SINGULAR MAPPINGS AND THEIR ZERO-FORMS

GOO ISHIKAWA AND STANISŁAW JANECZKO

Abstract

We study the quotient complexes of the de Rham complex on singular mappings; the complex of algebraic restrictions, the complex of geometric restrictions and the residual complex. Vanishing theorem for algebraic, geometric and residual cohomologies on quasi-homogeneous map-germs was proved. The finite order and symplectic zero-forms were characterized on parametric singularities. In this context the singular parametric Lagrangian surfaces were investigated, with the classification list of \mathscr{A}-simple Lagrangian singularities of \mathbb{R}^{2} into \mathbb{R}^{4}.

1. Introduction

We consider smooth or holomorphic map-germs $f:\left(\mathbb{F}^{n}, 0\right) \rightarrow\left(\mathbb{F}^{m}, 0\right), \mathbb{F}=\mathbb{R}$ or \mathbb{C}. The set of such map-germs is denoted by $\mathscr{E}_{n, m}$.

Let Λ_{m}^{q} denote the space of germs of q-forms of m-variables at zero. Note that $\Lambda_{m}^{0}=\mathscr{E}_{m}$ is the space of function-germs on $\left(\mathbb{F}^{m}, 0\right)$. The subspace Z_{f}^{q} of q-forms ω, with vanishing pullbacks (geometric restriction to the image of f) $f^{*} \omega=0$ is called the space of zero forms on f ([6]). This is a module over smooth (or holomorphic) function-germs and its properties depend heavily on n, m, q and the singularity of f.

In this paper we study problems related to zero forms on map-germs from various viewpoints and provide some observations on them.

One of main problems in geometric singularity theory is the classification of the pairs (f, ω) such that ω is a zero-form on f. Two pairs (f, ω) and $\left(f^{\prime}, \omega^{\prime}\right)$ are equivalent if there exist diffeomorphisms σ on $\left(\mathbb{F}^{n}, 0\right)$ and τ on $\left(\mathbb{F}^{m}, 0\right)$ such that $f^{\prime}=\tau \circ f \circ \sigma^{-1}$ and $\omega=\tau^{*} \omega^{\prime}$. If ω is a symplectic form, then the problem is weakened to the classification and the characterization under the left-right equivalence of map-germs having zero-form which is symplectic ([5]). Regarding Darboux theorem for symplectic forms, the problem is reduced, for a fixed symplectic form ω, to classify map-germs under right-left equivalences (σ, τ) with $\tau^{*} \omega=\omega$, i.e. τ is a symplectomorphism. Such a classification problem is understood well by introducing the notion of algebraic restrictions of differential forms ([3]). In $\S 2$, we observe the related notions for the study of zero forms of map-germs.

By the condition $f^{*} \omega=0$ that ω is a zero form on f is approximated by the nullity of finite jets $j^{k}\left(f^{*} \omega\right)(0)=0$ of forms. In $\S 3$, we provide several observations on the "order of nullity" or "order of isotropness" for map-germs and differential forms.

[^0]The Darboux normal form for symplectic forms is linear, i.e. represented by its 0 -jet. Then, for a fixed system of coordinates on $\left(\mathbb{F}^{m}, 0\right)$, with even m, it has a sense to ask the existence of linear symplectic zero forms for a given map-germ $f:\left(\mathbb{F}^{n}, 0\right) \rightarrow\left(\mathbb{F}^{m}, 0\right)$ related to the original problem. In $\S 4$ we provide several basic observations on the problem on the existence of symplectic zero forms and in $\S 5$, in particular the case $n=2, m=4$. Moreover related to the results in $\S 5$, we provide some examples of map-germs with many symplectic zero forms in $\S 6$.

The authors would like to thank an anonymous referee for his/her valuable comment and suggestion.

2. ALGEBRAIC, GEOMETRIC AND RESIDUAL COHOMOLOGIES OF MAP-GERMS

Let $\left(\Lambda_{m}^{*}, d\right)$ be de Rham complex over $\left(\mathbb{F}^{m}, 0\right)$. Then $\left(Z_{f}^{*}, d\right)$, the pair of the differential ideal of zero forms on f and the exterior differential d, is a sub-complex of $\left(\Lambda_{m}^{*}, d\right)$. Moreover we consider the differential ideal $A Z_{f}^{*}$ in Λ_{m}^{*} generated by

$$
Z_{f}^{0}=\left\{h \in \Lambda_{m}^{0} \mid f^{*} h=0\right\}
$$

namely,

$$
\begin{aligned}
A Z_{f}^{q} & :=Z_{f}^{0} \Lambda_{m}^{q}+d\left(Z_{f}^{0}\right) \Lambda_{m}^{q-1} \\
& =\left\{\sum_{i=1}^{r} h_{i} \alpha_{i}+\sum_{j=1}^{s}\left(d k_{j}\right) \wedge \beta_{j} \mid h_{i} \in Z_{f}^{0}, \alpha_{i} \in \Lambda_{m}^{q}, k_{j} \in Z_{f}^{0}, \beta_{j} \in \Lambda_{m}^{q-1}\right\}
\end{aligned}
$$

Then $A Z_{f}^{q} \subset Z_{f}^{q}$ for any q. We call the forms in $A Z_{f}^{*}$ algebraically zero forms on f. Then $\left(A Z_{f}^{*}, d\right)$ is a sub-complex of $\left(Z_{f}^{*}, d\right)$. This is the parametric version of algebraically zero forms on subsets of manifolds introduced in [3]. In fact we have

Lemma 2.1. If $f: U\left(\subset \mathbb{F}^{n}\right) \rightarrow V\left(\subset \mathbb{F}^{m}\right)$ be a representative of f, and $Z=f(U)$, then the set of algebraically null forms on Z in $\Lambda^{q}(V)$ is equal to the set of forms $\gamma+d(\boldsymbol{\delta})$ with $\gamma \in \Lambda^{q}(V), \gamma(z)=0(z \in Z)$ and $\delta \in \Lambda^{q-1}(V), \delta(z)=0(z \in Z)$.

Now, by setting $\mathscr{A}_{f}^{*}:=\Lambda_{m}^{*} / A Z_{f}^{*}, \mathscr{G}_{f}^{*}:=\Lambda_{m}^{*} / Z_{f}^{*}$ and $\mathscr{R}_{f}^{*}:=Z_{f}^{*} / A Z_{f}^{*}$, we have the quotient complexes $\left(\mathscr{A}_{f}^{*}, \bar{d}\right),\left(\mathscr{G}_{f}^{*}, \bar{d}\right)$ and $\left(\mathscr{R}_{f}^{*}, \bar{d}\right)$, which we call the complex of algebraic restrictions, the complex of geometric restrictions and the residual complex on f respectively (see [6]). Then we have the exact sequences of complexes
(i) $0 \longrightarrow\left(A Z_{f}^{*}, d\right) \longrightarrow\left(\Lambda_{m}^{*}, d\right) \longrightarrow\left(\mathscr{A}_{f}^{*}, \bar{d}\right) \longrightarrow 0$,
(ii) $0 \longrightarrow\left(Z_{f}^{*}, d\right) \longrightarrow\left(\Lambda_{m}^{*}, d\right) \longrightarrow\left(\mathscr{G}_{f}^{*}, \bar{d}\right) \longrightarrow 0$,
(iii) $0 \longrightarrow\left(A Z_{f}^{*}, d\right) \longrightarrow\left(Z_{f}^{*}, d\right) \longrightarrow\left(\mathscr{R}_{f}^{*}, \bar{d}\right) \longrightarrow 0$,
and

$$
\text { (iv) } 0 \longrightarrow\left(\mathscr{R}_{f}^{*}, \bar{d}\right) \longrightarrow\left(\mathscr{A}_{f}^{*}, \bar{d}\right) \longrightarrow\left(\mathscr{G}_{f}^{*}, \bar{d}\right) \longrightarrow 0 .
$$

Note that $A Z_{f}^{0}=Z_{f}^{0}$ and therefore $\mathscr{R}_{f}^{0}=0$.
Definition 2.2. We call the cohomology $H^{\bullet}\left(\mathscr{A}_{f}^{*}, \bar{d}\right), H^{\bullet}\left(\mathscr{G}_{f}^{*}, \bar{d}\right)$ and $H^{\bullet}\left(\mathscr{R}_{f}^{*}, \bar{d}\right)$ the algebraic cohomology, the geometric cohomology and the residual cohomology on f respectively.

