SINGULAR MAPPINGS AND THEIR ZERO-FORMS

GOO ISHIKAWA AND STANISŁAW JANECZKO

ABSTRACT. We study the quotient complexes of the de Rham complex on singular mappings; the complex of algebraic restrictions, the complex of geometric restrictions and the residual complex. Vanishing theorem for algebraic, geometric and residual cohomologies on quasi-homogeneous map-germs was proved. The finite order and symplectic zero-forms were characterized on parametric singularities. In this context the singular parametric Lagrangian surfaces were investigated, with the classification list of \mathscr{A} -simple Lagrangian singularities of \mathbb{R}^2 into \mathbb{R}^4 .

1. Introduction

We consider smooth or holomorphic map-germs $f:(\mathbb{F}^n,0)\to(\mathbb{F}^m,0)$, $\mathbb{F}=\mathbb{R}$ or \mathbb{C} . The set of such map-germs is denoted by $\mathscr{E}_{n,m}$.

Let Λ_m^q denote the space of germs of q-forms of m-variables at zero. Note that $\Lambda_m^0 = \mathscr{E}_m$ is the space of function-germs on $(\mathbb{F}^m,0)$. The subspace Z_f^q of q-forms ω , with vanishing pullbacks (geometric restriction to the image of f) $f^*\omega = 0$ is called the space of zero forms on f ([6]). This is a module over smooth (or holomorphic) function-germs and its properties depend heavily on n,m,q and the singularity of f.

In this paper we study problems related to zero forms on map-germs from various view-points and provide some observations on them.

One of main problems in geometric singularity theory is the classification of the pairs (f,ω) such that ω is a zero-form on f. Two pairs (f,ω) and (f',ω') are equivalent if there exist diffeomorphisms σ on $(\mathbb{F}^n,0)$ and τ on $(\mathbb{F}^m,0)$ such that $f'=\tau\circ f\circ \sigma^{-1}$ and $\omega=\tau^*\omega'$. If ω is a symplectic form, then the problem is weakened to the classification and the characterization under the left-right equivalence of map-germs having zero-form which is symplectic ([5]). Regarding Darboux theorem for symplectic forms, the problem is reduced, for a fixed symplectic form ω , to classify map-germs under right-left equivalences (σ,τ) with $\tau^*\omega=\omega$, i.e. τ is a symplectomorphism. Such a classification problem is understood well by introducing the notion of algebraic restrictions of differential forms ([3]). In §2, we observe the related notions for the study of zero forms of map-germs.

By the condition $f^*\omega = 0$ that ω is a zero form on f is approximated by the nullity of finite jets $j^k(f^*\omega)(0) = 0$ of forms. In §3, we provide several observations on the "order of nullity" or "order of isotropness" for map-germs and differential forms.

Key words: Differential forms, Singularities, Geometric restriction, Algebraic restriction, Residual cohomology, Parametric curves and surfaces.

²⁰¹⁰ Mathematics Subject Classification: Primary 53D05. Secondary 58K05, 57R42, 58A10.

The Darboux normal form for symplectic forms is linear, i.e. represented by its 0-jet. Then, for a fixed system of coordinates on $(\mathbb{F}^m,0)$, with even m, it has a sense to ask the existence of linear symplectic zero forms for a given map-germ $f:(\mathbb{F}^n,0)\to(\mathbb{F}^m,0)$ related to the original problem. In §4 we provide several basic observations on the problem on the existence of symplectic zero forms and in §5, in particular the case n=2, m=4. Moreover related to the results in §5, we provide some examples of map-germs with many symplectic zero forms in §6.

The authors would like to thank an anonymous referee for his/her valuable comment and suggestion.

2. ALGEBRAIC, GEOMETRIC AND RESIDUAL COHOMOLOGIES OF MAP-GERMS

Let (Λ_m^*, d) be de Rham complex over $(\mathbb{F}^m, 0)$. Then (Z_f^*, d) , the pair of the differential ideal of zero forms on f and the exterior differential d, is a sub-complex of (Λ_m^*, d) . Moreover we consider the differential ideal AZ_f^* in Λ_m^* generated by

$$Z_f^0 = \{ h \in \Lambda_m^0 \mid f^*h = 0 \},$$

namely,

$$\begin{array}{rcl}
AZ_f^q & := & Z_f^0 \Lambda_m^q + d(Z_f^0) \Lambda_m^{q-1} \\
& = & \{ \sum_{i=1}^r h_i \alpha_i + \sum_{i=1}^s (dk_i) \wedge \beta_i \mid h_i \in Z_f^0, \alpha_i \in \Lambda_m^q, k_i \in Z_f^0, \beta_i \in \Lambda_m^{q-1} \}.
\end{array}$$

Then $AZ_f^q \subset Z_f^q$ for any q. We call the forms in AZ_f^* algebraically zero forms on f. Then (AZ_f^*, d) is a sub-complex of (Z_f^*, d) . This is the parametric version of algebraically zero forms on subsets of manifolds introduced in [3]. In fact we have

Lemma 2.1. If $f: U(\subset \mathbb{F}^n) \to V(\subset \mathbb{F}^m)$ be a representative of f, and Z = f(U), then the set of algebraically null forms on Z in $\Lambda^q(V)$ is equal to the set of forms $\gamma + d(\delta)$ with $\gamma \in \Lambda^q(V), \gamma(z) = 0 (z \in Z)$ and $\delta \in \Lambda^{q-1}(V), \delta(z) = 0 (z \in Z)$.

