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[ Singular curves of a distribution ]

Let D C TM be a distribution, x9 € M and I = |a,b]
an interval. Let €2 be the set of curves v : I — M with
Y¥(t) € D) for almost all ¢ € I (D-integral) and y(a) = xo.
Then the endpoint mapping End : 2 — M is defined by
End(v) := v(b). A curve v € 2 is called a D-singular curve
if v is a critical point of the endpoint map End, i.e. the

differential map dEnd : T,§) — T,y M is not surjective, for

an appropriate manifold structure of 2 (and M).

o
] ya Gud (&)= d7b)

Yo = Yl
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[ Local characterisation of singular curves ]

Let D C T'M be a distribution of rank r generated by
£1,&2,...,&- on a manifold M.

Lemma. A curve v : I — M is D-singular if and only if
there exists a lift I' : I — T M x R" of v such that I'(t) =

(z(t),p(t), u(t)) satisfies the following Hamiltonian equation

= wi&1(z) + u2be(x) + -+ + urér(2),
(*) P = (u (9H§1 , 8H€2 | 8H€r )
— 1 9

ox -2 Oxr o e Uy ox

with constraints
Hgl :O,H52 :O,--- ,ng =0 and p#o
where He, (x,p) := (p, &i(x)).
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Lemma. For a distribution D generated by &1, ...,&,., along
the solution (x(t),p(t),u(t)) of the constrained Hamiltonian

equation (*) we have

ng Zug Hie, e,1(t), (1<i<r).

Proof: We put p = Z;Zl pjdr; and & = >, _, fik%.
Then we have He, = > . p;&ij(z). Setting H(z,p,u) =
D 1<ij<r WiP;&ij(x), we have by the Hamiltonian equation,
for 1 <21 <r:



Goo Ishikawa,

Hokkaido University, Japan Prolongations of distributions

%Hﬁi (t)

= 7 0=

— Zkej ukpﬁ S i &J

— Zkﬁj Uk Pr 85]-{:6 52] + Zﬁjk pﬁ

[I9%i
8:c

Lj

= Seupe (X

Zgzl Uk <p7 [527 ng
D i1 uiHg, e

by straightforward calculations.

> i1 (D585 + pi&is)

— Z; 1 pg€23+26 1 Pj
08i; OH

5’53 +Z£ 1 Pj (%UZ 8pg>

(&

2.

afzg

o)

0 j
jek Pi a—wukgkf

Sze kakj

ggaﬁzﬁ))

D



Goo Ishikawa, Hokkaido University, Japan Prolongations of distributions 6

[ Characteristic matrix )

We introduce the characteristic matrix of D for the system

of generators &1,...,&, of D by the skew-symmetric matrix
/ H[Sl,fl] H[€1,€2] H[Sl,ir] \
H[€2,€1] H[€2,€2] e H[€2,€r]
A . — . . . ’
\ Hi, ey Hipeol - Hper )

whose components are regarded, by the restriction to DL(C
T*M), as elements in (D-)*.

Note that, if ©(t) = > _, wi(t)&(z(t)) is the velocity vec-

tor of a singular curve ~(t) = z(t), then necessarily Au = 0.



Goo Ishikawa, Hokkaido University, Japan Prolongations of distributions 7

[ Singular velocity cone ]

Definition. (Singular Velocity Cone)

SVC(D) := {(xo,u) € TM | There exists a D-singular curve
v : (R,0) — M, satisfying that
v(0) = zg, and ~'(0) = u},

RLLao.

Note that the singular velocity cone SVC(D) C T'M is a

field of tangential cones (i.e., R*-invariant).
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[ Cartan’s (8, 15)-distribution ]

In his paper “Uber die einfachen Transformationsgruppen
(1893)”, E. Cartan realises the simple Lie algebra F4 as the

infinitesimal symmetry algebra of an (8, 15)-distribution.

Fu

Elie Cartan (1869-1951)
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9

The distribution he gives is given concretely as D C TR*®

on R' by
X1 = 3;; T yl_ 2 851?12 — 43 Ox13
X2 = %w—yzé 1—$13512 —$38523 —
X3 = 8%31—3/3%1— 1333 + 28;? — X
Xy = %—I—M% —I-mlaflz—xzaflg—l—m
o= 8421 Y 356623 T Ys 33(?24 BRE 89?34’
Yo = % T Y4 83?13 Y3 63?14 T 89?34’
Y3 = 3423 — Y4 39?12 -2 351(?14 — Y 39?24’
Yo = 8;; + Y3 8512 Y2 33?13 T 35?23’

