SINGULAR MAPPINGS AND THEIR ZERO-FORMS

GOO ISHIKAWA AND STANISEAW JANECZKO

ABSTRACT. We study the quotient complexes of the de Rham complex on singular map-
pings; the complex of algebraic restrictions, the complex of geometric restrictions and
the residual complex. Vanishing theorem for algebraic, geometric and residual coho-
mologies on quasi-homogeneous map-germs was proved. The finite order and symplectic
zero-forms were characterized on parametric singularities. In this context the singular
parametric Lagrangian surfaces were investigated, with the classification list of .o7-simple
Lagrangian singularities of R? into R*.

1. INTRODUCTION

We consider smooth or holomorphic map-germs f: (F”,0) — (F”,0), F =R or C. The
set of such map-germs is denoted by &, .

Let AY, denote the space of germs of g-forms of m-variables at zero. Note that A9n =&n
is the space of function-germs on (F”,0). The subspace qut of g-forms @, with vanishing
pullbacks (geometric restriction to the image of f) f*® = 0 is called the space of zero
forms on f ([5]). This is a module over smooth (or holomorphic) function-germs and its
properties depend heavily on n,m, g and the singularity of f.

In this paper we study problems related to zero forms on map-germs from various view-
points and provide some observations on them.

One of main problems in geometric singularity theory is the classification of the pairs
(f, ) such that @ is a zero-form on f. Two pairs (f,®) and (f’,®’) are equivalent if
there exist diffeomorphisms ¢ on (F”,0) and 7 on (F,0) such that f' = 7o foo~! and
o = t*®'. If @ is a symplectic form, then the problem is weakened to the classification and
the characterization under the left-right equivalence of map-germs having zero-form which
is symplectic. Regarding Darboux theorem for symplectic forms, the problem is reduced,
for a fixed symplectic form @, to classify map-germs under right-left equivalences (o, 7)
with 78w = , i.e. T is a symplectomorphism. Such a classification problem is understood
well by introducing the notion of algebraic restrictions of differential forms ([2]). In §2,
we observe the related notions for the study of zero forms of map-germs.

By the condition f*® = 0 that @ is a zero form on f is approximated by the nullity of
finite jets j*(f*®)(0) = 0 of forms. In §3, we provide several observations on the “order
of nullity” or “order of isotropness” for map-germs and differential forms.
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The Darboux normal form for symplectic forms is linear, i.e. represented by its O-jet.
Then, for a fixed system of coordinates on (IF"”,0), with even m, it has a sense to ask
the existence of linear symplectic zero forms for a given map-germ f : (F",0) — (F™,0)
related to the original problem. In §4 we provide several basic observations on the problem
on the existence of symplectic zero forms and in §5, in particular the case n =2,m = 4.
Moreover related to the results in §5, we provide some examples of map-germs with many
symplectic zero forms in §6.

2. ALGEBRAIC, GEOMETRIC AND RESIDUAL COHOMOLOGIES OF MAP-GERMS

Let (Ay,,d) be de Rham complex over (F™,0). Then (Z},d), the pair of the differen-

tial ideal of zero forms on f and the exterior differential d, is a sub-complex of (A},,d).
Moreover we consider the differential ideal AZJ*c in A}, generated by

Z)={heA), | fh=0},
namely,

AZ4

4 ZOAL +d(Z9

’ DAL
— {Z{Zlhia,-Jij:l (dk]) /\Bj ‘ h; € ZO,(X,' € A,%,kj € ZO,B]' € AZfl}.

Then AZ? C Z? for any g. We call the forms in AZ;’Z algebraically zero forms on f. Then
(AZ;Z,d) is a sub-complex of (Zj*c,d). This is the parametric version of algebraically zero
forms on subsets of manifolds introduced in [2]. In fact we have

Lemma 2.1. If f : U(C F") — V(C F™) be a representative of f, and Z = f(U), then the
set of algebraically null forms on Z in A1(V) is equal to the set of forms v+ d(0) with
yEAN(V),7(z) =0(z€Z)and § € A1 (V),8(z) =0(z € Z).

