やりたいこと

Dec. 2024

[KO] 13/18 Thorem 1.

Then there is a (2k-2)-form W on P such that

$$Tf(\omega') - Tf(\omega) = dW.$$

を、[CM] 1/53

Our basic assumption on M is ,that it be:nondegenerate,

or

[T76] 47/60

A G-structure (P, B) of type \mathfrak{M} on a manifold M is said to be integrable if the corresponding almost PC structure (D, I) is integrable.

THEOREM 11.1. Let (P, ω) be a normal connection of type \mathfrak{G} on a manifold M, and $(\tilde{P}, \tilde{\theta})$ the corresponding \tilde{G} -structure of type \mathfrak{M} . Then the \tilde{G} -structure $(\tilde{P}, \tilde{\theta})$ is integrable if and only if the g_{-1} component K_{-1} of the curvature K (of (P, ω)) vanishes.

[CM] = 33/53

We consider the real line bundle E, which consists of the multiples $u\theta, u(>0)$ being a fiber coordinate.

[CM] = 34/53

Denote by Y its principal G_1 -bundle. Then we have

$$G_1 \xrightarrow{f} Y \xrightarrow{\pi} E,$$
 (4.14)

46/53

THEOREM 5.1. Given a non-degenerate integrable G-structure on a manifold M of dimension 2n + l. Consider the principal bundle Y over E with the group $G_1 \subset SU(p+1, q+1)/K$. There is in Y a uniquely defined connexion with the group SU(p+1, q+1), which is characterized by the vanishing of the torsion form and the condition (5.39).

$[BDS] \quad 13/25$

In [CM], Chern associates to such an M, functorially for local CRequivlences, a bundle of coframes Y^{n^2+2n} over $E^{2n} = Y/H_0$, which is an H-bundle over M, with (functorial) Cartan connection on Ywith values in $\mathfrak{su}(p+1, q+1)$, and fiber group H.

 $[BDS] \quad 14/25$

$$Y/H_1 = \widehat{E} \qquad \qquad E = Y/H \qquad (4.4)$$

[T76] 27/60

Now let M be a manifold of dimension 2n - 1 and let P be a principal fibre bundle over the base space M with structure group G'. Let θ be an **m**-valued 1-form on P and let α be an $\mathbb{R} \cdot E$ -valued 1form on P. Then we say that the collection $\{P, \theta, \alpha\}$ is an E-system on M if it satisfies the following conditions:

(E.1) Let X be a tangent vector to P. Then $\theta(X) = 0$ if and only if X is a vertical vector in the principal bundle P;

(E.2)
$$R_a^*\theta = \rho(a)^{-1}$$
 for all $a \in G'$;

(E.3)
$$R_{\alpha}\alpha = \alpha + (\operatorname{Ad}(a^{-1})\theta)_{\mathrm{E}}$$
 for all $\alpha \in G'$;

(E.4)
$$\alpha(X^*) = X_E$$
 for all $X \in \mathfrak{g}'$;

(E.5) $d\theta_{-2} + 1/2 \cdot [\theta_{-1}, \theta_{-1}] + [\alpha, \theta_{-2}] = 0$, where θ_p is the \mathfrak{g}_p component of θ with respect to the decomposition: $\mathfrak{m} = \sum_{p < 0} \mathfrak{g}_p$.

Note that (E.1) and (E.2) are the very conditions satisfied by the basic form θ for a connection ω of type \mathfrak{G} in P (see Lemma 1.1). Therefore we know from the argument above that if (P, ω) is a connection of type \mathfrak{G} with. $K_{-2} = 0$, then the collection $\{P, \omega_{-2} + \omega_{-1}, \omega_E\}$ gives an E-system.

Just as in the case of a general Cartan connection (see 1.2), every E-system $\{P, \theta, \alpha\}$ on a manifold M induces a \tilde{G} -structure $(\tilde{P}, \tilde{\theta})$ on M in a natural way. From (E.5) it is clear that the \tilde{G} -structure is of type \mathfrak{M} (cf.Lemma 4.3).

[T76] 29/60

PROPOSITION 7.2. Assume that $\mathfrak{h}_0^{(1)} = \{0\}$. Let $\{P, \theta, \alpha\}$ be an E-system on a manifold M. Then there is a unique normal connection ω of type \mathfrak{G} in P compatible with θ and α , i.e., $\theta = \omega_{-2} + \omega_{-1}$ and $a = \omega_E$.

Theorem 4.4 follows immediately from Proposition 7.1 and 7.2.

[T76] 33/60 LEMMA 8.2 (Bianchi's identity). For all $X, Y, Z \in \mathfrak{m}$ we have:

 $\mathfrak{S}[K(X,Y),Z] - \mathfrak{S}(\breve{\omega}(X)K)(Y,Z) + \mathfrak{S}K([X,Y],Z) - \mathfrak{S}K(K_{-1}(X,Y),Z) = 0,$

where \mathfrak{S} stands for the cyclic sum with respect to X, Y, Z.

References

- [BDS] Burns, D., Jr.; Diederich, K.; Shnider, S. Distinguished curves in pseudoconvex boundaries. Duke Math. J. 44 (1977), no. 2, 407–431.
- [BE90] Burns, D. [Burns, Daniel Matthew, Jr] (1-MI); Epstein, C. L. [Epstein, Charles Lawrence] (1-PA) Characteristic numbers of bounded domains. Acta Math. 164 (1990), no. 1-2, 29–71.

- [BS] Burns, D., Jr.; Shnider, S. Real hypersurfaces in complex manifolds. Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 2, Williams Coll., Williamstown, Mass., 1975), pp. 141–168. Amer. Math. Soc., Providence, R.I., 1977.
- [CSbook] Cap, Andreas; Slovak, Jan Parabolic geometries. I. Background and general theory. American Mathematical Society, Providence, RI, 2009. x+628 pp.
- [CS] Chern, Shiing Shen; Simons, Characteristic forms and geometric invariants. Ann. of Math. (2) 99 (1974), 48–69.
- [CM] Chern,S.S.; Moser,J.K., Real hypersurfaces in complex manifolds. Acta Math. 133 (1974), 219–271.
- [DT] Dragomir, Sorin; Tomassini, Giuseppe, Differential geometry and analysis on CR manifolds. Progress in Mathematics, 246. Birkhauser Boston, Inc., Boston, MA, 2006. xvi+487 pp.
- [Fe] [138] C. Fefferman, Monge-Amp'ere equations, the Bergman kernel, and geometry of pseudo-convex domains, Ann. of Math.,(2)103(1976), 395– 416, 104(1976), 393–394.
- [KO] Kobayashi, Shoshichi; Ochiai, Takushiro, G-structures of order two and transgression operators. J. Differential Geometry 6 (1971/72), 213–230.
- [RS] Reiter, Michael;Son, Duong Ngoc, On the Chern-Moser-Weyl tensor of real hypersurfaces. J. Math. Soc. Japan 73 (2021), no. 1, 77–98.
- [T76] Tanaka, Noboru, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japan. J. Math. (N.S.) 2 (1976), no. 1, 131–190.