Now, by setting $\mathscr{A}_f^* := \Lambda_m^*/AZ_f^*, \mathscr{G}_f^* := \Lambda_m^*/Z_f^*$ and $\mathscr{R}_f^* := Z_f^*/AZ_f^*$, we have the quotient complexes $(\mathscr{A}_f^*, \overline{d}), (\mathscr{G}_f^*, \overline{d})$ and $(\mathscr{R}_f^*, \overline{d})$, which we call the complex of algebraic restrictions, the complex of geometric restrictions and the residual complex on f respectively (see [6]). Then we have the exact sequences of complexes

(i)
$$0 \longrightarrow (AZ_f^*, d) \longrightarrow (\Lambda_m^*, d) \longrightarrow (\mathscr{A}_f^*, \overline{d}) \longrightarrow 0$$
,

(ii)
$$0 \longrightarrow (Z_f^*, d) \longrightarrow (\Lambda_m^*, d) \longrightarrow (\mathscr{G}_f^*, \overline{d}) \longrightarrow 0$$
,

$$(\mathrm{iii}) \ 0 \longrightarrow (AZ_f^*,d) \longrightarrow (Z_f^*,d) \longrightarrow (\mathscr{R}_f^*,\overline{d}) \longrightarrow 0,$$

and

$$\text{(iv) } 0 \longrightarrow (\mathscr{R}_f^*, \overline{d}) \longrightarrow (\mathscr{A}_f^*, \overline{d}) \longrightarrow (\mathscr{G}_f^*, \overline{d}) \longrightarrow 0.$$

Note that $AZ_f^0 = Z_f^0$ and therefore $\mathscr{R}_f^0 = 0$.

Definition 2.2. We call the cohomology $H^{\bullet}(\mathscr{A}_{f}^{*},\overline{d}), H^{\bullet}(\mathscr{G}_{f}^{*},\overline{d})$ and $H^{\bullet}(\mathscr{R}_{f}^{*},\overline{d})$ the algebraic cohomology, the geometric cohomology and the residual cohomology on f respectively.

These objects are invariant under the right-left equivalence of map-germs: If f is right-left equivalent to a germ g, then each cohomology of f and g are isomorphic. The algebraic and geometric cohomologies are studied in [2] for arbitrary subsets in manifolds. The homogeneity and quasi-homogeneity are important notions in singularity theory. See for the characterization problem of (quasi-)homogeneity the papers [8][1][9][10][11][12][13][14]. Here we intend to reformulate the results in [2] for map-germs and apply them to the study on zero forms, regarding the notion of homogeneity of map-germs in a generalized sense.

A map-germ $f = (f_1, ..., f_m) : (\mathbb{F}^n, 0) \to (\mathbb{F}^m, 0)$ is called *weakly quasi-homogeneous* if there exist non-negative integers $\lambda_1, ..., \lambda_m$ and $\mu_1, ..., \mu_n$ such that

$$f(t^{\mu_1}x_1,\ldots,t^{\mu_n}x_n)=(t^{\lambda_1}f_1(x_1,\ldots,x_n),\ldots,t^{\lambda_m}f_m(x_1,\ldots,x_n)).$$

Suppose, by some permutations of coordinates, that $\lambda_i = 0 (1 \le i \le m_1), \lambda_i > 0 (m_1 + 1 \le i \le m)$ and that $\mu_i = 0 (1 \le i \le n_1), \mu_i > 0 (n_1 + 1 \le i \le n)$. Define the families of mapgerms, for $t \ge 0$, $\varphi_t : (\mathbb{F}^n, 0) \to (\mathbb{F}^n, 0)$ and $\Phi_t : (\mathbb{F}^m, 0) \to (\mathbb{F}^m, 0)$ by

$$\varphi_t(x_1,\ldots,x_n) = (t^{\mu_1}x_1,\ldots,t^{\mu_n}x_n), \quad \Phi_t(y_1,\ldots,y_m) = (t^{\lambda_1}y_1,\ldots,t^{\lambda_m}y_m).$$

Then we have $f \circ \varphi_t = \Phi_t \circ f : (\mathbb{F}^n, 0) \to (\mathbb{F}^m, 0)$. Moreover φ_t (resp. Φ_t) defines a contraction of $(\mathbb{F}^n, 0)$ to $(\mathbb{F}^{n_1} \times 0, 0)$ (resp. a contraction of $(\mathbb{F}^m, 0)$ to $(\mathbb{F}^{m_1} \times 0, 0)$). Note that φ_t (resp. Φ_t) is smooth or holomorphic on (x_1, \ldots, x_n) (resp. on (y_1, \ldots, y_m)) and is smooth on t. Define $f^1 : (\mathbb{F}^{n_1}, 0) \to (\mathbb{F}^{m_1}, 0)$, by $f^1 := p_1 \circ f \circ i_1$, called the *zero-weight part* of f, where

$$i_1(x_1,\ldots,x_{n_1})=(x_1,\ldots,x_{n_1},0,\ldots,0)$$
 and $p_1(y_1,\ldots,y_m)=(y_1,\ldots,y_{m_1}),$