These objects are invariant under the right-left equivalence of map-germs: If f is rightleft equivalent to a germ g, then each cohomology of f and g are isomorphic. The algebraic and geometric cohomologies are studied in [2] for arbitrary subsets in manifolds. The homogeneity and quasi-homogeneity are important notions in singularity theory. See for the characterization problem of (quasi-)homogeneity the papers [8][1][9][10][11][12][13][14]. Here we intend to reformulate the results in [2] for map-germs and apply them to the study on zero forms, regarding the notion of homogeneity of map-germs in a generalized sense.

A map-germ $f=\left(f_{1}, \ldots, f_{m}\right):\left(\mathbb{F}^{n}, 0\right) \rightarrow\left(\mathbb{F}^{m}, 0\right)$ is called weakly quasi-homogeneous if there exist non-negative integers $\lambda_{1}, \ldots, \lambda_{m}$ and μ_{1}, \ldots, μ_{n} such that

$$
f\left(t^{\mu_{1}} x_{1}, \ldots, t^{\mu_{n}} x_{n}\right)=\left(t^{\lambda_{1}} f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, t^{\lambda_{m}} f_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

Suppose, by some permutations of coordinates, that $\lambda_{i}=0\left(1 \leq i \leq m_{1}\right), \lambda_{i}>0\left(m_{1}+1 \leq\right.$ $i \leq m)$ and that $\mu_{i}=0\left(1 \leq i \leq n_{1}\right), \mu_{i}>0\left(n_{1}+1 \leq i \leq n\right)$. Define the families of mapgerms, for $t \geq 0, \varphi_{t}:\left(\mathbb{F}^{n}, 0\right) \rightarrow\left(\mathbb{F}^{n}, 0\right)$ and $\Phi_{t}:\left(\mathbb{F}^{m}, 0\right) \rightarrow\left(\mathbb{F}^{m}, 0\right)$ by

$$
\varphi_{t}\left(x_{1}, \ldots, x_{n}\right)=\left(t^{\mu_{1}} x_{1}, \ldots, t^{\mu_{n}} x_{n}\right), \quad \Phi_{t}\left(y_{1}, \ldots, y_{m}\right)=\left(t^{\lambda_{1}} y_{1}, \ldots, t^{\lambda_{m}} y_{m}\right) .
$$

Then we have $f \circ \varphi_{t}=\Phi_{t} \circ f:\left(\mathbb{F}^{n}, 0\right) \rightarrow\left(\mathbb{F}^{m}, 0\right)$. Moreover $\varphi_{t}\left(\mathrm{resp} . \Phi_{t}\right)$ defines a contraction of $\left(\mathbb{F}^{n}, 0\right)$ to $\left(\mathbb{F}^{n_{1}} \times 0,0\right)$ (resp. a contraction of $\left(\mathbb{F}^{m}, 0\right)$ to $\left(\mathbb{F}^{m_{1}} \times 0,0\right)$). Note that φ_{t} (resp. Φ_{t}) is smooth or holomorphic on $\left(x_{1}, \ldots, x_{n}\right)$ (resp. on $\left(y_{1}, \ldots, y_{m}\right)$) and is smooth on t. Define $f^{1}:\left(\mathbb{F}^{n_{1}}, 0\right) \rightarrow\left(\mathbb{F}^{m_{1}}, 0\right)$, by $f^{1}:=p_{1} \circ f \circ i_{1}$, called the zero-weight part of f, where

$$
i_{1}\left(x_{1}, \ldots, x_{n_{1}}\right)=\left(x_{1}, \ldots, x_{n_{1}}, 0, \ldots, 0\right) \text { and } p_{1}\left(y_{1}, \ldots, y_{m}\right)=\left(y_{1}, \ldots, y_{m_{1}}\right),
$$

In general, we say that f is contractible to f^{1} if there exist contractions φ_{t} of $\left(\mathbb{F}^{n}, 0\right)$ to $\left(\mathbb{F}^{n_{1}} \times 0,0\right)$ and Φ_{t} from $\left(\mathbb{F}^{m}, 0\right)$ to $\left(\mathbb{F}^{m_{1}} \times 0,0\right)$, smooth or holomorphic on $\left(x_{1}, \ldots, x_{n}\right)$ and on $\left(y_{1}, \ldots, y_{m}\right)$, smooth on t respectively, such that $f \circ \varphi_{t}=\Phi_{t} \circ f$ with

$$
\begin{aligned}
&\left.\varphi_{t}\right|_{\mathbb{R}^{n_{1}} \times 0}=\operatorname{id}_{\mathbb{F}^{n_{1}} \times 0}, \varphi_{1}=\mathrm{id}_{\mathbb{F}^{n}}, \varphi_{0}\left(\mathbb{F}^{n}\right) \subset \mathbb{F}^{n_{1}} \times 0, \\
&\left.\Phi_{t}\right|_{\mathbb{F}^{m_{1}} \times 0}=\operatorname{id}_{\mathbb{F}^{m_{1}} \times 0}, \Phi_{1}=\operatorname{id}_{\mathbb{F}^{m}}, \Phi_{0}\left(\mathbb{F}^{m}\right) \subset \mathbb{F}^{m_{1}} \times 0 .
\end{aligned}
$$

Since $f \circ \varphi_{0}=\Phi_{0} \circ f$, we see that $\left.f\right|_{\mathbb{F}^{n_{1}} \times 0}$ is a mapping to $\mathbb{F}^{m_{1}} \times 0$, is identified with $f^{1}=\Phi_{0} \circ f \circ i_{1}$ using the above notations. Note that $\Phi_{0}=p_{1}$ in the quasi-homogeneous case. Then, based on the ideas in [2] applied and modified to our parametric version, we have the following result:

Lemma 2.3. If f is contractible to f^{1}, then $H^{\bullet}\left(A Z_{f}^{*}, d\right)$ and $H^{\bullet}\left(A Z_{f^{1}}^{*}\right.$, d) (resp. $H^{\bullet}\left(Z_{f}^{*}, d\right)$ and $\left.H^{\bullet}\left(Z_{f^{1}}^{*}, d\right)\right)$ are isomorphic. Moreover the algebraic (resp. geometric, residual) cohomology of f is isomorphic to the algebraic (resp. geometric, residual) cohomology of f^{1}.