Now, by setting /7" := A, /AZ}, G =N, /Z} and #} := Z; [AZ}, we have the quotient
complexes (427}*,3), (%}‘,3) and (%’;,3), which we call the complex of algebraic restric-

tions, the complex of geometric restrictions and the residual complex on f respectively
(see [5]). Then we have the exact sequences of complexes

(i) 0— (AZ},d) — (Ay,,d) — (#f,d) — 0,

(i) 0 — (AZ},d) — (Z},d) — (#},d) — 0,

and
(iv) 0 — (%Z},d) — (#f ,d) — (9} ,d) — 0.
Note that AZ) = Z? and therefore %’19 =0.
Definition 2.2. We call the cohomology H*(«// ,d),H® (@7 ,d) and H® (9?]’2,3) the alge-

braic cohomology, the geometric cohomology and the residual cohomology on f respec-
tively.
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These objects are invariant under the right-left equivalence of map-germs: If f is right-
left equivalent to a germ g, then each cohomology of f and g are isomorphic. The algebraic
and geometric cohomologies are studied in [1] for arbitrary subsets in manifolds. The
homogeneity and quasi-homogeneity are important notions in singularity theory ([7][8]).
Here we intend to reformulate the results in [1] for map-germs and apply them to the study
on zero forms, regarding the notion of homogeneity of map-germs in a generalized sense.

A map-germ f = (fi,...,fm) : (F",0) — (F™,0) is called weakly quasi-homogeneous
if there exist non-negative integers A1, ..., A, and uj,..., U, such that

FEPxy, . tf) = (i, X)o7 (X))
Suppose, by some permutations of coordinates, that A; = 0(1 <i<mj), A > 0(m;+1 <
i <m)and that u; = 0(1 <i<njp),u; >0(n;+1 <i<n). Define the families of map-
germs, forz > 0, ¢, : (F",0) — (F"*,0) and ®; : (F",0) — (F™,0) by

O (xt,. . yxy) = (Mg, .. it x), Py ym) = (t’l‘yl,...,t’lmym).
Then we have fo@, = ®,0f: (F",0) — (F™,0). Moreover ¢, (resp. ®,) defines a contrac-
tion of (F”,0) to (F™ x 0,0) (resp. a contraction of (I"*,0) to (™ x 0,0)). Note that ¢
(resp. ®;) is smooth or holomorphic on (xi,...,x,) (resp. on (yi,...,Vn)) and is smooth
on t. Define f!: (F™,0) — (F"™,0), by f' := py o foiy, called the zero-weight part of f,
where

i(x1,...,%,) = (*1,...,%,,,0,...,0) and p1(y1,-..,ym) = V1, Ymy)s

In general, we say that f is contractible to f! if there exist contractions ¢; of (F",0)
to (F" x 0,0) and @, from (F™,0) to (F"™ x 0,0), smooth or holomorphic on (xi,...,x,)
and on (yy,...,ym), smooth on ¢ respectively, such that f o ¢, = &, o f with

(Pt|IE‘"1 x0 — ianl x0, Q1 = idF”a %(Fn) C ™" x 07
D[ 50 = idpm x0, P1 = idpm, Po(F™) C F™ x 0.

Since fo @y = Pyo f, we see that f|pn o is a mapping to F™ x 0, is identified with
f! = ®qgo foi; using the above notations. Note that &, = p; in the quasi-homogeneous

case. Then, based on the ideas in [1] applied and modified to our parametric version, we
have the following result:

Lemma 2.3. If f is contractible to f', then H® (AZ},d) and H® (AZ;’;l ,d) (resp. H® (Z},d)
and H® (Z;l,d) ) are isomorphic. Moreover the algebraic (resp. geometric, residual) co-
homology of f is isomorphic to the algebraic (resp. geometric, residual) cohomology of
fl.
Proof: Let j; : (F™,0) — (F™,0) be the inclusion defined by

jl(yh"'uyml) = ()’1,- "7ym1707" 70)
Lethe Z?. Then (f1)*(jih) = (jiof1)*h= (j1oPgo foir)*h= (foir)*h=i{(f*h) =0.

Therefore we have ji(AZ%) C AZ%,. Hence j; induces a morphism (j; )%, : H1(AZ%,d) —
1\ALs f AZ f
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HY (AZ}".1 ,d). Similarly we have j} (Z;{) C ZJ‘{I and j; induces a morphism (/1) : HY(AZ},d) —
HY(Z},.d).

