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[ (2,3,5)-distributions]

Let Y be a 5-dimensional manifold and D C TY a distri-
bution of rank 2. Then D is called a (2, 3, 5)-distribution
if it has small growth (2, 3,5), namely, if rank(9D) = 3
and rank(9?)D) = 5, where 0D := [D, D] is the derived
system and 02D := [D, D] (= D + [D, D).
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Today, I would like to speak some results obtained in the joint
papers:

Goo Ishikawa, Yoshinori Machida, Masatomo Takahashi,
Singularities of tangent surfaces in Cartan’s split Go-geometry,
Hokkaido Univ. Preprint Series in Math. #1020 (2012),

Asian J. of Math., 20—2, (2016), 353—-382.

Goo Ishikawa, Yumiko Kitagawa, Wataru Yukuno,
Duality of singular paths for (2,3, 5)-distributions,
arXiv:1308.2501 [math.DG] (2013),

J. of Dynamical and Control Systems, 21 (2015), 155-171.

Goo Ishikawa, Yumiko Kitagawa, Asahi Tsuchida, Wataru
Yukuno, Duality of (2,3,5)-distributions and Lagrangian cone
structures, 1n preparation.
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[ Cartan prolongation ]

Let D be a (2, 3, 5)-distribution on a (5-dim.) manifold Y.
Let Z := PD = (D — 0)/R” be the space of tangential lines
in D, Z:={(y,4) |yeY, £C D,(CT,Y), dim(¥) = 1}.
Then dim(Z) = 6 and the projection 7y : Z — Y is an
R P'-bundle.

We define a subbundle ¥ C T'Z of rank 2 (Cartan prolonga-
tion of D C TY') by setting for each (y,¢) € Z, £ C D,,
Ey,0) = Ty, (£) (C Ty, 2).
Then F is a distribution with (weak) growth (2, 3,4,5,6):
rank(F) = 2, rank(0F) = 3, rank(0'P E) = 4,
rank(0® E) = 5, rank(0'Y E) = 6.
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[ Pseudo product structure )}

Then we see that there exists an intrinsic decomposition
E=K&L

of F with L := Ker(ny«) C E and a complementary line
subbundle K of E (a pseudo-product structure in the sense
of N. Tanaka).

We will explain this in terms of “geometric control theory”.
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[ Control systems ]

A control system C : U s TM — M on a manifold M
is given by a locally trivial fibration my : U4 — M over M
and a map F' : U — T'M such that the following diagram

commutes: r
U — TM

U N\ " T M

M
Locally on M, a control system is given by a family of vector

fields fu(x) = F(x,u) over M, (x,u) € U,x € M.

Example. A distribution D C T'M (vector subbundle) is
regarded as a control system D : D — T M — M, by the

inclusion.
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[ Equivalences of control systems ]

Two control systems C : U/ S TM My M oand © U s

TM “ZM's M’ are called equivalent if the diagram

u = TM My
(LI P I
F/ /

u = TM =M M

commutes for some diffeomorphisms ) and .
The pair (1, @) of diffeomorphisms is called an equivalence

of the control systems C and C'.
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[ Controls, trajectories and paths ]

Given a control system C : U 5HTM - M,

7

an L°° (measurable, essentially bounded) map c: |a,b] — U

is called an admissible control if the curve
vy:i=myoc:|lab - M
satisfies the differential equation
Y(t) = F(c(t)) (a.e.t € la,b]).
Then the Lipschitz curve v is called a trajectory.
If we write c(t) = (x(t),u(t)), then x(t) = v(¢) and
t(t) = F(x(t),u(t)), (a.e.té€ la,b]).

We use the term “path” for a smooth (C°°) immersive tra-

jectory regarded up to parametrisation.
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[ Endpoint mappings and singular controls ]

The totality C of admissible controls ¢ : [a,b] — U with a
given initial point go € M is a Banach manifold.
The endpoint mapping End : C — M is defined by

End(c) := my o c(b).

An admissible control ¢ : |a,b] — U with the initial point
mu(c(a)) = qo is called singular or abnormal, if ¢ € C is
a singular point of End, namely if the differential End. :
T.C — TgyM 1is not surjective. If c is a singular control,
then the trajectory v = my o ¢ is called a singular trajectory

or an abnormal extremal.
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[ Local characterisation of singular controls ]

We define the Hamiltonian function H : U Xy T*M — R of the
control system F' : U — T'M by

H(z,p,u) := (p, F(z,u)), ((z,u),(z,p)) €U Xp T M.