Proof: Let $j_{1}:\left(\mathbb{F}^{m_{1}}, 0\right) \rightarrow\left(\mathbb{F}^{m}, 0\right)$ be the inclusion defined by

$$
j_{1}\left(y_{1}, \ldots, y_{m_{1}}\right)=\left(y_{1}, \ldots, y_{m_{1}}, 0, \ldots, 0\right) .
$$

Let $h \in Z_{f}^{0}$. Then $\left(f^{1}\right)^{*}\left(j_{1}^{*} h\right)=\left(j_{1} \circ f^{1}\right)^{*} h=\left(j_{1} \circ \Phi_{0} \circ f \circ i_{1}\right)^{*} h=\left(f \circ i_{1}\right)^{*} h=i_{1}^{*}\left(f^{*} h\right)=0$. Therefore we have $j_{1}^{*}\left(A Z_{f}^{q}\right) \subset A Z_{f^{1}}^{q}$. Hence j_{1} induces a morphism $\left(j_{1}\right)_{A Z}^{*}: H^{q}\left(A Z_{f}^{*}, d\right) \rightarrow$
$H^{q}\left(A Z_{f^{1}}^{*}, d\right)$. Similarly we have $j_{1}^{*}\left(Z_{f}^{q}\right) \subset Z_{f^{1}}^{q}$ and j_{1} induces a morphism $\left(j_{1}\right)_{Z}^{*}: H^{q}\left(A Z_{f}^{*}, d\right) \rightarrow$ $H^{q}\left(Z_{f^{1}}^{*}, d\right)$.

To show $\left(\bar{j}_{1}\right)_{A Z}^{*}$ is surjective, take any $\omega \in A Z_{f^{1}}^{q}$ with $d \omega=0$. Consider $\Phi_{0}^{*} \omega$ where Φ_{0} is regarded as a map-germ $\left(\mathbb{F}^{m}, 0\right) \rightarrow\left(\mathbb{F}^{m_{1}}, 0\right)$. Then $d\left(\Phi_{0}^{*} \omega\right)=\Phi_{0}^{*}(d \omega)=0$. Now $\Phi_{0}^{*}: \Lambda_{m_{1}}^{q} \rightarrow \Lambda_{m}^{q}$ satisfies $\Phi_{0}^{*}\left(A Z_{f^{1}}^{q}\right) \subset A Z_{f}^{q}$. In fact, let $k \in Z_{f^{1}}^{0}$. Then $f^{*}\left(\Phi_{0}^{*} k\right)=\left(\Phi_{0} \circ\right.$ $f)^{*} k=\left(f^{1} \circ \varphi_{0}\right)^{*} k=\varphi^{*}\left(f^{1}\right)^{*} k=0$. Thus $\Phi_{0}^{*} k \in A Z_{f}^{q}$. We have $d\left(\Phi_{0}^{*} \omega\right) \in A Z_{f}^{q+1}$ and $j_{1}^{*}\left(\Phi_{0}^{*} \omega\right)=\left(\Phi_{0} \circ j_{1}\right)^{*} \omega=\omega$. Therefore $\left(\bar{j}_{1}\right)_{A Z}^{*}\left(\left[\Phi_{0}^{*} \omega\right]\right)=[\omega]$, and we have that $\left(\bar{j}_{1}\right)_{A Z}^{*}$ is surjective. Similarly we have $\Phi_{0}^{*}\left(Z_{f^{1}}^{q}\right) \subset Z_{f}^{q}$ and $\left(\bar{j}_{1}\right)_{Z}^{*}$ is surjective.

Let us show $\left(\bar{j}_{1}\right)_{A Z}^{*}$ and $\left(\bar{j}_{1}\right)_{Z}^{*}$ are injective. Take $\omega \in A Z_{f}^{q+1}$ with $d \omega=0$. Suppose $\left(\bar{j}_{1}\right)_{A Z}^{*}[\omega]=0$, i.e. $j_{1}^{*} \omega=d \eta$ for some $\eta \in A Z_{f^{1}}^{q}$. We have $\Phi_{1}^{*} \omega-\Phi_{0}^{*} \omega=\int_{0}^{1}\left(\frac{d}{d t} \Phi_{t}^{*} \omega\right) d t=$ $\int_{0}^{1} \Phi_{t}^{*}\left(L_{V_{t}} \omega\right) d t$, where $V_{t}=\frac{d \Phi_{t}}{d t}$ as a vector field along Φ_{t}. Since $\left.\left.L_{V_{t}} \omega=V_{t}\right\rfloor d \omega+d\left(V_{t}\right\rfloor \omega\right)=$ $\left.d\left(V_{t}\right\rfloor \omega\right)$ and $\Phi_{1}=\mathrm{id}_{\mathbb{F}^{m}}$, we have

$$
\left.\omega=\Phi_{0}^{*} \omega+d \alpha, \quad \alpha=\int_{0}^{1}\left(V_{t}\right\rfloor \omega\right) d t
$$

Since $\Phi_{0}^{*} \omega=\Phi_{0}^{*} j_{1}^{*} \omega=\Phi_{0}^{*}(d \eta)=d\left(\Phi_{0}^{*} \eta\right)$, we have $\omega=d\left(\Phi_{0}^{*} \eta+\alpha\right)$, with $\Phi_{0}^{*} \eta+\alpha \in$ $A Z_{f}^{q}$. So $[\omega]=0 \in H^{q}\left(A Z_{f}^{*}, d\right)$. Therefore $\left(\bar{j}_{1}\right)_{A Z}^{*}$ is injective. Thus we have that $\left(j_{1}\right)_{A Z}^{*}$: $H^{q}\left(A Z_{f}^{*}, d\right) \rightarrow H^{q}\left(A Z_{f^{1}}^{*}, d\right)$ is an isomorphism. Similarly we have $\left(\bar{j}_{1}\right)_{Z}^{*}$ is injective. Note that if $\omega \in Z_{f}^{q+1}$ then α defined as above belongs to Z_{f}^{q}, since $f \circ \varphi_{t}=\Phi_{t} \circ f$ and V_{t} is contained in the image of differential map of f. Thus we have that $\left(j_{1}\right)_{Z}^{*}: H^{q}\left(Z_{f}^{*}, d\right) \rightarrow$ $H^{q}\left(Z_{f^{1}}^{*}, d\right)$ is an isomorphism.

Moreover we have the commutative diagram

of complexes induced by j^{1}, related to the exact sequence (i), and the induced homomorphism $\left(\bar{j}_{1}\right)_{\mathscr{A}}^{*}: H^{q}\left(\mathscr{A}_{f}^{*}, \bar{d}\right) \rightarrow H^{q}\left(\mathscr{A}_{f^{1}}^{*}, \bar{d}\right)$. Similarly we have the induced morphism $\left(j_{1}\right)_{\mathscr{G}}^{*}: \mathscr{G}_{f}^{q} \rightarrow \mathscr{G}_{f^{1}}^{q}$ and the commutative diagram

$$
\begin{gathered}
0 \longrightarrow\left(Z_{f}^{*}, d\right) \longrightarrow\left(\Lambda_{m}^{*}, d\right) \longrightarrow\left(\mathscr{G}_{f}^{*}, \bar{d}\right) \longrightarrow 0, \\
\left(j^{1}\right)^{*} \downarrow \\
0 \longrightarrow\left(Z_{f^{1}}^{*}, d\right) \longrightarrow\left(\Lambda_{m_{1}}^{*}, d\right) \longrightarrow\left(\mathscr{G}_{f^{1}}^{*}, \bar{d}\right) \longrightarrow 0,
\end{gathered}
$$

related to the exact sequence (ii), and thus the induced homomorphism $\left(\bar{j}_{1}\right)_{\mathscr{G}}^{*}: H^{q}\left(\mathscr{G}_{f}^{*}, \bar{d}\right) \rightarrow$ $H^{q}\left(\mathscr{G}_{f^{1}}^{*}, \bar{d}\right)$.