To show ()4, is surjective, take any @ € AZJ‘{1 with dw = 0. Consider @ where
®d, is regarded as a map-germ (F*,0) — (""1,0). Then d(Pjw) = Pj(dw) = 0. Now
P Ay, — Aiy satisfies @G(AZ],) C AZ]. In fact, let k € Z),. Then f*(®fk) = (®go
£k = (f'o go)k = ¢*(f')*k = 0. Thus djk € AZ]. We have d(®}w) € AZ}"" and
JT( @) = (Pooji)*® = . Therefore (j,)4,([Pho]) = [®], and we have that ()}, is

surjective. Similarly we have CIDB(ZJZI) C Zj{ and (j; )3 is surjective.

Let us show (j;)%, and (j;)} are injective. Take @ € AZ}{H with dw = 0. Suppose
_ |
(J1)izl@] =0,i.e. jiow=dn for some n EAZ;{1 . We have @70 — Py = /0 (%CID;"a))dt =

1
/ @} (Ly,w)dt, where V; = % as a vector field along ®;. Since Ly, 0 =V; |do+d(V; o) =
0
d(V;|®) and & = idpn, we have

1
o =dy0+da, az/ (V] w)dt.
0

Since Py = Pjjio = P5(dn) = d(Pyn), we have © = d(Pyn + a), with Pjn +a €
AZ{. So [@] =0 € HI(AZ},d). Therefore (/) is injective. Thus we have that (1)} :
HI(AZ},d) — HY (AZ]*,l,d) is an isomorphism. Similarly we have (j;)} is injective. Note
that if @ € Z]qfl then o defined as above belongs to Z7, since fo ¢ = ®,0 f and V; is
contained in the image of differential map of f. Thus we have that (j1)7 : HY(Z},d) —
H1Y (Z;il ,d) is an isomorphism.

Moreover we have the commutative diagram

0 — (AZ};,d) —— (Ay,d) —— (Ff,d) —— 0,

o W My |

0 —— (AZjy.d) —— (Ap.d) — (.d) — 0,

of complexes induced by ji, related to the exact sequence (i), and the induced homo-
morphism (j;)7, : HY(</},d) — H(< ]Zj,d). Similarly we have the induced morphism
(J1)g - %J? — %]?1 and the commutative diagram

0 — (Zj,d) — (A, d) — (9},d) — 0,

W | o s |

0 —— (Zj,d) — (A, d) — (%;1,3) — 0,

related to the exact sequence (i), and thus the induced homomorphism (j, );, : H (@7, d) —

Hq( ;173)'
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Regarding the long exact sequences of cohomologies, by virtue of the fact that de Rham
complexes are acyclic, the Poincaré lemma, we have the commutative diagram

HY(AZ;,d) —— Hi(A,,d) —— HY(},d) —— HI'(AZ},d) —— HIT'(A},d),

iz | G| | iz | |

HI(AZ;d) —— HUA, . d) —— HI(},d) —— HITN(AZ},d) —— HITY(A,d),

with isomorphisms (jl)j;Z and (7') . Thus, by the five lemma, we have that (j;)*, is
an isomorphism. Similarly we have that (j,), is an isomorphism. Finally by the exact
sequence (iii) or (iv), we have that H? (%;’Z,E) and HY (%}‘1 ,d) are isomorphic. O

A map-germ f is called contractible if there exists a sequence of map-germs f7 : (F", 0) —
(F™i,0),(1 <i <r)withng >ny >--->n, =0,my >my>--->m, =0 such that /!
is contractible to f7, (1 <i < r) with f0 = f.