0

49z14

0

4 Oxoq’

0

4 Oxgy’

0

3 xgs’

with the coordinates x1,x2, 3, x4, Y1, Y2, Y3, Y4, 2z and
Ti; (1<i<j<4)of R™. (8+1+6=15).
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Then, by setting Z = -2 and X;; = 52—, (1 <i < j < 4),

we get the following bracket relations:

(X1, Xo| =2X12, [X1,X3] =2X13, [X1,X4] =2X14,
(X2, X3] =2Xa3, [X2, X4| =2X0o4,
X3, X4] = 2X34,
Y1,Y2] =2X54,  [Y1,Y3] = —2Xo4, [V1,Ys] =2X03,
Yo, V3] = 2X 14, Yo, Yi| = —2X13,
Y3, Yi| = 2X129,

(Y1, X1] = [Yo, Xo] = [Y3, X3] = Y4, X4] = Z, [Y;, X;] = 0 (¢ # j),

and

We see D is a (8, 15)-distribution.
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[ Characteristic matrix of Cartan’s (8, 15)-distribution ]

The characteristic matrix A of D is given by

/ 0 2719 2713 2714 —S 0 0 0 \
—27r19 0 27193 27924 0 —S 0 0
—2r13 —2r93 0 2734 0 0 —S 0
—2r14 —2r24 —27r34 0 0 0 0 —S

S 0 0 0 0 2734 — 27194 2793
0 S 0 0 —27r34 0 2714 —27r13
0 0 S 0 27194 —21r14 0 27119
\ 0 0 0 S — 2793 2713 —27r19 0 )

where 7;; 1= HXij and s := H~.

In this case we have the Pfaflian

Pf(A) = {s* — 4(r12734 — r13724 + T14723)}°,
and thus we have naturally the conformal (4, 3)-metric on

D+ (C T*M), M = R,
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([ F4, and B3 ]

( F4, ’4)
O De—XO—— @
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[ (4,4)-metric and SV C' of Cartan’s (8, 15)-distribution ]

A —sl
Write the characteristic matrix as A = H .
SI AQQ

From the constrained Hamiltonian equation for Cartan’s
(8,15)-distribution (M, D), we have on the velocities of

D-singular curves,

A —sl “YN_0o...... (%)
sl AQQ (¥ -
where

T =uU1 X1 +u2Xo+usXs+usXa+v1Y1+v2Yo+v3Ys+wvaYs,

u t
and L = (w1, U2, s, s, V1, V2, V3, Vq).



(
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If (u,v) # (0,0), then we have

Moreover, the equation (x) as above is written as (xx):

— vy
— Vg
—vg
— vy
ul
u2
us3
ug

2u9
—2uq
0
0
0
0
2vy
—2vg

2
s° — 4(r12m34 — 713724 + T14723) = 0.

2usg 2uy 0 0 0 \

0 0 2ug 2uy 0 (
—2uq 0] —2u9 0] 2uy

0 —2uq 0 —2u9 —2ug

0) 0] 2vy —2vg 2v9
—2vy 2vg 0 0] —2v4

0 —2v9g 0 2v1 0 ) \
2v9 0 —2v1q 0] 0

S

r12
13
14
r23
r24
T34

If (s,r12,713,714,723,724,734) 7% 0, then we have

and naturally we obtain a conformal (4, 4)-metric on D.

u1v1 + ugv2 + usvz + ugvg = 0

OO OO0 O0OO0o

14
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Proposition(Machida-I).
For the above Cartan’s (8, 15)-distribution D C TR, there

exist the conformal (4,4)-metric on D and the conformal

(4,3)-metric on D+ obtained from the data on singular
curves of D such that the null-cone C' C D coincides with
the singular velocity cone SVC(D). Moreover the flag
manifold of null-subspaces {A; C Ao C A3 C D+ C T*M}
corresponds to a subclass of flags by null-subspaces
fVicVoCcVy,CcCCDCTM} in D and the prolongation
(Z, F) of (M, D) by the above null-flags of D turns out to be
a (4,7,10,13,16, 18, 20, 21, 22, 23, 24)-distribution. Moreover
its symbol algebra realises the nilpotent part of simple Lie

algebra Fy, m = &, g.
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Remark.

Exactly speaking, the simple Lie algebra F4 has three real
forms; one compact type F4(—52) and two non-compact types
Fy(a) (or Fyul, 154) and Fy(_o0y (or F4ll, F}). In fact, Cartan’s
example gives the normal form of (8, 15)-distributions corre-
sponding to the real form F44) (a “hyperbolic” F4-(8,15)-

distributions).