Regarding the long exact sequences of cohomologies, by virtue of the fact that de Rham complexes are acyclic, the Poincaré lemma, we have the commutative diagram

with isomorphisms $\left(\bar{j}^{1}\right)_{A Z}^{*}$ and $\left(\bar{j}^{1}\right)_{\Lambda}^{*}$. Thus, by the five lemma, we have that $\left(\bar{j}_{1}\right)_{\mathscr{A}}^{*}$ is an isomorphism. Similarly we have that $\left(\bar{j}_{1}\right)_{\mathscr{G}}^{*}$ is an isomorphism. Finally by the exact sequence (iii) or (iv), we have that $H^{q}\left(\mathscr{R}_{f}^{*}, \bar{d}\right)$ and $H^{q}\left(\mathscr{R}_{f^{1}}^{*}, \bar{d}\right)$ are isomorphic.

A map-germ f is called contractible if there exists a sequence of map-germs $f^{i}:\left(\mathbb{F}^{n_{i}}, 0\right) \rightarrow$ $\left(\mathbb{F}^{m_{i}}, 0\right),(1 \leq i \leq r)$ with $n_{1} \geq n_{2} \geq \cdots \geq n_{r}=0, m_{1} \geq m_{2} \geq \cdots \geq m_{r}=0$ such that f^{i-1} is contractible to $f^{i},(1 \leq i \leq r)$ with $f^{0}=f$.
Theorem 2.4. (Vanishing theorem [2]) Let $f:\left(\mathbb{F}^{n}, 0\right) \rightarrow\left(\mathbb{F}^{m}, 0\right)$ be right-left equivalent to a contractible map-germ in the above sense. Then the algebraic and geometric complexes of f are acyclic, i.e.,

$$
\begin{aligned}
H^{q}\left(\mathscr{A}_{f}^{*}, \bar{d}\right) & =0,(q \neq 0), & H^{0}\left(\mathscr{A}_{f}^{*}, \bar{d}\right)=\mathbb{R} \\
H^{q}\left(\mathscr{G}_{f}^{*}, \bar{d}\right) & =0,(q \neq 0), & H^{0}\left(\mathscr{G}_{f}^{*}, \bar{d}\right)=\mathbb{R}
\end{aligned}
$$

Furthermore we have that the residual cohomologies vanish:

$$
H^{q}\left(\mathscr{R}_{f}^{*}, \bar{d}\right)=0, \text { for any } q
$$

Proof: First note that our cohomologies are invariant under the right-left equivalence of map-germs. Then by Lemma 2.3 and that $\left(\mathscr{A}_{f_{r}}^{*}, \bar{d}\right)$ is acyclic for $f^{r}: \mathbb{F}^{0} \rightarrow \mathbb{F}^{0}$, we have $H^{q}\left(\mathscr{A}_{f}^{*}, \bar{d}\right) \cong H^{q}\left(\mathscr{A}_{f^{1}}^{*}, \bar{d}\right) \cong H^{q}\left(\mathscr{A}_{f^{2}}^{*}, \bar{d}\right) \cong \ldots \cong H^{q}\left(\mathscr{A}_{f^{r}}^{*}, \bar{d}\right)$, which is 0 if $q \neq 0$ and is isomorphic to \mathbb{R} if $q=0$. The proof for $\left(\mathscr{G}_{f^{r}}^{*}, \bar{d}\right)$ is similar. Finally by the long exact sequence of (iv), we have the result for $H^{\bullet}\left(\mathscr{R}_{f}^{*}, \bar{d}\right)$.

Since $\mathscr{R}_{f}^{0}=0$ in general, we have
Corollary 2.5. If $f:\left(\mathbb{F}^{n}, 0\right) \rightarrow\left(\mathbb{F}^{m}, 0\right)$ be contractible, then the sequence

$$
0 \longrightarrow \mathscr{R}_{f}^{1} \xrightarrow{\bar{d}} \mathscr{R}_{f}^{2} \xrightarrow{\bar{d}} \cdots \xrightarrow{\bar{d}} \mathscr{R}_{f}^{m-1} \xrightarrow{\bar{d}} \mathscr{R}_{f}^{m} \longrightarrow 0,
$$

induced by the exterior differential is exact.
Remark 2.6. We call f quasi-homogeneous in the generalized sense if f is weakly quasihomogeneous, the zero-weight part $f^{1}:\left(\mathbb{F}^{n_{1}}, 0\right) \rightarrow\left(\mathbb{F}^{m_{1}}, 0\right)$ of f is weak quasi-homogeneous, the zero-weight part f^{2} of f^{1} is weak quasi-homogeneous, and so on, with $n_{1} \geq n_{2} \geq \cdots \geq$ $n_{r}=0, m_{1} \geq m_{2} \geq \cdots \geq m_{r}=0$ for some r. Then f is contractible, and therefore we have the same results as in Theorem 2.4 for such an f.

Example 2.7. The formulations in this section coincide with those in [3], if f has a well-defined image Z as a set-germ of $\left(\mathbb{F}^{m}, 0\right)$, for instance, if $n \leq m$ and f is finite, i.e. $\operatorname{dim}_{\mathbb{F}}\left(\mathscr{E}_{n} / f^{*} \mathfrak{m}_{m} \mathscr{E}_{n}\right)<\infty$. However in general the image-germ of a map-germ is not necessarily well-defined, for instance, for the map-germ $\pi:\left(\mathbb{F}^{2}, 0\right) \rightarrow\left(\mathbb{F}^{2}, 0\right)$ defined by $\pi\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{1} x_{2}\right)$, the germ of image is not well-defined.

3. Finite order zero-forms on parametric singularities

There is a natural stratification of Λ_{m}^{q} associated with an order of multiplicity of geometric restriction of differential forms. Let $\omega \in \Lambda_{m}^{q}$. We say that the order of vanishing of the germ ω is k if $\left(j^{(k-1)} \omega\right)(0)=0$ and $\left(j^{k} \omega\right)(0) \neq 0$. By $\Lambda_{m, k}^{q}$ we denote the germs of q-forms of m-variables at zero having order of vanishing $\geq k$. (cf. [3, 6, 11]). Note that $\Lambda_{m, k}^{q}=\mathfrak{m}_{m}^{k} \Lambda_{m}^{q}$, where $\mathfrak{m}_{m}=\left\{h \in \Lambda_{m}^{0}=\mathscr{E}_{m} \mid h(0)=0\right\}$.