Theorem 2.4. (Vanishing theorem [1]) Let f : (F",0) — (F",0) be right-left equivalent to
a contractible map-germ in the above sense. Then the algebraic and geometric complexes
of f are acyclic, i.e.,

HY(/f,d)=0,(q#0), H°(/}d)=R,

HI(f,d)=0,(g#0), H(@}.d)=R.
Furthermore we have that the residual cohomologies vanish:

Hq(%},ﬁ) =0, forany g,

Proof : First note that our cohomologies are invariant under the right-left equivalence of

map-germs. Then by Lemma 2.3 and that (427;},3) is acyclic for f: FO — F°, we have
H(},d) = Hq(djfl,d) = Hq(,gafjfz,d) > ... %_Hq(,@f;r,d), which is 0 if ¢ # 0 and is
isomorphic to R if ¢ = 0. The proof for (yf]f,,d ) is similar. Finally by the long exact

sequence of (iv), we have the result for H® (%}‘,3). O

Since 5?]9 = 0 in general, we have

Corollary 2.5. If f : (F",0) — (F™,0) be contractible, then the sequence

d

. B d, ... 4, 7! 4, R —— 0,

0 — %
induced by the exterior differential is exact.

Remark 2.6. We call f quasi-homogeneous in the generalized sense if f is weakly quasi-
homogeneous, the zero-weight part f! : (F"1,0) — ("™ ,0) of f is weak quasi-homogeneous,
the zero-weight part f2 of f! is weak quasi-homogeneous, and so on, with n| >ny > --- >
n,=0,m >mp >--->m, =0 for some r. Then f is contractible, and therefore we have
the same results as in Theorem 2.4 for such an f.



6 G. ISHIKAWA AND S. JANECZKO

Example 2.7. The formulations in this section coincide with those in [2], if f has a
well-defined image Z as a set-germ of (I™,0), for instance, if n < m and f is finite,
ie. dimp(é&,/f*m,,&,) < oo. However in general the image-germ of a map-germ is not
necessarily well-defined, for instance, for the map-germ 7 : (F?,0) — (IF2,0) defined by
7(x1,x2) = (x1,x1x2), the germ of image is not well-defined.

3. FINITE ORDER ZERO-FORMS ON PARAMETRIC SINGULARITIES

There is a natural stratification of A}, associated with an order of multiplicity of geo-
metric restriction of differential forms. Let @ € A/,. We say that the order of vanishing
of the germ  is k if (4~ ®)(0) =0 and (j*@)(0) # 0. By A? . we denote the germs
of g- forms of m-variables at zero having order of vanishing < k. (’cf. [2, 5, 8]). Note that
A} = Al where my, = {h € A, = &, | h(0) = 0},

Let f: (F",0) — (F™,0) be a smooth map-germ at zero. Now the finite order zero forms
are defined as follows.

Zi,={oeA],: ffoeA] }.

And we have the sequence of ideals in A/, :

CZ{, CZi C...CZ{y=A],.

q q
Zic..cz 7

f k41

In C* case Z;{oo means that f*® has the zero Taylor expansion. The corresponding se-
quence
Zq

fk
q
Zf k1

d?k =dim ———

defines the invariant spectrum of the approximation.

If f : N — R?" is a smooth mapping from a C* manifold N, and we denote Z = f(N),
then there is a natural symplectic invariant of Z in the symplectic space (R*", @) called
the index of isotropness of Z defined as a maximal order of vanishing of the two forms
® |7y over all non-singular submanifolds M containing Z. If Z is contained in a non-
singular Lagrangian submanifold, then the index of isotropness is c. This is a measure
of maximal order of tangency between non-singular submanifolds containing Z and non-
singular isotropic submanifolds of the same dimension (see [2]).

We define the index of isotropness for a map-germ f : (F",0) — (F™,0) by
F(f) :=sup{ord(f*®) | ® : symplectic forms on (F™"0)}.
Then clearly we have

Lemma 3.1. The index of isotropness 7 (f) is an invariant of the right-left equivalence

class of f. Moreover . (f) = oo if and only if f is isotropic for some symplectic form on
(F™.0).
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4. SYMPLECTIC ZERO-FORMS ON PARAMETRIC SINGULARITIES

A smooth 2-form Q € Ai is called linear (for the system of coordinates xi,...,x, of
R™) if Q is of the form )}, jaijdx; Ndxj for some a;; € F. We denote by L,%1 the space
of linear 2-forms on (IF™,0) which is isomorphic to A?(T;F™). There is the evaluation
map A2, — L2,,® — ®(0)(= ®|zmm), where ®(0) is regarded as a linear form. Then,
for the given coordinates on (™, 0), we have the decomposition A2, = L2, & m,,A2,, where
m,, C A is the maximal ideal of the R-algebra AY = &, the algebra of all function-germs
(F™,0) — F.