In general, we say that f is *contractible* to f^1 if there exist contractions φ_t of $(\mathbb{F}^n, 0)$ to $(\mathbb{F}^{n_1} \times 0, 0)$ and Φ_t from $(\mathbb{F}^m, 0)$ to $(\mathbb{F}^{m_1} \times 0, 0)$, smooth or holomorphic on (x_1, \ldots, x_n) and on (y_1, \ldots, y_m) , smooth on t respectively, such that $f \circ \varphi_t = \Phi_t \circ f$ with

$$egin{aligned} oldsymbol{arphi}_t|_{\mathbb{F}^{n_1} imes 0} &= \mathrm{id}_{\mathbb{F}^{n_1} imes 0}, oldsymbol{arphi}_1 = \mathrm{id}_{\mathbb{F}^n}, oldsymbol{arphi}_0(\mathbb{F}^n) \subset \mathbb{F}^{n_1} imes 0, \ oldsymbol{\Phi}_t|_{\mathbb{F}^{m_1} imes 0} &= \mathrm{id}_{\mathbb{F}^{m_1} imes 0}, oldsymbol{\Phi}_1 = \mathrm{id}_{\mathbb{F}^m}, oldsymbol{\Phi}_0(\mathbb{F}^m) \subset \mathbb{F}^{m_1} imes 0. \end{aligned}$$

Since $f \circ \varphi_0 = \Phi_0 \circ f$, we see that $f|_{\mathbb{F}^{n_1} \times 0}$ is a mapping to $\mathbb{F}^{m_1} \times 0$, is identified with $f^1 = \Phi_0 \circ f \circ i_1$ using the above notations. Note that $\Phi_0 = p_1$ in the quasi-homogeneous case. Then, based on the ideas in [2] applied and modified to our parametric version, we have the following result:

Lemma 2.3. If f is contractible to f^1 , then $H^{\bullet}(AZ_f^*,d)$ and $H^{\bullet}(AZ_{f^1}^*,d)$ (resp. $H^{\bullet}(Z_f^*,d)$ and $H^{\bullet}(Z_{f^1}^*,d)$) are isomorphic. Moreover the algebraic (resp. geometric, residual) cohomology of f is isomorphic to the algebraic (resp. geometric, residual) cohomology of f^1 .

Proof: Let $j_1: (\mathbb{F}^{m_1}, 0) \to (\mathbb{F}^m, 0)$ be the inclusion defined by

$$j_1(y_1,\ldots,y_{m_1})=(y_1,\ldots,y_{m_1},0,\ldots,0).$$

Let $h \in Z_f^0$. Then $(f^1)^*(j_1^*h) = (j_1 \circ f^1)^*h = (j_1 \circ \Phi_0 \circ f \circ i_1)^*h = (f \circ i_1)^*h = i_1^*(f^*h) = 0$. Therefore we have $j_1^*(AZ_f^q) \subset AZ_{f^1}^q$. Hence j_1 induces a morphism $(j_1)_{AZ}^*: H^q(AZ_f^*, d) \to 0$.

 $H^q(AZ_{f^1}^*,d)$. Similarly we have $j_1^*(Z_f^q) \subset Z_{f^1}^q$ and j_1 induces a morphism $(j_1)_Z^*: H^q(AZ_f^*,d) \to H^q(Z_{f^1}^*,d)$.

To show $(\overline{j}_1)_{AZ}^*$ is surjective, take any $\omega \in AZ_{f^1}^q$ with $d\omega = 0$. Consider $\Phi_0^*\omega$ where Φ_0 is regarded as a map-germ $(\mathbb{F}^m,0) \to (\mathbb{F}^{m_1},0)$. Then $d(\Phi_0^*\omega) = \Phi_0^*(d\omega) = 0$. Now $\Phi_0^*: \Lambda_{m_1}^q \to \Lambda_m^q$ satisfies $\Phi_0^*(AZ_{f^1}^q) \subset AZ_f^q$. In fact, let $k \in Z_{f^1}^0$. Then $f^*(\Phi_0^*k) = (\Phi_0 \circ f)^*k = (f^1 \circ \varphi_0)^*k = \varphi^*(f^1)^*k = 0$. Thus $\Phi_0^*k \in AZ_f^q$. We have $d(\Phi_0^*\omega) \in AZ_f^{q+1}$ and $f_1^*(\Phi_0^*\omega) = (\Phi_0 \circ f_1)^*\omega = \omega$. Therefore $(\overline{f}_1)_{AZ}^*([\Phi_0^*\omega]) = [\omega]$, and we have that $(\overline{f}_1)_{AZ}^*$ is surjective. Similarly we have $\Phi_0^*(Z_{f^1}^q) \subset Z_f^q$ and $(\overline{f}_1)_Z^*$ is surjective.

Let us show $(\overline{j}_1)_{AZ}^*$ and $(\overline{j}_1)_Z^*$ are injective. Take $\omega \in AZ_f^{q+1}$ with $d\omega = 0$. Suppose $(\overline{j}_1)_{AZ}^*[\omega] = 0$, i.e. $j_1^*\omega = d\eta$ for some $\eta \in AZ_{f^1}^q$. We have $\Phi_1^*\omega - \Phi_0^*\omega = \int_0^1 (\frac{d}{dt}\Phi_t^*\omega)dt = \int_0^1 \Phi_t^*(L_{V_t}\omega)dt$, where $V_t = \frac{d\Phi_t}{dt}$ as a vector field along Φ_t . Since $L_{V_t}\omega = V_t \rfloor d\omega + d(V_t \rfloor \omega) = d(V_t \rfloor \omega)$ and $\Phi_1 = \mathrm{id}_{\mathbb{F}^m}$, we have

$$\omega = \Phi_0^* \omega + d\alpha, \quad \alpha = \int_0^1 (V_t \rfloor \omega) dt.$$