Let $f:\left(\mathbb{F}^{n}, 0\right) \rightarrow\left(\mathbb{F}^{m}, 0\right)$ be a smooth map-germ at zero. Now the finite order zero forms are defined as follows.

$$
Z_{f, k}^{q}=\left\{\omega \in \Lambda_{m}^{q}: f^{*} \omega \in \Lambda_{n, k}^{q}\right\}
$$

And we have the sequence of ideals in Λ_{m}^{q} :

$$
Z_{f}^{q} \subset \ldots \subset Z_{f, k+1}^{q} \subset Z_{f, k}^{q} \subset Z_{f, k-1}^{q} \subset \ldots \subset Z_{f, 0}^{q}=\Lambda_{m}^{q}
$$

In C^{∞} case $Z_{f, \infty}^{q}$ means that $f^{*} \omega$ has the zero Taylor expansion. The corresponding sequence

$$
d_{f, k}^{q}=\operatorname{dim} \frac{Z_{f, k}^{q}}{Z_{f, k+1}^{q}}
$$

defines the invariant spectrum of the approximation.
If $f: N \rightarrow \mathbb{R}^{2 n}$ is a smooth mapping from a C^{∞} manifold N, and we denote $Z=f(N)$, then there is a natural symplectic invariant of Z in the symplectic space $\left(\mathbb{R}^{2 n}, \omega\right)$ called the index of isotropness of Z defined as a maximal order of vanishing of the two forms $\left.\omega\right|_{T M}$ over all non-singular submanifolds M containing Z. If Z is contained in a nonsingular Lagrangian submanifold, then the index of isotropness is ∞. This is a measure of maximal order of tangency between non-singular submanifolds containing Z and nonsingular isotropic submanifolds of the same dimension (see [3]).

We define the index of isotropness for a map-germ $f:\left(\mathbb{F}^{n}, 0\right) \rightarrow\left(\mathbb{F}^{m}, 0\right)$ by

$$
\mathscr{I}(f):=\sup \left\{\operatorname{ord}\left(f^{*} \omega\right) \mid \omega: \text { symplectic forms on }\left(\mathbb{F}^{m}, 0\right)\right\} .
$$

Then clearly we have
Lemma 3.1. The index of isotropness $\mathscr{I}(f)$ is an invariant of the right-left equivalence class of f. Moreover $\mathscr{I}(f)=\infty$ if and only if f is isotropic for some symplectic form on $\left(\mathbb{F}^{m}, 0\right)$.

4. SYMPLECTIC ZERO-FORMS ON PARAMETRIC SINGULARITIES

A smooth 2-form $\Omega \in \Lambda_{m}^{2}$ is called linear (for the system of coordinates x_{1}, \ldots, x_{m} of \mathbb{R}^{m}) if Ω is of the form $\sum_{i<j} a_{i j} d x_{i} \wedge d x_{j}$ for some $a_{i j} \in \mathbb{F}$. We denote by L_{m}^{2} the space of linear 2-forms on $\left(\mathbb{F}^{m}, 0\right)$ which is isomorphic to $\wedge^{2}\left(T_{0}^{*} \mathbb{F}^{m}\right)$. There is the evaluation map $\Lambda_{m}^{2} \rightarrow L_{m}^{2}, \omega \mapsto \omega(0)\left(=\left.\omega\right|_{T_{0} \mathbb{F}^{m}}\right)$, where $\omega(0)$ is regarded as a linear form. Then, for the given coordinates on $\left(\mathbb{F}^{m}, 0\right)$, we have the decomposition $\Lambda_{m}^{2}=L_{m}^{2} \oplus \mathfrak{m}_{m} \Lambda_{m}^{2}$, where $\mathfrak{m}_{m} \subset \Lambda_{m}^{0}$ is the maximal ideal of the \mathbb{R}-algebra $\Lambda_{m}^{0}=\mathscr{E}_{m}$, the algebra of all function-germs $\left(\mathbb{F}^{m}, 0\right) \rightarrow \mathbb{F}$.

Given $f:\left(\mathbb{F}^{n}, 0\right) \rightarrow\left(\mathbb{F}^{m}, 0\right)$, let us set

$$
\widetilde{L} Z_{f}^{2}:=\left\{\omega(0) \mid \omega \in Z_{f}^{2}\right\}, \quad \widetilde{r}(f):=\max \left\{\operatorname{rank}(\omega(0)) \mid \omega \in Z_{f}^{2}\right\}
$$

Note that, if f and g are \mathscr{A}-equivalent, then $\widetilde{r}(f)=\widetilde{r}(g)$.
Moreover we set $L Z_{f}^{2}=L_{2 n}^{2} \cap Z_{f}^{2}$, the space of linear 2-forms Ω satisfying $f^{*} \Omega=0$, and set

$$
r(f):=\max \left\{\operatorname{rank}(\Omega) \mid \Omega \in L Z_{f}^{2}\right\}
$$

Note that $L Z_{f}^{2} \subset \widetilde{L} Z_{f}^{2}$ and both $L Z_{f}^{2}, \widetilde{L} Z_{f}^{2}$ are linear subspaces of the space $L_{2 n}^{2} \cong \wedge^{2}\left(T_{0}^{*} \mathbb{F}^{2 n}\right)$ of linear 2-forms on $\mathbb{F}^{2 n}$. We set

$$
R(f):=\max \left\{r(g) \mid g \sim_{\mathscr{L}} f\right\}=\max \left\{r(g) \mid g \sim_{\mathscr{A}} f\right\} .
$$

Then we have that $0 \leq r(f) \leq R(f) \leq \widetilde{r}(f) \leq m$.
A differential 2-form $\omega \in \Lambda_{m}^{2}$ is called symplectic if ω is non-degenerate and closed.

Let $f:\left(\mathbb{F}^{n}, 0\right) \rightarrow\left(\mathbb{F}^{m}, 0\right)$ be a map-germ and $\omega \in Z_{f}^{2}$ a symplectic zero form of f. Then, since ω is non-degenerate, we have $\omega \notin A Z_{f}^{2}$ and therefore $[\omega] \neq 0$ in \mathscr{R}_{f}^{2}. Moreover, since f is closed, $[\omega] \in \operatorname{Ker}\left(\bar{d}: \mathscr{R}_{f}^{2} \rightarrow \mathscr{R}_{f}^{3}\right)$. If f is contractible in the sense of $\S 2$, then by Corollary 2.5 there exists the unique $[\alpha] \in \mathscr{R}_{f}^{1}$ such that $\alpha \in \Lambda_{n}^{1}, f^{*} \alpha=0$, and $[\omega]=$ $\bar{d}[\alpha]=[d \alpha]$.

A linear 2-form $\Omega=\sum_{i<j} a_{i j} d x_{i} \wedge d x_{j}$ is symplectic if and only if Ω is non-degenerate i.e. $\operatorname{det}\left(a_{i j}\right) \neq 0$, where we set $a_{j i}=-a_{i j}$ for $i<j$ and $a_{i i}=0$. Note that any linear symplectic form is transformed to the Darboux normal form $\sum_{i=1}^{n} d x_{i} \wedge d x_{n+i}$ by a linear transformation of $\mathbb{F}^{2 n}$. If m is odd, then there are no symplectic forms on $\left(\mathbb{F}^{m}, 0\right)$. Let m be even and $m=2 n$. Let P denote the Pfaffian of the skew-symmetric matrix $\left(a_{i j}\right)$. Note that P is a homogeneous polynomial of degree n of variables $a_{i j}$. Then the non-symplectic forms in $L_{2 n}^{2}$ form a hypersurface Σ defined by $P=0$.

Let ω be a symplectic form on $\mathbb{F}^{2 n}$. A map-germ $f:\left(\mathbb{F}^{n}, 0\right) \rightarrow\left(\mathbb{F}^{2 n}, 0\right)$ is called a (parametric) Lagrangian map-germ for ω, if $f^{*} \omega=0$.

Then we propose the problem:

Characterize map-germs $f:\left(\mathbb{F}^{n}, 0\right) \rightarrow\left(\mathbb{F}^{2 n}, 0\right)$ such that Z_{f}^{2} contains a smooth (or holomorphic) symplectic form on $\left(\mathbb{F}^{2 n}, 0\right)$. In other words, characterize possible singularities of parametric Lagrangian map-germs.