A singular control (x(t),u(t)) is characterised by the liftability
to an abnormal bi-extremal (x(t),p(t),u(t)) satisfying the con-

strained Hamiltonian equation

2\

(1) =

pi(t) = —

\ auj

O (),

OH

Opi
OH

o0x;
p(t),u(t)) =0, (1<j<r), p(t)#O0.

((t), p(t), u(t)), (1 <i<m)

((t), p(t), u(t)), (1 <i<m)
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[The space X of singular paths ]

Let D C TY be a (2, 3,5)-distribution.

Then, it is known that for any point y of ¥ and for any
direction ¢ C D,, there exists uniquely a singular D-path
(an immersed abnormal extremal for D) through y with the

given direction £.

X Dy

Thus the singular D-paths form another five dimensional
manifold X.
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[The double fibrations]
Let Z = PD = (D—0)/R” be the space of tangential lines in
D, dim(Z) = 6. Then Z is naturally foliated by the liftings

of singular D-paths, and we have locally double fibrations:

[Cartan prolongation]

Let E C T'Z be the Cartan prolongation of D C TY:

For each (y,f) € Z, £ C T,Y, E¢, ¢ = 7y (£).

Then F is a distribution with growth (2, 3,4, 5, 6).

If we put L = Ker(ny.), K = Ker(mxs), then we have a
decomposition £ = K & L by integrable sub-bundles.
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[ Pseudo-product structures of Ga-type ]

Theorem. There exists a natural bijective correspondence:
{(2, 3, 5)-distributions}/ = +—

( )

pseudo-product structures of Ga-type (Z, E):
(2,3,4,5,6)-distributions E with a decomposition
E =Ko L, rank(K) = rank(L) =1,

IC, L) =0E (= £, =E+ [, &),

(K, 061 =0P¢E, [ L,0E] = E,

(K, 098] =0V¢, [L£,0PE] =0P¢,

\ (K, 0BE]=00¢E, [L£,00E]=0WE. )

AL
~”
~—

|2

E Cc 0 c 0¥E c o¥eg c oWeg
9 3 4 5 6
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[ The symbol algebra ]
Taking the gradation of the filtration on T'Z, we have the

symbol algebra:
M=g s5Dg-a1DPYg—-3Dg—2Dg_1
= (e6) @ (es5) @ (es) ® (€3) D (€1, €2),
e1,e2] = es,
e1,e3] = eq, [e2,e3] =0,

:61,64: — €5, [62,64] — O,

e1,e5] =0, |ea,es] = es.

t = (e1) = Ker{g—1 — Hom(g—4,9-5)},
[ = (e2) = Ker{g_1 — Hom(g_2,g-3)}.
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[ Simple Lie algebras of rank 2 ]

Oo——0 o0 = O
AQ BQ GQ

o

(@)
Fundamental roots for As, Bo and Go

14
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[ A> geometry ]
Y? =P« 7° = PT*(P?) = PT*(P*") =5 X* = P,
E = Ker(nmy«) ® Ker(wx.) C TZ : contact structure.
m=g_o®dg_1 = (e3) D (e1,e2), |e1,ea] =es.

There is no canonical decomposition of g_; (from geometric

control theory nor from the theory of graded Lie algebras).
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[ B geometry ]

(Z*, E=K®L)

pseudo-product Engel structure

3rd order ODE / \

(X*°,C)

non-degenerate (strictly convex)

(Y*, D)

projective contact structure

cone structure

Classification of geometric structures, contact geometry of 3rd
order ODE, by E. Cartan, S.-S. Chern(1940), N. Tanaka, ...

“Winschmann invariant” = 0 <— (': metric cone.
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[ Engel Lie algebra ]
m=g_3Dg_2Dg-1=(es) D (e3) ® (e1, €2),
le1,e2] = es, |e1,e3] = eq, |e2,e3] = 0.
[ = (e2) = Ker{g—1 — Hom(g—2,9-3)},

There exists just the canonical line sub-bundle L C F(C TZ)
(from geometric control theory or from the theory of graded

Lie algebras).
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[ G2-geometry — The cone fields ]
The original (2, 3, 5)-distribution D is obtained as the linear
hull of the cone field (“bowtie”) induced from K:

Dy, =linear hull [ | | #yv.(K.) CT,Y
zeTy (y)
Also, the (2, 3, 5)-distribution D is obtained as the reduction
of OF by Cauchy characteristic L = Ker(mwy ).