Since $\Phi_0^*\omega = \Phi_0^*j_1^*\omega = \Phi_0^*(d\eta) = d(\Phi_0^*\eta)$, we have $\omega = d(\Phi_0^*\eta + \alpha)$, with $\Phi_0^*\eta + \alpha \in AZ_f^q$. So $[\omega] = 0 \in H^q(AZ_f^*,d)$. Therefore $(\bar{j}_1)_{AZ}^*$ is injective. Thus we have that $(j_1)_{AZ}^*$: $H^q(AZ_f^*,d) \to H^q(AZ_{f^1}^*,d)$ is an isomorphism. Similarly we have $(\bar{j}_1)_Z^*$ is injective. Note that if $\omega \in Z_f^{q+1}$ then α defined as above belongs to Z_f^q , since $f \circ \varphi_t = \Phi_t \circ f$ and V_t is contained in the image of differential map of f. Thus we have that $(j_1)_Z^*: H^q(Z_f^*,d) \to H^q(Z_{f^1}^*,d)$ is an isomorphism.

Moreover we have the commutative diagram

$$0 \longrightarrow (AZ_f^*, d) \longrightarrow (\Lambda_m^*, d) \longrightarrow (\mathscr{A}_f^*, \overline{d}) \longrightarrow 0,$$

$$(j^1)^* \downarrow \qquad \qquad (j^1)^* \downarrow \qquad \qquad (j^1)^*_{\mathscr{A}} \downarrow$$

$$0 \longrightarrow (AZ_{f^1}^*, d) \longrightarrow (\Lambda_{m_1}^*, d) \longrightarrow (\mathscr{A}_{f^1}^*, \overline{d}) \longrightarrow 0,$$

of complexes induced by j^1 , related to the exact sequence (i), and the induced homomorphism $(\bar{j}_1)^*_{\mathscr{A}}: H^q(\mathscr{A}_f^*, \bar{d}) \to H^q(\mathscr{A}_{f^1}^*, \bar{d})$. Similarly we have the induced morphism $(j_1)^*_{\mathscr{A}}: \mathscr{G}_f^q \to \mathscr{G}_{f^1}^q$ and the commutative diagram

related to the exact sequence (ii), and thus the induced homomorphism $(\overline{j}_1)_{\mathscr{G}}^*: H^q(\mathscr{G}_f^*, \overline{d}) \to H^q(\mathscr{G}_{f^1}^*, \overline{d})$.

Regarding the long exact sequences of cohomologies, by virtue of the fact that de Rham complexes are acyclic, the Poincaré lemma, we have the commutative diagram

with isomorphisms $(\overline{j}^1)_{AZ}^*$ and $(\overline{j}^1)_{\Lambda}^*$. Thus, by the five lemma, we have that $(\overline{j}_1)_{\mathscr{A}}^*$ is an isomorphism. Similarly we have that $(\overline{j}_1)_{\mathscr{A}}^*$ is an isomorphism. Finally by the exact sequence (iii) or (iv), we have that $H^q(\mathscr{R}_f^*,\overline{d})$ and $H^q(\mathscr{R}_{f^1}^*,\overline{d})$ are isomorphic. \square

A map-germ f is called *contractible* if there exists a sequence of map-germs $f^i: (\mathbb{F}^{n_i}, 0) \to (\mathbb{F}^{m_i}, 0), (1 \le i \le r)$ with $n_1 \ge n_2 \ge \cdots \ge n_r = 0, m_1 \ge m_2 \ge \cdots \ge m_r = 0$ such that f^{i-1} is contractible to $f^i, (1 \le i \le r)$ with $f^0 = f$.

Theorem 2.4. (Vanishing theorem [2]) Let $f: (\mathbb{F}^n, 0) \to (\mathbb{F}^m, 0)$ be right-left equivalent to a contractible map-germ in the above sense. Then the algebraic and geometric complexes of f are acyclic, i.e.,

$$H^q(\mathscr{A}_f^*, \overline{d}) = 0, (q \neq 0), \quad H^0(\mathscr{A}_f^*, \overline{d}) = \mathbb{R},$$

 $H^q(\mathscr{G}_f^*, \overline{d}) = 0, (q \neq 0), \quad H^0(\mathscr{G}_f^*, \overline{d}) = \mathbb{R}.$

Furthermore we have that the residual cohomologies vanish:

$$H^q(\mathscr{R}_f^*,\overline{d})=0,\ \ \text{for any}\ q,$$

Proof: First note that our cohomologies are invariant under the right-left equivalence of map-germs. Then by Lemma 2.3 and that $(\mathscr{A}_{f^r}^*, \overline{d})$ is acyclic for $f^r : \mathbb{F}^0 \to \mathbb{F}^0$, we have $H^q(\mathscr{A}_f^*, \overline{d}) \cong H^q(\mathscr{A}_{f^1}^*, \overline{d}) \cong H^q(\mathscr{A}_{f^2}^*, \overline{d}) \cong \cdots \cong H^q(\mathscr{A}_{f^r}^*, \overline{d})$, which is 0 if $q \neq 0$ and is isomorphic to \mathbb{R} if q = 0. The proof for $(\mathscr{G}_{f^r}^*, \overline{d})$ is similar. Finally by the long exact sequence of (iv), we have the result for $H^{\bullet}(\mathscr{R}_f^*, \overline{d})$.