Then we naturally concern the condition that $\widetilde{r}(f)=2 n, R(f)=2 n$ or $r(f)=2 n$.
The followings are clear.
Lemma 4.1. We have, for a map-germ $f:\left(\mathbb{F}^{n}, 0\right) \rightarrow\left(\mathbb{F}^{2 n}, 0\right)$,
(1) If $\widetilde{r}(f)<2 n$, then f is never Lagrangian, for any symplectic form on $\left(\mathbb{F}^{2 n}, 0\right)$.
(2) $r(f)=2 n$ if and only if $L Z_{f}^{2} \backslash \Sigma \neq \emptyset$.
(3) If $r(f)=2 n$, then f is Lagrangian for a linear symplectic form on $\left(\mathbb{F}^{2 n}, 0\right)$.
(4) If $R(f)=2 n$, then f is \mathscr{L}-equivalent to a Lagrangian map-germ for a linear symplectic form on $\left(\mathbb{F}^{2 n}, 0\right)$.

Note that $L Z_{f}^{2} \backslash \Sigma$ and $\widetilde{L} Z_{f}^{2} \backslash \Sigma$ are invariant under \mathbb{R}^{\times}-multiplication, and semi-algebraic. Therefore $P\left(L Z_{f}^{2} \backslash \Sigma\right), P\left(\widetilde{L} Z_{f}^{2} \backslash \Sigma\right)$ are defined as semi-algebraic sets in the projective space $P\left(L_{2 n}^{2}\right) \cong P^{n(2 n-1)-1}$. Moreover we have
Lemma 4.2. If f and g are right-equivalent, then $Z_{f}^{2}=Z_{g}^{2}$, and $\widetilde{L} Z_{f}^{2}=\widetilde{L} Z_{g}^{2}$.
We define

$$
\tilde{\ell}(f):=\operatorname{dim} P\left(\widetilde{L} Z_{f}^{2} \backslash \Sigma\right)
$$

If f and g are \mathscr{A}-equivalent, then $\widetilde{\ell}(f)=\widetilde{\ell}(g)$.
We consider, given $f \in \mathscr{E}_{n, 2 n}$, the sets $P\left(L Z_{g}^{2} \backslash \Sigma\right) \subset P\left(L_{2 n}^{2}\right)$ for all germs $g \in \mathscr{E}_{n, 2 n}$ which are left equivalent to f. Then define

$$
\ell(f):=\max \left\{\operatorname{dim} P\left(L Z_{g}^{2} \backslash \Sigma\right) \mid g \sim_{\mathscr{L}} f\right\}
$$

where we define that the dimension of the empty set $\operatorname{dim}(\emptyset)=-1$. Then we see

$$
\ell(f)=\max \left\{\operatorname{dim} P\left(L Z_{g}^{2} \backslash \Sigma\right) \mid g \sim_{\mathscr{A}} f\right\}
$$

In fact, the inequality \leq is clear. Moreover, if g is \mathscr{A}-equivalent to f, then g is right equivalent to g^{\prime} such that g^{\prime} is left equivalent to f. Then by Lemma 4.2, we have $L_{g^{\prime}}^{2}=L_{g}^{2}$, and therefore we have the required equality.

Now we have

$$
-1 \leq \ell(f) \leq \widetilde{\ell}(f) \leq n(2 n-1)-1
$$

Then we obtain
Lemma 4.3. For an $f \in \mathscr{E}_{n, 2 n}$, the following conditions are equivalent to each other:
(i) f is Lagrangian for some symplectic form on $\left(\mathbb{F}^{2 n}, 0\right)$.
(ii) $R(f)=2 n$.
(iii) $\ell(f) \geq 0$.

Proof: (i) \Rightarrow (iii): Let f be Lagrangian for a symplectic form ω on $\mathbb{F}^{2 n}$. By the Darboux theorem, there exists a diffeomorphism-germ $\tau:\left(\mathbb{F}^{2 n}, 0\right) \rightarrow\left(\mathbb{F}^{2 n}, 0\right)$ such that $\omega=\tau^{*}(\Omega)$
for the linear symplectic form $\Omega=\sum_{i=1}^{n} d x_{i} \wedge d x_{n+i}$, Darboux normal form. Set $g=\tau \circ$ f. Then g is left equivalent to f and $g^{*} \Omega=f^{*} \omega=0$. Therefore $\Omega \in L Z_{g}^{2} \backslash \Sigma$, hence $\operatorname{dim} P\left(L Z_{g}^{2} \backslash \Sigma\right) \neq \emptyset$, and $\ell(f) \geq 0$.
(iii) \Rightarrow (ii) : By (iii), there exists $g \in \mathscr{E}_{n, 2 n}$ such that g is \mathscr{L}-equivalent to f and $r(g)=2 n$. Therefore we have (ii).
(ii) \Rightarrow (i) : Suppose $R(f)=2 n$. Then there exists $g \in \mathscr{E}_{n, 2 n}$ such that g is left equivalent to f and a linear symplectic form Ω on $\left(\mathbb{F}^{2 n}, 0\right)$ with $g^{*} \Omega=0$. Since g is left equivalent to f, there exists a diffeomorphism-germ $\tau:\left(\mathbb{F}^{2 n}, 0\right) \rightarrow\left(\mathbb{F}^{2 n}, 0\right)$ such that $g=\tau \circ f$. Set $\omega=\tau^{*} \Omega$. Then ω is a symplectic form on $\left(\mathbb{F}^{2 n}, 0\right)$ and $f^{*} \omega=f^{*}\left(\tau^{*} \Omega\right)=g^{*} \Omega=0$. Therefore f is Lagrangian for some symplectic form on $\left(\mathbb{F}^{2 n}, 0\right)$.

Lemma 4.4. If $f:\left(\mathbb{F}^{n}, 0\right) \rightarrow\left(\mathbb{F}^{2 n}, 0\right)$ satisfies the condition that $\left\{t \in\left(\mathbb{F}^{n}, 0\right) \mid \operatorname{rank}\left(f_{*}\right.\right.$: $\left.\left.T_{t} \mathbb{F}^{n} \rightarrow T_{f(t)} \mathbb{F}^{2 n}\right) \geq 2\right\}$ is dense in $\left(\mathbb{F}^{n}, 0\right)$. Then $\widetilde{\ell}(f) \leq n(2 n-1)-2$ and therefore $\ell(f) \leq$ $n(2 n-1)-2$.

Proof: Suppose $\widetilde{\ell}(f)=n(2 n-1)-1$. Then $L Z_{f}^{2} \backslash \Sigma$ contains a non-void open set U in $L_{2 n}^{2}$. By the assumption, there exists a two-dimensional plane $\Pi \subset T_{0} \mathbb{F}^{2 n}$ such that $\left.\Omega\right|_{\Pi}=0$ for any $\Omega \in U$. Then for any $1 \leq i<j \leq 2 n, d x_{i} \wedge d x_{j}=0$ on Π. Then we have a contradiction. Therefore $\widetilde{\ell}(f) \leq n(2 n-1)-2$.