Moreover we have the cone field C' C T X on X by setting,

for each x € X,
C, = U WX*(LZ) CcT1T,X.

zEw)_(l(a:)
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[ The cone fields (continued) ]
Then the linear full D’ C T X of the cone field C turns to be

a contact structure on X induced from 8 E via x. Thus

(X, C) is a “Lagrangian cone structure”.

119% T M, \TT, A

%@ T Ty ') T, T, 0 ‘?

We have sequences of cones on Y, Z, X respectively:

(2,2,3,5,5) on Y «— (2,3,4,5,6) on Z — (2,3,4,4,5) on X.
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So far, we have distributions D, F, L, K and the cone filed C
from the double fibration Y +—— 7 —X X:

TY iR, TZ RS TX
U U U
D «&f EF_—KgelL =& (
} }

L
Y —F 7 X 5 X

~

A

Now, we regard the cone field as a control system over X:

C:L =X px 5 x

Then we have the following main theorem:
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[ G2-Duality ]

Theorem (Duality [IKY]).

Singular paths of the control system

C:L ™=, px 4 x

are given by mx-images of my-fibres.

Therefore, for any x € X and for any direction ¢ C (),
there exists uniquely a singular C-paths passing through
x with the direction ¢ at x.

The original space Y is identified with the space of singular
paths for (X, C'), while X is the space of singular paths for
(Y, D).
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[ A remaining problem on G5-duality ]

The description of the duality on (2,3, 5)-distributions
(Y, D) and Lagrangian cone structures (X, C') via (Z, F)

should be completed by answering the question:

What kinds of Lagrangian cone structures do they

correspond to (2, 3, 5)-distributions ?




Goo Ishikawa, Hokkaido University, Japan (2,3,5)-distributions 23

[ Cone structures ]

Let ¢ C TX be a two dimensional cone field (= R”*-
invariant, locally trivial subset of T'X) on a 5-dimensional
manifold X. Suppose that C, C T,X has singularity just
at 0, for any x € X. Then Z = PC := (C \ {0})/R” is a
6-dimensional manifold and 7x : Z — X is a C*°-fibration
with non-singular projective curves PC, C P(T,X) = P* as
fibres.

As a non-degeneracy condition, we assume that the first,
second and third derivatives are linearly independent every-

where on PC, for any x € X.
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[ The cone structure as a control system ]

Let L C (mx) '(TX) be the “tautological line bundle”
over Z = PC: L :={((z,0),v) € ZxTX |velCT,X},
which is regarded also as a fibration over X by
mr : L — X, ((x,£),v) — x, with 2-dimensional fibres.

Then we regard the cone structure C in X as the control

system over X:
C:L—->TX —X, L>5(x,4),v)— (z,v)— x,
with 2-control parameters.
Each section s : X — L \ {0} of the fibration 7y, : L — X
defines a direction field in C' over X and the control-linear

approximation TsC of C along s, which is a subbundle of T'X
of rank 2.



Goo Ishikawa, Hokkaido University, Japan (2,3,5)-distributions 25

Moreover, for each section s : X — L \ {0}, we define
osculating bundles 0P C c TX of rank 3 and O)C C
T'X of rank 4, generated by osculating planes Os and 3-

dimensional osculating spaces Os to PC', with direction s:

P

N/
X
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[ non-degenerate Lagrangian cone structure )

Definition.
A cone field C' C T'X is called a non-degenerate Lagrangian

cone structure on a 5-dimensional manifold X if

(i) D' := O C ¢ TX is independent of choice of direction
field s : X — L\ {0} and is a contact structure on X,

(ii) TsC is a Lagrangian sub-bundle of D', i.e. the derived
system O(TsC) C D', for any direction field s.
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[ The complete description of the duality ]

Theorem. There exist natural bijective correspondences:
{(2, 3, 5)-distributions (Y, D)}/ =2 +—

;

—

pseudo-product structures of Ga-type (Z, E):
(2,3,4,5,6)-distributions F¥ with a decomposition
E=K®& L, rank(K) = rank(L) = 1,

IC, L] =0E (= |E,E] =&+ [€,E)]),

(K, 061 =0P¢, [ L,0E] = OE,

(K, 0061 =00¢, [£,0P€]=0P¢,

(K, 0B8] =0W¢, [£,0PE] =0WE.