Since $\mathcal{R}_f^0 = 0$ in general, we have

Corollary 2.5. If $f: (\mathbb{F}^n, 0) \to (\mathbb{F}^m, 0)$ be contractible, then the sequence

$$0 \longrightarrow \mathscr{R}_f^1 \stackrel{\overline{d}}{\longrightarrow} \mathscr{R}_f^2 \stackrel{\overline{d}}{\longrightarrow} \cdots \stackrel{\overline{d}}{\longrightarrow} \mathscr{R}_f^{m-1} \stackrel{\overline{d}}{\longrightarrow} \mathscr{R}_f^m \longrightarrow 0,$$

induced by the exterior differential is exact.

Remark 2.6. We call f quasi-homogeneous in the generalized sense if f is weakly quasi-homogeneous, the zero-weight part $f^1: (\mathbb{F}^{n_1}, 0) \to (\mathbb{F}^{m_1}, 0)$ of f is weak quasi-homogeneous, the zero-weight part f^2 of f^1 is weak quasi-homogeneous, and so on, with $n_1 \ge n_2 \ge \cdots \ge n_r = 0$, $m_1 \ge m_2 \ge \cdots \ge m_r = 0$ for some r. Then f is contractible, and therefore we have the same results as in Theorem 2.4 for such an f.

Example 2.7. The formulations in this section coincide with those in [3], if f has a well-defined image Z as a set-germ of $(\mathbb{F}^m,0)$, for instance, if $n \leq m$ and f is finite, i.e. $\dim_{\mathbb{F}}(\mathscr{E}_n/f^*\mathfrak{m}_m\mathscr{E}_n) < \infty$. However in general the image-germ of a map-germ is not necessarily well-defined, for instance, for the map-germ $\pi: (\mathbb{F}^2,0) \to (\mathbb{F}^2,0)$ defined by $\pi(x_1,x_2) = (x_1,x_1x_2)$, the germ of image is not well-defined.

3. FINITE ORDER ZERO-FORMS ON PARAMETRIC SINGULARITIES

There is a natural stratification of Λ_m^q associated with an order of multiplicity of geometric restriction of differential forms. Let $\omega \in \Lambda_m^q$. We say that the order of vanishing of the germ ω is k if $(j^{(k-1)}\omega)(0) = 0$ and $(j^k\omega)(0) \neq 0$. By $\Lambda_{m,k}^q$ we denote the germs of q-forms of m-variables at zero having order of vanishing $\geq k$. (cf. [3, 6, 11]). Note that $\Lambda_{m,k}^q = \mathfrak{m}_m^k \Lambda_m^q$, where $\mathfrak{m}_m = \{h \in \Lambda_m^0 = \mathscr{E}_m \mid h(0) = 0\}$.

Let $f: (\mathbb{F}^n, 0) \to (\mathbb{F}^m, 0)$ be a smooth map-germ at zero. Now the finite order zero forms are defined as follows.

$$Z_{f,k}^q = \{ \omega \in \Lambda_m^q : f^*\omega \in \Lambda_{n,k}^q \}.$$

And we have the sequence of ideals in Λ_m^q :

$$Z_f^q \subset \ldots \subset Z_{f,k+1}^q \subset Z_{f,k}^q \subset Z_{f,k-1}^q \subset \ldots \subset Z_{f,0}^q = \Lambda_m^q$$

In C^{∞} case $Z^q_{f,\infty}$ means that $f^*\omega$ has the zero Taylor expansion. The corresponding sequence

$$d_{f,k}^q = \dim \frac{Z_{f,k}^q}{Z_{f,k+1}^q}$$

defines the invariant spectrum of the approximation.

If $f: N \to \mathbb{R}^{2n}$ is a smooth mapping from a C^{∞} manifold N, and we denote Z = f(N), then there is a natural symplectic invariant of Z in the symplectic space $(\mathbb{R}^{2n}, \omega)$ called the index of isotropness of Z defined as a maximal order of vanishing of the two forms $\omega|_{TM}$ over all non-singular submanifolds M containing Z. If Z is contained in a non-singular Lagrangian submanifold, then the index of isotropness is ∞ . This is a measure of maximal order of tangency between non-singular submanifolds containing Z and non-singular isotropic submanifolds of the same dimension (see [3]).

We define the *index of isotropness* for a map-germ $f:(\mathbb{F}^n,0)\to(\mathbb{F}^m,0)$ by

$$\mathscr{I}(f) := \sup \{ \operatorname{ord}(f^*\omega) \mid \omega : \text{symplectic forms on } (\mathbb{F}^m, 0) \}.$$

Then clearly we have

Lemma 3.1. The index of isotropness $\mathscr{I}(f)$ is an invariant of the right-left equivalence class of f. Moreover $\mathscr{I}(f) = \infty$ if and only if f is isotropic for some symplectic form on $(\mathbb{F}^m, 0)$.