Now we remark a general result which is going to be applied to our case.
Let $f:\left(\mathbb{F}^{n}, 0\right) \rightarrow\left(\mathbb{F}^{m}, 0\right)$ be a map-germ whose immersion locus is dense. Then Nash limit set $N(f)$ of f is the closure of the set of n-planes Π in $\operatorname{Gr}\left(n, \mathbb{F}^{m}\right)$, Grassmannian of n-planes in $\mathbb{F}^{m}=T_{0} \mathbb{F}^{m}$, such that there exists a sequence of immersive point $t(i) \in \mathbb{F}^{n}$ of f converging to 0 as $i \rightarrow \infty$ and $\Pi=\lim _{i \rightarrow \infty} f_{*}\left(T_{t(i)} \mathbb{F}^{n}\right)$.

Then we have
Lemma 4.5. Let $f:\left(\mathbb{F}^{n}, 0\right) \rightarrow\left(\mathbb{F}^{m}, 0\right), \omega \in Z_{f}^{n}$ and $\Pi \in N(f)$. Then $\left.\omega(0)\right|_{\Pi}=0$.
Let $\operatorname{Gr}\left(n, \mathbb{F}^{m}\right) \hookrightarrow P\left(\Lambda^{n}\left(T_{0} \mathbb{F}^{m}\right)\right)$ be Plücker embedding. Then we have
Lemma 4.6. Let $\omega \in Z_{f}^{n}$. Then $\omega(0)$ vanishes on the projective linear hull of $N(f)$ in $P\left(\Lambda^{n}\left(T_{0} \mathbb{F}^{m}\right)\right)$.

5. Parametric Lagrangian surfaces

In particular, setting $n=2$ and $\mathbb{F}=\mathbb{R}$, we consider smooth map-germs $f:\left(\mathbb{R}^{2}, 0\right) \rightarrow$ $\left(\mathbb{R}^{4}, 0\right)$ whose immersion locus is dense. Then $\ell(f)=-1,0,1,2,3$ or 4 by Lemma 4.4.

Let

$$
A=\left(\begin{array}{cccc}
0 & a_{12} & a_{13} & a_{14} \\
-a_{12} & 0 & a_{23} & a_{24} \\
-a_{13} & -a_{23} & 0 & a_{34} \\
-a_{14} & -a_{24} & -a_{34} & 0
\end{array}\right)
$$

be a skew symmetric 4×4-matrix. Then $\operatorname{det}(A)=P(A)^{2}$, where $P(A)=a_{12} a_{34}-a_{13} a_{24}+$ $a_{14} a_{23}$. Then the hypersurface $\Sigma \subset L_{4}^{2}$ is defined by $P(A)=0$.

Example 5.1. Let $f:\left(\mathbb{R}^{2}, 0\right) \rightarrow\left(\mathbb{R}^{4}, 0\right)$ be the immersion defined by $f\left(t_{1}, t_{2}\right)=\left(t_{1}, t_{2}, 0,0\right)$. Then $L Z_{f}^{2}$ is defined by $a_{12}=0$ in $L_{4}^{2} \cong \mathbb{R}^{6}$. Then $L Z_{f}^{2} \cap \Sigma$ is given by $a_{12}=0, a_{13} a_{24}-$ $a_{14} a_{23}=0$. Thus $\operatorname{dim} P\left(L Z_{f}^{2} \backslash \Sigma\right)=4$. Therefore we have $\ell(f)=4$.
Example 5.2. (Open Whitney umbrella) Let $f \in \mathscr{E}_{2,4}$ be defined by

$$
f\left(t_{1}, t_{2}\right)=\left(t_{1}, t_{2}^{2}, t_{1} t_{2}, t_{2}^{2 k+1}\right)
$$

If $k \geq 2$, then $\widetilde{r}(f)<4$. Therefore f is never Lagrangian for any symplectic form. If $k=1$, then f is called an open Whitney umbrella and we have that $r(f)=4$ and that $\ell(f)=\widetilde{\ell}(f)=0$. Thus, if $k=1$, then f is Lagrangian for the linear symplectic form $\Omega=3 d x_{1} \wedge d x_{4}+2 d x_{2} \wedge d x_{3}$, which is unique up to non-zero constant multiplication.

Moreover we determine the invariants $\ell(f)$ and $\widetilde{\ell}(f)$ for all simple singularities f : $\left(\mathbb{R}^{2}, 0\right) \rightarrow\left(\mathbb{R}^{4}, 0\right)([7])$. In fact we have:

Proposition 5.3. A simple map-germ $f\left(\mathbb{R}^{2}, 0\right) \rightarrow\left(\mathbb{R}^{4}, 0\right)$ is Lagrangian for some symplectic form on $\left(\mathbb{R}^{4}, 0\right)$ if and only if f is right-left equivalent to one of the following list (among the list in [7]):

$$
\begin{array}{rlr}
\left(t_{1}, t_{2}\right) \mapsto & \left(t_{1}, t_{2}^{2}, t_{1} t_{2}, t_{2}^{3}\right) & \left(I_{1}\right), \tag{1}\\
& \left(t_{1}, t_{2}^{2}, t_{2}^{3}+(\pm 1)^{j+1} t_{1}^{j} t_{2}, t_{1}^{2 j-1} t_{2}\right),(j=2,3,4, \ldots) & \left(I I I_{j, 2 j-1}\right), \\
& \left(t_{1}, t_{1} t_{2}, t_{3}^{3}, t_{1} t_{2}^{2}+t_{2}^{4}\right) & \left(I V_{1}\right), \\
& \left(t_{1}, t_{2}^{2}, t_{1}^{2} t_{2}+t_{2}^{3}, t_{1} t_{2}^{3}\right) & \left(V I I_{1}\right), \\
& \left(t_{1}, t_{1} t_{2}, t_{2}^{3}, t_{2}^{4}\right) & \left(I X_{1}\right) .
\end{array}
$$

In all of above cases, we have $\ell(f)=\widetilde{\ell}(f)=0$.
Example 5.4. (Open swallowtail) Let $f:\left(\mathbb{R}^{2}, 0\right) \rightarrow\left(\mathbb{R}^{4}, 0\right)$ be the germ defined by

$$
f\left(t_{1}, t_{2}\right)=\left(t_{1}, t_{2}^{3}+t_{1} t_{2}, \frac{3}{4} t^{4}+\frac{1}{2} t_{1} t_{2}^{2}, \frac{3}{5} t_{1}^{5}+\frac{1}{3} t_{1} t_{2}^{3}\right)
$$

which is called open swallow-tail. Then, by calculation, we see that $\ell(f)=\widetilde{\ell}(f)=0$. In fact f is Lagrangian for the linear symplectic form $\Omega=2 d x_{1} \wedge d x_{4}-d x_{2} \wedge d x_{4}$, which is unique up to non-zero constant multiplication.

6. LAGRANGIAN MAPPINGS FOR PLENTY OF SYMPLECTIC FORMS

A plane (2-dimensional linear subspace) $\Pi \subset L_{4}^{2}=\mathbb{R}^{6}$ is called elliptic (resp. hyperbolic, parabolic) if $\Pi \cap \Sigma=\{0\}$ (resp. $\Pi \cap \Sigma$ consists of two lines, $\Pi \subset \Sigma$). Recall that Σ is the set of non-symplectic forms.

A projective line $P(\Pi)$ in $P\left(L_{4}^{2}\right)=P^{5}$ is called elliptic (resp. hyperbolic, parabolic) if Π is elliptic (resp. hyperbolic, parabolic).