\

/

non-degenerate Lagrangian cone structures (X, C)

on b-dimensional manifolds X with the condition

d(T.C) c O C, for any section s : X — L\ {0}.

27

=
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[ The complete description of the duality ]

pseudo-product structures
of type Go

a4

NN

28

(2, 3, 5)-distributions

non-degenerate Lagrangian
cone structures satisfying

o(T:C) C O C, for any s
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[ From Lagrangian cone to pseudo-product of Ga-type ]

Suppose (X, C') is a non-degenerate Lagrangian cone struc-
ture. Then we define a subbundle £ C T'Z of rank 2 by
setting

B = (1x)r  (£).
Then we have that E has weak growth (2, 3,4,5,6).

Set K = Ker(nx)« C E.

Moreover the tautological line-bundle L is embedded in
E as the Cauchy characteristic of the derived system OF,
and we have the decomposition £ = K & L. Moreover it
is a pseudo-product structure of Ga-type if and only if the
condition d(T;C) C O C is fulfilled, for any s : X — L\{0}.

This completes the explanation on duality.
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[ Example of Ga-flat case [MIT] ]
G = Aut(QO’), the split G2. O’ the split octonions.

Let H={a=x+yi+ 25 +wk | z,y,z,w € R} be
Hamilton’s quarternion algebra and
define the split octonions by O/ = H @ H with the multiplication

aAS

(a,b)(c,d) := (ac + db, da + bc).

Note that O’ is a non-associative algebra.

We set V :=Im(0O’), the imaginary part, dim(V) = 7.
Then G = Aut(O’) acts on V irreducibly.
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Consider the split G2 flag manifold
Z ={(V1,Va) | V1 C Vo C V, Vi, Vs are oriented null subalgebras},

where an R-subspace W C V is called a null subalgebra if ww’ = 0,
for any w,w’ € W.

Set,
Y :={V; | V1 CV, 1-dimensional oriented null subalgebra},
X :={Va | Vo C V, 2-dimensional oriented null subalgebra}.
Then Z 2 83 x S3Y =2 §3 x §2, X =~ §3 x 52,

Set
y E := Ker(Ily,) ® Ker(Ilx,) C TZ,

which is called the (split G2) Engel distribution,
which is of rank 2 and with weak growth (2,3,4,5,6).
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Just from the split Go double fibrations, we can obtain:

On the projective space Y of null vectors, a (2,4, 5)-distribution
D C TY, called a Cartan structure.

On the Grassmannian X of null subalgebras, the Lagrange cubic
non-degenerate Lagrangian cone field C C D’ C T X contained in
a contact distribution D’. Such a structure is called a Monge
structure.

The double fibration Y <H—Y Z H—X> X is described via
some local coordinates A\, x, vy, z, u, v of the split G2 flag manifold
Z explicitly by
Iy (N, x,y, z,u,v) = ()\, y+ Az, ¢+ Ay, v+ Az, u+ ANy? — :cz)) :
and IIx(\ z,y,z,u,v) = (z,y,2,u,v).
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The (2, 3,4, 5,6)-G2-Engel structure E on Z is given by
a1 :=dy+ Adz=0, a2 :=dxr— Ndz =0,
az :=dv+Xdz =0, aq:=du— (A3z+2\%y + \x)dz = 0.

A local frame (£1,&2) of E is given by

%, %, %, %, %, %,
= — = — —A—F+22— X+ (Nz+22%y+ ) —.
U= gn 2T 5 A, TN g TN gy TR R AT) o

The (2, 3,5) Cartan structure D C T'Y is given,
in terms of local coordinates (A, v, u, T,0), by

B1 = —vdA+ Adv +du =0,
Ba = (A —p)d\ — Ndv +dr =0,
B3 = —v?d\+ (Av+ p)dv +do = 0.
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The local frame of D is given by

2 L2 R
' ax | ou e 8o’
9 9 9 9
= — —A—+2— (X —
12 o0 on TN ar ~ Wrtmgo

The Monge structure C C D’ C T X on the Grassmannian X is
given in terms of local coordinates (x,y, z,u,v) of X