Given f: (F",0) — (F™,0), let us set

LZ} = {0(0)| @ € Z;}, F(f) = max{rank(®(0)) | ® € Z}}.

Note that, if f and g are .o7-equivalent, then 7(f) = 7(g).

Moreover we set LZJ% = L%n ﬂZ]%, the space of linear 2-forms Q satisfying f*Q = 0, and
set

r(f) == max{rank(Q) | Q € LZJ%}.

Note that LZ} C ZZJ% and both LZ7, ZZ% are linear subspaces of the space L3, = A% (T F?")

of linear 2-forms on F2". We set
R(f) :=max{r(g) | g~ f} =max{r(g) | g ~u f}
Then we have that 0 < r(f) < R(f) <7¥(f) <m.

A differential 2-form w € A,% is called symplectic if @ is non-degenerate and closed.

Let f: (F",0) — (F,0) be a map-germ and @ € ZJ% a symplectic zero form of f. Then,
since @ is non-degenerate, we have @ ¢ AZ} and therefore (@] # 0 in ,%J% Moreover,
since f is closed, [@] € Ker(d : %’}% — %]%) If f is contractible in the sense of §2, then
by Corollary 2.5 there exists the unique [¢t] € Z } such that « € A}, f*a =0, and (0] =
dlo] = [da].

A linear 2-form Q =}, ;a;jdx; A\ dx; is symplectic if and only if € is non-degenerate
i.e. det(a;;) # 0, where we set aj; = —a;; for i < j and a; = 0. Note that any linear
symplectic form is transformed to the Darboux normal form }! ; dx; A dx,,; by a linear
transformation of F?". If m is odd, then there are no symplectic forms on (F,0). Let m
be even and m = 2n. Let P denote the Pfaffian P of the skew-symmetric matrix (a;;). Note
that P is a homogeneous polynomial of degree n of variables a;;. Then the non-symplectic
forms in L%n form a hypersurface X defined by P = 0.

Let @ be a symplectic form on F?". A map-germ f : (F",0) — (F*,0) is called a
(parametric) Lagrangian map-germ for @, if f*@ = 0.
Then we propose the problem:
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Characterize map-germs f : (F",0) — (F2",0) such that Z]% contains a smooth (or holo-

morphic) symplectic form on (F?",0). In other words, characterize possible singularities
of parametric Lagrangian map-germs.

Then we naturally concern the condition that 7(f) = 2n, R(f) = 2n or r(f) = 2n.
The followings are clear.

Lemma 4.1. We have, for a map-germ f : (F*,0) — (F?",0),

(1) If 7(f) < 2n, then f is never Lagrangian, for any symplectic form on (F2",0).

() r(f) = 2n if and only if LZ; \ X # 0.

(3) If r(f) = 2n, then f is Lagrangian for a linear symplectic form on (F?",0).

(4) If R(f) = 2n, then f is £-equivalent to a Lagrangian map-germ for a linear sym-
plectic form on (F",0).

Note that LZJ% \ X and ZZ]% \ X are invariant under R*-multiplication, and semi-algebraic.
Therefore P(LZ]% \X), P(ZZ]% \ X) are defined as semi-algebraic sets in the projective space
P(L3) = P"?"=1=1 Moreover we have

Lemma 4.2. If f and g are right-equivalent, then Z% = Zg, and ZZJ% = ZZ;.

We define _ B
((f) :=dimP(LZ; \ X).

If f and g are «7-equivalent, then ¢(f) = £(g).
We consider, given f € &, 5. the sets P(LZ; \ X) C P(L3,) for all germs g € &, 2, which
are left equivalent to f. Then define
U(f) = sup{dimP(LZ;\X) | g~z f} = max{dimP(LZ\X) | g~ f},
where we define that the dimension of the empty set dim(0) = —1.
We have

—1<U(f) < Uf) <n2n—1) -1,
Then we have

Lemma 4.3. For an f € &, 2y, the following conditions are equivalent to each other:
(1) f is Lagrangian for some symplectic form on (Fz”, 0).
(i) R(f) =2n.
(iii) £(f) > 0.

