and define the fundamental form by

$$
\mathcal{A}(\theta):=\left.\frac{1}{2} \frac{\partial^{2} g_{\Lambda}^{2}}{\partial \theta_{1}^{2}}\left(\theta_{0}, \theta_{1}\right)\right|_{\theta_{0}=\theta_{1}=\theta}(d \theta)^{4}
$$

【 Examples of cubic Lagrangian cone structures not corresponding to (2, 3, 5)-distributions 】

Consider the cubic cone structure C on $\left(\mathbf{R}^{5}, 0\right)$, near $\theta=0$,

$$
\begin{aligned}
F(x ; r, \theta)=r(& \frac{\partial}{\partial x_{1}}+\theta \frac{\partial}{\partial x_{2}}+\left(\theta^{2}+a\right) \frac{\partial}{\partial x_{3}}+\left(\theta^{3}-3 \theta a\right) \frac{\partial}{\partial x_{4}} \\
& \left.+\left\{x_{3} \theta-2 x_{2}\left(\theta^{2}+a\right)+x_{1}\left(\theta^{3}-3 \theta a\right)\right\} \frac{\partial}{\partial x_{5}}\right),
\end{aligned}
$$

defined by a C^{∞} function $a\left(x_{1}\right)$ with $a(0)=0$.
Then C is a non-degenerate Lagrangian cone structure for the contact structure $D^{\prime}: d x_{5}-x_{3} d x_{2}+2 x_{2} d x_{3}-x_{1} d x_{4}=0$. Moreover C satisfies the condition $\partial\left(T_{s} C\right) \subset O_{s}^{(2)} C$ for any $s: X \rightarrow L \backslash\{0\}$, to correspond to a (2,3,5)-distribution, if and only if $a \not \equiv 0$. (The case $a \equiv 0$ corresponds to the G_{2}-homogeneous case.)

【 Examples of non-cubic Lagrangian cone structures corresponding to ($2,3,5$)-distributions 】

Consider a cone field on $\left(\mathbf{R}^{5}, 0\right)$.

$$
\begin{aligned}
F(x ; r, \theta)=r\left(\frac{\partial}{\partial x_{1}}\right. & +\theta \frac{\partial}{\partial x_{2}}+\left(\theta^{2}+b\right) \frac{\partial}{\partial x_{3}}+\left(\theta^{3}+c\right) \frac{\partial}{\partial x_{4}} \\
& \left.+\left\{x_{3} \theta-2 x_{2}\left(\theta^{2}+b\right)+x_{1}\left(\theta^{3}+c\right)\right\} \frac{\partial}{\partial x_{5}}\right)
\end{aligned}
$$

where $b=b(\theta), c=c(\theta), \operatorname{ord}(b) \geq 3, \operatorname{ord}(c) \geq 4$ at $\theta=0$.
Then F is a non-degenerate Lagrangian cone structure satisfying the condition $\partial\left(T_{s} C\right) \subset O_{s}^{(2)} C$ for any $s: X \rightarrow L \backslash\{0\}$ (and therefore it corresponds to a $(2,3,5)$-distribution), if and only if $c_{\theta}=3 \theta b_{\theta}-3 b$. (Then $D^{\prime}=\left\{d x_{5}-x_{3} d x_{2}+\right.$ $\left.2 x_{2} d x_{3}-x_{1} d x_{4}=0\right\}$.)

If $b_{\theta \theta \theta \theta} \neq 0$, then F is not cubic.

Thank you for your attention.