Example 6.1. (Product of curves) Let $a, b:(\mathbb{R}, 0) \rightarrow\left(\mathbb{R}^{2}, 0\right)$ be planer curve-germs. Then define $f:\left(\mathbb{R}^{2}, 0\right) \rightarrow\left(\mathbb{R}^{4}, 0\right)$ by $f\left(t_{1}, t_{2}\right)=\left(a\left(t_{1}\right), b\left(t_{2}\right)\right)$. Then $\ell(f) \geq 1$. In fact there exist two-parameter linear symplectic forms

$$
\Omega_{\lambda, \mu}=\lambda d x_{1} \wedge d x_{2}+\mu d x_{3} \wedge d x_{4}
$$

$\lambda \mu \neq 0$, which satisfy $f^{*}\left(\Omega_{\lambda, \mu}\right)=0$. In this case $P\left(L Z_{f}^{2}\right)$ contains a hyperbolic line.
For example, taking a and b are planar cusps, then we have the germ defined by

$$
f\left(t_{1}, t_{2}\right)=\left(t_{1}^{2}, t_{1}^{3}, t_{2}^{2}, t_{2}^{3}\right)
$$

which is called the product of cusps. Then Z_{f}^{0} is generated by $x_{1}^{3}-x_{2}^{2}, x_{3}^{3}-x_{4}^{2}$. Then \mathscr{R}_{f}^{1} is described as the set of equivalence classes $[\alpha]$ of 1-forms of form
$\alpha=\left(a\left(x_{3}, x_{4}\right)+x_{1} b\left(x_{3}, x_{4}\right)\right)\left(-3 x_{2} d x_{1}+2 x_{1} d x_{2}\right)+\left(c\left(x_{1}, x_{2}\right)+x_{3} e\left(x_{1}, x_{2}\right)\right)\left(-3 x_{4} d x_{3}+2 x_{3} d x_{4}\right)$,
where the function-germs a, b, c, e are regarded modulo Z_{f}^{0}. Since the product of cusps is quasi-homogeneous and therefore contractible, we conclude that any symplectic zero form ω of f is described as
$\omega=d\left\{\left(a\left(x_{3}, x_{4}\right)+x_{1} b\left(x_{3}, x_{4}\right)\right)\left(-3 x_{2} d x_{1}+2 x_{1} d x_{2}\right)+\left(c\left(x_{1}, x_{2}\right)+x_{3} e\left(x_{1}, x_{2}\right)\right)\left(-3 x_{4} d x_{3}+2 x_{3} d x_{4}\right)\right\}$, modulo $A Z_{f}^{2}$.

Note that the products of singular curves and regular curves were studied in [4].
Example 6.2. (Holomorphic curves, anti-holomorphic curves) Let $f:\left(\mathbb{R}^{2}, 0\right)=(\mathbb{C}, 0) \rightarrow$ $\left(\mathbb{C}^{2}, 0\right)=\left(\mathbb{R}^{4}, 0\right)$ be a holomorphic or anti-holomorphic map-germ regarded as an element in $\mathscr{E}_{2,4}$. Then $\ell(f) \geq 1$. In fact there exist two-parameter linear symplectic forms

$$
\Omega_{w}=\operatorname{Re}\left(w d z_{1} \wedge d z_{2}\right)
$$

$w \in \mathbb{C}=\mathbb{R}^{2}, w \neq 0$, which satisfy $f^{*}\left(\Omega_{w}\right)=0$. In this case $P\left(L Z_{f}^{2}\right)$ contains an elliptic line.

For example, we have, from $z \in \mathbb{C} \mapsto\left(z^{2}, z^{3}\right)$, the germ

$$
f\left(t_{1}, t_{2}\right)=\left(t_{1}^{2}-t_{2}^{2}, 2 t_{1} t_{2}, t_{1}^{3}-3 t_{1} t_{2}^{2}, 3 t_{1}^{2} t_{2}-t_{2}^{3}\right)
$$

which is called complex cusp.
We are naturally led to the problem: Classify singularities of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ with $\ell(f) \geq 1$, in particular for the cases with $\ell(f)=2,3$.

REFERENCES

[1] I. Chen, K.-P. Lin, S. Yau, H. Zuo, Coordinate-free characterization of homogeneous polynomials with isolated singularities, Comm. Anal. Geom., 19-4 (2011), 667-704.
[2] W. Domitrz, S. Janeczko, M. Zhitomirskii, Relative Poincaré lemma, contractibility, quasihomogeneity and vector fields tangent to a singular variety, Illinois J. Math., 48-3 (2004), 803-835.
[3] W. Domitrz, S. Janeczko, M. Zhitomirskii, Symplectic singularities of varieties: The method of algebraic restrictions, J. reine angew Math. 618 (2008), 197-235.
[4] A. B. Givental', Singular Lagrangian manifolds and their Lagrangian maps, Journal of Soviet Mathematics, 52-4 (1990), 3246-3278.
[5] G. Ishikawa, S. Janeczko, Symplectic invariants of parametric singularities, in Proceedings of the Conference on Geometry in honour of Shing-Tung Yau's 60th Birthday, April 6-8, 2009, Warsaw, Poland, in Advances in Geometric Analysis, Advanced Lectures in Mathematics series 21, International Press (2012), pp. 259-280.
[6] G. Ishikawa, S. Janeczko, Residual algebraic restrictions of differential forms, Methods and Applications of Analysis, 24-1 (2017), 045-062.
[7] C. Klotz, O. Pop, J.H. Rieger, Real double-points of deformations of \mathscr{A}-simple map-germs from \mathbb{R}^{n} to $\mathbb{R}^{2 n}$, Math. Proc. Camb. Phil. Soc. 142 (2007), 341-363.
[8] K. Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971), 123142.
[9] S. Yau, H. Zuo, Lower estimate of Milnor number and characterization of isolated homogeneous hypersurface singularities, Pacific J. Math., 260-1 (2012), 245-255.
[10] S. Yau, H. Zuo, Characterization of isolated complete intersection singularities with \mathbb{C}^{*}-action of dimension ≥ 2 by means of geometric genus and irregularity, Comm. Anal. Geom., 21-3 (2013), 509-526.
[11] S. Yau, H. Zuo, Complete characterization of isolated homogeneous hypersurface singularities, Pacific Journal of Mathematics, 273-1 (2015), 213-224.
[12] S. Yau, H. Zuo, A sharp upper estimate conjecture for the Yau number of weighted homogeneous isolated hypersurface singularity, Pure Appl.Math. Q., 12-1 (2016), 165-181.
[13] S. Yau, H. Zuo, Nine characterizations of weighted homogeneous isolated hypersurface singularities, Methods Appl. Anal., 24-1 (2017), 155-168.
[14] S. Yau, H. Zuo, A sharp lower bound for the geometric genus and Zariski multiplicity question, Math. Z. 289 no. 3-4 (2018), 1299-1310.

Faculty of Sciences, Department of Mathematics, Hokkaido University, Japan.
E-mail address: ishikawa@math.sci.hokudai.ac.jp
Institute of Mathematics, Polish Academy of Sciences, ul. Sniadeckich 8, 00-956 Warszawa, Poland.

Warsaw University of Technology, Faculty of Mathematics and Information Science, Plac Politechniki 1, 00-661 Warszawa, Poland.

E-mail address: janeczko@impan.pl

[^0]: Key words: Differential forms, Singularities, Geometric restriction, Algebraic restriction, Residual cohomology, Parametric curves and surfaces.

 2010 Mathematics Subject Classification: Primary 53D05. Secondary 58K05, 57R42, 58A10.