O Goo Ishikawa, Yoshinori Machida, Prolongation of
(8, 15)-distribution of type Fa by singular curves, submitted.
arXiv:2501.02789 math.DG]
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[ Nurowski’s (16, 24)-distribution of type Fg ]

O P. Nurowski, Ezceptional simple real Lie algebras f4 and

¢ via contactifications,
J. Inst. Math. Jussieu 24 (1) (2024), 157-201.
arXiv:2302.13606 [math.DG]|
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On M = R** with coordinates u1, ..., us, Ti,...,Ts,Yi,-..,Ys,

we consider the Pfaff system

A = dur — z1dy2 + x2dyr + x7dys — xsdyr,
A2 = duz — x2dys + xady2 + r6dys — r3dys,
A3 = dusz — x1dys + xadyr + 5dys — xsdys,
< Ay = dug — x5dy2 + redys + x7dys — xsdys,
A5 = dus — x2dys + xr3dys + xedyr — x7dys,
e = dus — x1dys + x3dyr + r5dyr — x7dys,
A7 = duy — x3dys + r4dys + xr5dys — x6dys,
. A8 = dus — z1dys + v2dys + x3dys — radyr,

and the distribution D C T'M of rank 16 defined by

DI:{)\l:)\2:)\3:)\4:>\5:)\6:>\7:>\8:O}.
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Then D is generated by

X1=50=, Xo=o50-, Xz=g0, Xa= 5,
X5 =z0-, Xo= 00, Xv= 7501 X8 = 50,
leﬁ—xga;;—x4%—x6%—x3%,
Y2:8%21—£C1a;21—5643;221—565%—3338;25,
YSZ%TCES%‘FQE%TCUl%—QM%,
Y4=a;;w—$26%2+$18—i—$76%4+333a;27,
Yo = 5~ + Zap- + Trges + Loz — D25
Y6:%J‘$8%+$7%_$5%+$1%,
Y?Z%J-wsa%—%a%—%%-l-wlﬁ,
Y8:8;Zg_x78;21_$68;22_x58;23_x38;28'
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Then we have the bracket relations,

X1, Y2l = 52—, [X1,Ys] = g, [X1, Y4l
X2,Y1] = —52-,[X2, Ya] = 52—, [X2,Ya] =
X3,Y1] = — 50—, [X3, Ya] = — 50, [ X3, V4]
X4,Y1] = —8%3 X4,Y2] = — 55—, [X4, V3]
X5, Y] = 8u4 [ X5, Y] = — 52—, [X5, Y7
X6, Y1] = 8u4 (X6, Y5] = 52—, [X6, Y7
X7,Y4] = 8u4 X7, Y5] = 8%6, X7, Ye
Xs,Y3] = 52—, [X7,Y5] = 8%3,[)(7,1/6

%,[Xl,%]— %7
%,[X2,Y5]_—a;287
PR = =
—aiw,[XzL,Yﬂ: 3%8,
— 525 [ X5, Y] = — 5=,
= PG, T = =
%,[X%YS]:—%,
o, [Xr, Yo = 52,

other brackets [X;, X;], [Yi, Y;] and [X;, Y;] being zero.

In particular we see that D is a (16, 24)-distribution.
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Note that, for the frame
Xi,....Xs, Yi,....Ys, 2 ... %

ouy?°’ > dug’

of T'M, the dual frame of T M is given by
dri,...,dxs, dyi,...,dys, Ai,..., As,
and that D+ = (\1,..., \g).
Any vector v € D is written uniquely as
U= Z§=1 a; X+ Z§:1 b;Y;,
where ai1,...,as,b1,...,bs are regarded as “control param-

. 1. . .
eters”, while any co-vector a« € D~ 1is written uniquely as

= 22:1 Sﬁk)\k,

where ©1,...,ps are called “adjoint parameters”.
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The characteristic matrix is given by

O B
(% o)

where
( 0 P1 ©6 ©3 0 P8 0 0 \
—p1 0 ©5 P2 —P8 0 0 0
—Y6  —P5 0 o7 0 0 0 —¥8
g | —¥3 —¥2 —pr 0 0 0 ©8 0
0 P4 0 0 0 —p7 —v6 —p3
— 4 0 0 0 7 0 —p5  —P2
0 0 0 —p4 Y6 ©5 0 —p1
\ 0 0 P4 0 ©3 ©2 ©1 0 /
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Lemma. We have that
det(B) = det(—tB) = (17 — Y206 + Y35 + 904908)47

det(A) = (p197 — P26 + P3Ps + Paps)”,
and therefore that

Pf(A) = (p197 — p2ip6 + @305 + paps)”. u

Thus we have intrinsically the conformal (4, 4)-metric on
D+ defined by the null cone

CH = {> i, orAk | P17 — Y206 + w305 + paps = 0},
of the quadratic form and associated bi-linear form on D=:
Q(p) == p197 — P2p6 + P3P5 + Paps,

(pl) == 2(p197 + Y197 — P2ths — Y26
+315 + W35 + waths + Yapsg).