4. SYMPLECTIC ZERO-FORMS ON PARAMETRIC SINGULARITIES

A smooth 2-form $\Omega \in \Lambda_m^2$ is called *linear* (for the system of coordinates x_1, \ldots, x_m of \mathbb{R}^m) if Ω is of the form $\sum_{i < j} a_{ij} dx_i \wedge dx_j$ for some $a_{ij} \in \mathbb{F}$. We denote by L_m^2 the space of linear 2-forms on $(\mathbb{F}^m,0)$ which is isomorphic to $\wedge^2(T_0^*\mathbb{F}^m)$. There is the evaluation map $\Lambda_m^2 \to L_m^2$, $\omega \mapsto \omega(0) (=\omega|_{T_0\mathbb{F}^m})$, where $\omega(0)$ is regarded as a linear form. Then, for the given coordinates on $(\mathbb{F}^m,0)$, we have the decomposition $\Lambda_m^2 = L_m^2 \oplus \mathfrak{m}_m \Lambda_m^2$, where $\mathfrak{m}_m \subset \Lambda_m^0$ is the maximal ideal of the \mathbb{R} -algebra $\Lambda_m^0 = \mathscr{E}_m$, the algebra of all function-germs $(\mathbb{F}^m,0) \to \mathbb{F}$.

Given $f: (\mathbb{F}^n, 0) \to (\mathbb{F}^m, 0)$, let us set

$$\widetilde{L}Z_f^2 := \{ \omega(0) \mid \omega \in Z_f^2 \}, \quad \widetilde{r}(f) := \max\{ \operatorname{rank}(\omega(0)) \mid \omega \in Z_f^2 \}.$$

Note that, if f and g are \mathscr{A} -equivalent, then $\widetilde{r}(f) = \widetilde{r}(g)$.

Moreover we set $LZ_f^2 = L_{2n}^2 \cap Z_f^2$, the space of linear 2-forms Ω satisfying $f^*\Omega = 0$, and set

$$r(f) := \max\{\operatorname{rank}(\Omega) \mid \Omega \in LZ_f^2\}.$$

Note that $LZ_f^2 \subset \widetilde{L}Z_f^2$ and both $LZ_f^2, \widetilde{L}Z_f^2$ are linear subspaces of the space $L_{2n}^2 \cong \wedge^2(T_0^*\mathbb{F}^{2n})$ of linear 2-forms on \mathbb{F}^{2n} . We set

$$R(f) := \max\{r(g) \mid g \sim_{\mathscr{L}} f\} = \max\{r(g) \mid g \sim_{\mathscr{A}} f\}.$$

Then we have that $0 \le r(f) \le R(f) \le \widetilde{r}(f) \le m$.

A differential 2-form $\omega \in \Lambda_m^2$ is called *symplectic* if ω is non-degenerate and closed.

Let $f:(\mathbb{F}^n,0) \to (\mathbb{F}^m,0)$ be a map-germ and $\omega \in Z_f^2$ a symplectic zero form of f. Then, since ω is non-degenerate, we have $\omega \not\in AZ_f^2$ and therefore $[\omega] \neq 0$ in \mathscr{R}_f^2 . Moreover, since f is closed, $[\omega] \in \operatorname{Ker}(\overline{d}:\mathscr{R}_f^2 \to \mathscr{R}_f^3)$. If f is contractible in the sense of $\S 2$, then by Corollary 2.5 there exists the unique $[\alpha] \in \mathscr{R}_f^1$ such that $\alpha \in \Lambda_n^1$, $f^*\alpha = 0$, and $[\omega] = \overline{d}[\alpha] = [d\alpha]$.

A linear 2-form $\Omega = \sum_{i < j} a_{ij} dx_i \wedge dx_j$ is symplectic if and only if Ω is non-degenerate i.e. $\det(a_{ij}) \neq 0$, where we set $a_{ji} = -a_{ij}$ for i < j and $a_{ii} = 0$. Note that any linear symplectic form is transformed to the Darboux normal form $\sum_{i=1}^n dx_i \wedge dx_{n+i}$ by a linear transformation of \mathbb{F}^{2n} . If m is odd, then there are no symplectic forms on $(\mathbb{F}^m,0)$. Let m be even and m=2n. Let P denote the Pfaffian of the skew-symmetric matrix (a_{ij}) . Note that P is a homogeneous polynomial of degree n of variables a_{ij} . Then the non-symplectic forms in L^2_{2n} form a hypersurface Σ defined by P=0.

Let ω be a symplectic form on \mathbb{F}^{2n} . A map-germ $f:(\mathbb{F}^n,0)\to(\mathbb{F}^{2n},0)$ is called a (parametric) Lagrangian map-germ for ω , if $f^*\omega=0$.

Then we propose the problem:

Characterize map-germs $f: (\mathbb{F}^n, 0) \to (\mathbb{F}^{2n}, 0)$ such that Z_f^2 contains a smooth (or holomorphic) symplectic form on $(\mathbb{F}^{2n}, 0)$. In other words, characterize possible singularities of parametric Lagrangian map-germs.

Then we naturally concern the condition that $\tilde{r}(f) = 2n$, R(f) = 2n or r(f) = 2n. The followings are clear.

Lemma 4.1. We have, for a map-germ $f:(\mathbb{F}^n,0)\to(\mathbb{F}^{2n},0)$,

- (1) If $\widetilde{r}(f) < 2n$, then f is never Lagrangian, for any symplectic form on $(\mathbb{F}^{2n}, 0)$.
- (2) r(f) = 2n if and only if $LZ_f^2 \setminus \Sigma \neq \emptyset$.
- (3) If r(f) = 2n, then f is Lagrangian for a linear symplectic form on $(\mathbb{F}^{2n}, 0)$.
- (4) If R(f) = 2n, then f is \mathcal{L} -equivalent to a Lagrangian map-germ for a linear symplectic form on $(\mathbb{F}^{2n}, 0)$.