Proof: (i) = (iii): Let f be Lagrangian for a symplectic form @ on F?*. By the Darboux
theorem, there exists a diffeomorphism-germ 7 : (F2*,0) — (IF?",0) such that ® = 7*(Q)
for the linear symplectic form Q =Y"" | dx; A dx,4;, Darboux normal form. Set g = 7o
f. Then g is left equivalent to f and ¢g*Q = f*w = 0. Therefore Q € LZ§ \ £, hence
dimP(LZZ\ X) # 0, and £(f) > 0.

(iii) = (ii) : By (iii), there exists g € &, 2, such that g is Z-equivalent to f and r(g) = 2n.
Therefore we have (ii).
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(ii) = (i) : Suppose R(f) = 2n. Then there exists g € &, 2, such that g is left equivalent
to f and a linear symplectic form Q on (F?*,0) with g*Q = 0. Since g is left equivalent
to f, there exists a diffeomorphism-germ 7 : (F2",0) — (F2",0) such that g = To f. Set
® = 7°Q. Then ® is a symplectic form on (F?",0) and f*@ = f*(7*Q) = g*Q = 0.
Therefore f is Lagrangian for some symplectic form on (F2*,0). O

Lemma 4.4. If f : (F*,0) — (F?",0) satisfies the condition that {t € (F",0) | rank(f; :
T,F" — Tf(t)FZ”) > 2} is dense in (F",0). Then ((f) < n(2n— 1) —2 and therefore {(f) <
n(2n—1)—2.

Proof: Suppose {(f) =n(2n—1)— 1. Then LZ]% \ X contains a non-void open set U in L3 .

By the assumption, there exists a two-dimensional plane IT C TpF?" such that Q| = 0 for
any Q € U. Then forany 1 <i < j<2n,dx; Ndx; =0 onIl. Then we have a contradiction.

Therefore ¢(f) <n(2n—1) —2. O

Now we remark a general result which is going to be applied to our case.

Let f: (F",0) — (F™,0) be a map-germ whose immersion locus is dense. Then Nash
limit set N(f) of f is the closure of the set of n-planes IT in Gr(n,F"™), Grassmannian of
n-planes in " = ToF™, such that there exists a sequence of immersive point (i) € F" of
f converging to 0 as i — oo and IT = lim; 0 fi (T;(;)F").

Then we have

Lemmad4.5. Let f: (F",0) — (F",0),w € Z} and I1 € N(f). Then (0)|r = 0.

Let Gr(n,F™) — P(A"(ToF™)) be Pliicker embedding. Then we have

Lemma 4.6. Let o € Z]”c. Then ®(0) vanishes on the projective linear hull of N(f) in
P(A"(ToF™)).

5. PARAMETRIC LAGRANGIAN SURFACES

In particular, setting 7 = 2 and F = R, we consider smooth map-germs f : (R%,0) —
(R*,0) whose immersion locus is dense. Then £(f) = —1,0,1,2,3 or 4 by Lemma 4.4.

Let

0 ap Az apg
—app 0 a3  ay
—ai3 —axy 0  axn
—ajy —ax —az 0

A=

be a skew symmetric 4 x 4-matrix. Then det(A) = P(A)?, where P(A) = aj2a34 — aj3azs +
a14a3. Then the hypersurface £ C L2 is defined by P(A) = 0.

Example 5.1. Let £ : (R?,0) — (R*,0) be the immersion defined by f(t1,t,) = (t1,2,0,0).
Then LZ]% is defined by a;» =0 in Lﬁ ~ RS Then LZ]% N X is given by ajp = 0,a13az4 —
ajsazs = 0. Thus dimP(LZ]% \ X) = 4. Therefore we have ¢(f) = 4.
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Example 5.2. (Open Whitney umbrella) Let f € &> 4 be defined by

flti,n) = (11, 13, tia, 15511,
If kK > 2, then 7(f) < 4. Therefore f is never Lagrangian for any symplectic form. If
k =1, then f is called an open Whitney umbrella and we have that r(f) = 4 and that

0(f) = €(f) = 0. Thus, if k = 1, then f is Lagrangian for the linear symplectic form
Q = 3dx| Ndx4 + 2dx N\ dxz, which is unique up to non-zero constant multiplication.