24
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[ E@ and D4 ]

CEs X1, «§)

om

Ly
—* 40 (4 F)

%N

O G. Ishikawa, Y. Machida, M. Takahashi, Geometry of D4

conformal triality and singularities of tangent surfaces,
in Proc. of Singularities in Geometry and Appl. III, Edinburgh,

Scotland, 2013, Journal of Singularities, vol. 12 (2015), 27-52.
DOI: 10.5427/jsing.2015.12c
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The singular directions v = Y.° , v; X; + Z?:l w;Y; are

given by the condition

(% 0)(n)=(0)

which is equivalent to that Bw = 0 and (—'B)v = 0, where
v="(v1,...,v8),w = "(wi,...,ws).

The condition Bw = 0 is equivalent to that
[ PlW2 + PeW3 + P3W4 + PgWe =
—P1W1 + P5W3 + Y2W4 — P]W5
—PeW]1 — P5W2 + PTW4 — P]WS
< —P3W1 — PW2 — P7TW3 + PIWT

PLW2 — PTWE — PEWT — P3WS
—P4W1 + P7W5 — P5W7 — P2WS
—P4W4 + PeW5 + P5We — P1WS
\ P4W3 + @3W5 + P2wWe + Y1LWT

O OO OO oo 0o
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which is equivalent to that Wy = 0, where

/ wo 0 W4 0 0 w3
—w1 W4 0 0 w3 0

0 0 0 0 —wo  —Wiq
0 —wo  —wW1 0 0 0

W= 0 0 — WS wo 0 —wr
0 —ws 0 —w1 —wWry 0

—ws 0 0 — W4y We (0
\ wr We ws w3 0 0

and ¢ = “(¢1,---,Ps)-

0 wWe
0 —Ws \
w4 — W8
— w3 wry
—Weg 0
ws 0
0 0
0 0
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Then we observe that all columns of W are null and or-

thogonal to each other for the quadratic form

[

) == aiae¢ — azas — asasg + asaz,

\ a5 /

and for the associated conformal (4, 4)-metric

(a|b) = % (a1b6 + biag — asbs — boas — a3bg — bzag + a4b7 + b4a7) :
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The condition (—'B)v = 0 is equivalent to that

f

\

P1V2 + PeU3 + P3V4 + P4V6
—P1V1 + P5VU3 + P2V4 — P45
— PVl — P5V2 + PTV4 — P48
—E3V] — P2V — PTU3 + P4VU7

PgUV2 — PTVE — PEUT — P3US
— P8Vl + Y7U5 — P5V7 — P2US
—P8V4 + YeU5 + P5U6 — L1US

©P8V3 + Y3VU5 + Y2V + P1UT

0

O OO OO OO

28
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which is equivalent to that V¢ = 0, where

/ V2 0 V4 V6 0 V3 0 0 \
—V1 V4 0 — s V3 0 0 0
0 0 0 —v]g —V9 —U1 V4 0
v — 0 —v9  —V1 V7 0 0 —v3 0
0 0 — VS 0 0 —v7  —Vg V9
0 — V8 0 0 — V7 0 V5 —V1
— Vg 0 0 0 V6 U5 0 — Uy
\ V7 V6 U5 0 0 0 0 V3 )

and ¢ = “(¢1,...,98). Then we see that all columns of V
are null and orthogonal to each other for the same quadratic

form ¢ and the associated (4, 4)-metric as above.
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Proposition. Let D € TM = TR** be the Nurowski’s
(16, 24)-distribution of type Fs. Then we have:

(1) Naturally there arise the conformal (4,4)-metric @) on
D+, the decomposition D = D; @& D, into distributions

D1, D5 of rank 8, and conformal (4, 4)-metrics ¢ on D; and

g2 on D3, respectively.

(2) Associated to flag bundle Fi 5 5 over M which consists of
Q-null-flags A1 C Ay C Az C CL C Dy, x € M = R**, there
arises the flag-manifold F consisting of null-flags Vo C V4 C
Ve C Cx C (D1)x @ (D2)x C Dx, for g1 ® g2, x € M.

(3) The nilpotent graded Lie algebra of the prolongation
(F,FE) of (M, D) is isomorphic to the negative part of the

real form of the exceptional simple graded Lie algebra Egsl.
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