C : dxdy— dzdv=0, dedz — (dy)? =0, (dx)? — dydv = 0,
du — 2ydx + xdy + zdv = 0,

D' du—2ydx + zdy + zdv = 0.
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[ The Lagrangian cone structure in Go-flat case ]

Consider the cone structure C on (R°,0),

F(x;r,@):r<a‘zl 6833 + 6072 4+ 6% 2

T3 Oxy

(3339 — 233292 -+ 33193)8;25) :

with control parameter r,6. Then C is a non-degenerate
Lagrangian cone structure for the contact structure D’ :
drs — xsdxs + 2x2dxs — x1dxs = 0. Moreover C' satisfies
the condition A(T,C) C O)C for any s : X — L\ {0} and
it corresponds to the Ga-flat (2, 3, 5)-distribution.
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[ Cartan geometries (parabolic geometries) ]

pseudo-product structures
of type Go

v/

(2, 3, 5)-distributions

(G2-contact structures

A G o-contact structure on a 5-dimensional manifold X is a con-

tact structure D/ C T'X with a “cubic non-degenerate Lagrangian

cone structure” C' C T'X parametrised by a vector bundle F' of

rank 2 over X such that the Levi bracket £ : D’ x D' — TX/D’

is gl(F')-invariant.
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Theorem. Any (2,3, 5)-distribution (Y, D) which corre-

sponds to a cubic cone structure (X, C') must be flat.

This fact is suggested by Professor Hajime Sato from the calcu-
lations of curvatures of psuedo-product Ga-structure and of G-
contact structures. Here we provide alternative proof.

Proof. For each x € X, the cone Cy C D.(C T3 X) gives the
(reduced) “Jacobi curve” in the sense of Agrachev and Zelenko.
Then it is known that “Cartan tensor” of D is recovered by a
projective invariant, the fundamental invariant, a kind of cross
ratio, of P(Cy) point-wise. All non-degenerate cubic cones are
projectively equivalent. If D corresponds to a cubic cone structure,
then Cartan tensor D vanishes, and therefore D is flat. O
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[ Fundamental invariants ]

For the cone Cp C D, = R* there is associated a curve
A(0) in Grassmannian Gr(2, R*).

For A, T, A € Gr(2,R*) such that A and I" are transverse
to A, we consider 2 x 2 matrix (A,I', A) such that

' = {U_i_ <A,F,A>”U | (URS A}
Then we set
trace (£ (A(01), As), A0, © 2 (A(B0), A(s), A0 g, )

= — o=y — 9a(00,01).

and define the fundamental form by

2 2
A(0) = L 09K

= 5 g (00, 01) (d6)*.
1

89=0,=0
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[ Examples of cubic Lagrangian cone structures not corre-
sponding to (2,3, 5)-distributions ]

Consider the cubic cone structure C on (R?,0), near 6 = 0,

F(xz;r,0)=r (8%1 + 98%2 + (0% + CL)(,%3 + (6° — 39&)3%4
{30 — 222(0% + a) + x1(0° — 39&)}%) :
defined by a C'°° function a(x1) with a(0) = 0.

Then C' is a non-degenerate Lagrangian cone structure for
the contact structure D’ : dxs — x3dxs +2x2dxrs — x1dxs = 0.
Moreover C' satisfies the condition 9(TsC) C O C for any
s: X — L\ {0}, to correspond to a (2,3, 5)-distribution,
if and only if a Z 0. (The case a = 0 corresponds to the

(G2-homogeneous case. )
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[ Examples of non-cubic Lagrangian cone structures corre-
sponding to (2,3, 5)-distributions ]

Consider a cone field on (R”,0).
F(x;r,0) :’r( 0 %9822 . (92+b)a%)3 + (6° + ¢) 2

Ox1 Ox4
{230 — 200(0% + b) + 1 (0% + c)}a%) |
where b = b(6),c = ¢(0), ord(b) > 3,ord(c) > 4 at 6 = 0.
Then F'is a non-degenerate Lagrangian cone structure sat-
isfying the condition d(T:C) C O C for any s : X — L\ {0}
(and therefore it corresponds to a (2,3, 5)-distribution), if
and only if cg = 30bg — 3b. (Then D' = {dxs — z3dz2 +
2xodxs — x1drg = 0}, )
If bogog 7& 0, then F'is not cubic.
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