Moreover we determine the invariants ¢(f) and 27( f) for all simple singularities f :
(R2,0) — (R*,0) ([6]). In fact we have:

Proposition 5.3. A simple map-germ f(R?,0) — (R*,0) is Lagrangian for some sym-
plectic form on (R*,0) if and only if f is right-left equivalent to one of the following list
(among the list in [6]):

(t1,1n) — (1, f2, fltz, ) e (L),
(t1, 13, 15 + (il)/+1t t, ) h),(j=2,3,4,...) (Ilj2-1),
(11, lltg, 13, t1t2 +t2) (Ivy),
(t1, 13, t1t2+t§, Ht;) (VIIL),
(t1, tita, 15, 15) (IXy).

In all of above cases, we have ((f) = {(f) =
Example 5.4. (Open swallowtail) Let f : (R%,0) — (R*,0) be the germ defined by
flo,n) = (n, 5 +nn, 30t + 5013, 36+ 3013),

which is called open swallow-tail. Then, by calculation, we see that £(f) = ¢(f) = 0. In
fact f is Lagrangian for the linear symplectic form Q = 2dx| A dx4 — dxy N\ dx4, which is
unique up to non-zero constant multiplication.

6. LAGRANGIAN MAPPINGS FOR PLENTY OF SYMPLECTIC FORMS

A plane (2-dimensional linear subspace) IT C LZ = R is called elliptic (resp. hyper-
bolic, parabolic) if INE = {0} (resp. IINX consists of two lines, IT C X). Recall that £
is the set of non-symplectic forms.

A projective line P(IT) in P(L3) = P° is called elliptic (resp. hyperbolic, parabolic) if
IT is elliptic (resp. hyperbolic, parabolic).

Example 6.1. (Product of curves) Let a,b: (R,0) — (R?,0) be planer curve-germs. Then
define f : (R?,0) — (R*, 0) by f(t1,22) = (a(t1),b(t2)). Then £(f) > 1. In fact there exist
two-parameter linear symplectic forms

Q) u = Adxy Ndxy + pdxs Ndxy,

A # 0, which satisfy f*(Q, ) = 0. In this case P(LZ%) contains a hyperbolic line.
For example, taking a and b are planar cusps, then we have the germ defined by

f(t17l2> = (t127 tlsa t%? tg)?
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which is called the product of cusps. Then ZJ(Z is generated by x{’ — x%,xg — xﬁ. Then %} is
described as the set of equivalence classes [¢t] of 1-forms of form

o = (a(x3,x4) +x1b(x3,x4) ) (—3x2dx1 +2x1dx2) + (c(x1,X%2) +x3€(x1,X2) ) (—3x4d2x3 4+ 2x3dx4),

where the function-germs a,b,c, e are regarded modulo Z?. Since the product of cusps
is quasi-homogeneous and therefore contractible, we conclude that any symplectic zero
form w of f is described as

o =d{(a(x3,x4) +x1b(x3,x4))(—=3x2dx1 +2x1dx2) + (c(x1,x2) +x3€(x1,%2) ) (—3x4dx3+2x3dx4) },

modulo AZ]%.

Note that the products of singular curves and regular curves were studied in [3].

Example 6.2. (Holomorphic curves, anti-holomorphic curves) Let f : (R?,0) = (C,0) —
(C?,0) = (R*,0) be a holomorphic or anti-holomorphic map-germ regarded as an element
in & 4. Then £(f) > 1. In fact there exist two-parameter linear symplectic forms

Q,, = Re(wdzi Ndzp),

w € C = R2,w # 0, which satisfy f*(Q,) = 0. In this case P(LZJ%) contains an elliptic
line.

For example, we have, from z € C — (zz,z3), the germ
2 2 2 2.2
f(t1,0) = (7 —13, 21110, 5 = 31113, 317, —13),

which is called complex cusp.

We are naturally led to the problem: Classify singularities of f : R? — R* with £(f) > 1,
in particular for the cases with £(f) =2,3.
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