Note that $LZ_f^2 \setminus \Sigma$ and $\widetilde{L}Z_f^2 \setminus \Sigma$ are invariant under \mathbb{R}^\times -multiplication, and semi-algebraic. Therefore $P(LZ_f^2 \setminus \Sigma)$, $P(\widetilde{L}Z_f^2 \setminus \Sigma)$ are defined as semi-algebraic sets in the projective space $P(L_{2n}^2) \cong P^{n(2n-1)-1}$. Moreover we have

Lemma 4.2. If f and g are right-equivalent, then $Z_f^2 = Z_g^2$, and $\widetilde{L}Z_f^2 = \widetilde{L}Z_g^2$.

We define

$$\widetilde{\ell}(f) := \dim P(\widetilde{L}Z_f^2 \setminus \Sigma).$$

If f and g are \mathscr{A} -equivalent, then $\widetilde{\ell}(f)=\widetilde{\ell}(g)$.

We consider, given $f \in \mathscr{E}_{n,2n}$, the sets $P(LZ_g^2 \setminus \Sigma) \subset P(L_{2n}^2)$ for all germs $g \in \mathscr{E}_{n,2n}$ which are left equivalent to f. Then define

$$\ell(f) := \max \{ \dim P(LZ_g^2 \setminus \Sigma) \mid g \sim_{\mathscr{L}} f \}$$

where we define that the dimension of the empty set $\dim(\emptyset) = -1$. Then we see

$$\ell(f) = \max\{\dim P(LZ_g^2 \setminus \Sigma) \mid g \sim_{\mathscr{A}} f\}.$$

In fact, the inequality \leq is clear. Moreover, if g is \mathscr{A} -equivalent to f, then g is right equivalent to g' such that g' is left equivalent to f. Then by Lemma 4.2, we have $L_{g'}^2 = L_g^2$, and therefore we have the required equality.

Now we have

$$-1 \leq \ell(f) \leq \widetilde{\ell}(f) \leq n(2n-1) - 1.$$

Then we obtain

Lemma 4.3. For an $f \in \mathcal{E}_{n,2n}$, the following conditions are equivalent to each other:

- (i) f is Lagrangian for some symplectic form on $(\mathbb{F}^{2n},0)$.
- (ii) R(f) = 2n.
- (iii) $\ell(f) \ge 0$.

Proof: (i) \Rightarrow (iii): Let f be Lagrangian for a symplectic form ω on \mathbb{F}^{2n} . By the Darboux theorem, there exists a diffeomorphism-germ $\tau: (\mathbb{F}^{2n}, 0) \to (\mathbb{F}^{2n}, 0)$ such that $\omega = \tau^*(\Omega)$

for the linear symplectic form $\Omega = \sum_{i=1}^n dx_i \wedge dx_{n+i}$, Darboux normal form. Set $g = \tau \circ f$. Then g is left equivalent to f and $g^*\Omega = f^*\omega = 0$. Therefore $\Omega \in LZ_g^2 \setminus \Sigma$, hence $\dim P(LZ_g^2 \setminus \Sigma) \neq \emptyset$, and $\ell(f) \geq 0$.

(iii) \Rightarrow (ii): By (iii), there exists $g \in \mathcal{E}_{n,2n}$ such that g is \mathcal{L} -equivalent to f and r(g) = 2n. Therefore we have (ii).

(ii) \Rightarrow (i) : Suppose R(f)=2n. Then there exists $g\in \mathscr{E}_{n,2n}$ such that g is left equivalent to f and a linear symplectic form Ω on $(\mathbb{F}^{2n},0)$ with $g^*\Omega=0$. Since g is left equivalent to f, there exists a diffeomorphism-germ $\tau:(\mathbb{F}^{2n},0)\to(\mathbb{F}^{2n},0)$ such that $g=\tau\circ f$. Set $\omega=\tau^*\Omega$. Then ω is a symplectic form on $(\mathbb{F}^{2n},0)$ and $f^*\omega=f^*(\tau^*\Omega)=g^*\Omega=0$. Therefore f is Lagrangian for some symplectic form on $(\mathbb{F}^{2n},0)$.

Lemma 4.4. If $f: (\mathbb{F}^n,0) \to (\mathbb{F}^{2n},0)$ satisfies the condition that $\{t \in (\mathbb{F}^n,0) \mid \operatorname{rank}(f_*: T_t\mathbb{F}^n \to T_{f(t)}\mathbb{F}^{2n}) \geq 2\}$ is dense in $(\mathbb{F}^n,0)$. Then $\widetilde{\ell}(f) \leq n(2n-1)-2$ and therefore $\ell(f) \leq n(2n-1)-2$.

Proof: Suppose $\widetilde{\ell}(f) = n(2n-1)-1$. Then $LZ_f^2 \setminus \Sigma$ contains a non-void open set U in L_{2n}^2 . By the assumption, there exists a two-dimensional plane $\Pi \subset T_0\mathbb{F}^{2n}$ such that $\Omega|_{\Pi} = 0$ for any $\Omega \in U$. Then for any $1 \le i < j \le 2n$, $dx_i \wedge dx_j = 0$ on Π . Then we have a contradiction. Therefore $\widetilde{\ell}(f) \le n(2n-1)-2$.

Now we remark a general result which is going to be applied to our case.

Let $f: (\mathbb{F}^n,0) \to (\mathbb{F}^m,0)$ be a map-germ whose immersion locus is dense. Then *Nash limit set* N(f) of f is the closure of the set of n-planes Π in $Gr(n,\mathbb{F}^m)$, Grassmannian of n-planes in $\mathbb{F}^m = T_0\mathbb{F}^m$, such that there exists a sequence of immersive point $t(i) \in \mathbb{F}^n$ of f converging to 0 as $i \to \infty$ and $\Pi = \lim_{i \to \infty} f_*(T_{t(i)}\mathbb{F}^n)$.

Then we have

Lemma 4.5. Let $f: (\mathbb{F}^n, 0) \to (\mathbb{F}^m, 0), \omega \in \mathbb{Z}_f^n$ and $\Pi \in N(f)$. Then $\omega(0)|_{\Pi} = 0$.

Let $\mathrm{Gr}(n,\mathbb{F}^m)\hookrightarrow P(\Lambda^n(T_0\mathbb{F}^m))$ be Plücker embedding. Then we have

Lemma 4.6. Let $\omega \in Z_f^n$. Then $\omega(0)$ vanishes on the projective linear hull of N(f) in $P(\Lambda^n(T_0\mathbb{F}^m))$.

5. PARAMETRIC LAGRANGIAN SURFACES

In particular, setting n=2 and $\mathbb{F}=\mathbb{R}$, we consider smooth map-germs $f:(\mathbb{R}^2,0)\to (\mathbb{R}^4,0)$ whose immersion locus is dense. Then $\ell(f)=-1,0,1,2,3$ or 4 by Lemma 4.4.

Let

$$A = \begin{pmatrix} 0 & a_{12} & a_{13} & a_{14} \\ -a_{12} & 0 & a_{23} & a_{24} \\ -a_{13} & -a_{23} & 0 & a_{34} \\ -a_{14} & -a_{24} & -a_{34} & 0 \end{pmatrix}$$

be a skew symmetric 4×4 -matrix. Then $\det(A) = P(A)^2$, where $P(A) = a_{12}a_{34} - a_{13}a_{24} + a_{14}a_{23}$. Then the hypersurface $\Sigma \subset L_4^2$ is defined by P(A) = 0.

Example 5.1. Let $f:(\mathbb{R}^2,0)\to(\mathbb{R}^4,0)$ be the immersion defined by $f(t_1,t_2)=(t_1,t_2,0,0)$. Then LZ_f^2 is defined by $a_{12}=0$ in $L_4^2\cong\mathbb{R}^6$. Then $LZ_f^2\cap\Sigma$ is given by $a_{12}=0,a_{13}a_{24}-a_{14}a_{23}=0$. Thus dim $P(LZ_f^2\setminus\Sigma)=4$. Therefore we have $\ell(f)=4$.

Example 5.2. (Open Whitney umbrella) Let $f \in \mathcal{E}_{2,4}$ be defined by

$$f(t_1,t_2) = (t_1, t_2^2, t_1t_2, t_2^{2k+1}).$$

If $k \geq 2$, then $\widetilde{r}(f) < 4$. Therefore f is never Lagrangian for any symplectic form. If k = 1, then f is called an *open Whitney umbrella* and we have that r(f) = 4 and that $\ell(f) = \widetilde{\ell}(f) = 0$. Thus, if k = 1, then f is Lagrangian for the linear symplectic form $\Omega = 3dx_1 \wedge dx_4 + 2dx_2 \wedge dx_3$, which is unique up to non-zero constant multiplication.

Moreover we determine the invariants $\ell(f)$ and $\widetilde{\ell}(f)$ for all simple singularities $f: (\mathbb{R}^2,0) \to (\mathbb{R}^4,0)$ ([7]). In fact we have:

Proposition 5.3. A simple map-germ $f(\mathbb{R}^2,0) \to (\mathbb{R}^4,0)$ is Lagrangian for some symplectic form on $(\mathbb{R}^4,0)$ if and only if f is right-left equivalent to one of the following list (among the list in [7]):

In all of above cases, we have $\ell(f) = \widetilde{\ell}(f) = 0$.

Example 5.4. (Open swallowtail) Let $f:(\mathbb{R}^2,0)\to(\mathbb{R}^4,0)$ be the germ defined by

$$f(t_1,t_2) = (t_1, t_2^3 + t_1t_2, \frac{3}{4}t^4 + \frac{1}{2}t_1t_2^2, \frac{3}{5}t_1^5 + \frac{1}{3}t_1t_2^3),$$

which is called *open swallow-tail*. Then, by calculation, we see that $\ell(f) = \widetilde{\ell}(f) = 0$. In fact f is Lagrangian for the linear symplectic form $\Omega = 2dx_1 \wedge dx_4 - dx_2 \wedge dx_4$, which is unique up to non-zero constant multiplication.

6. LAGRANGIAN MAPPINGS FOR PLENTY OF SYMPLECTIC FORMS

A plane (2-dimensional linear subspace) $\Pi \subset L_4^2 = \mathbb{R}^6$ is called *elliptic* (resp. *hyperbolic*, *parabolic*) if $\Pi \cap \Sigma = \{0\}$ (resp. $\Pi \cap \Sigma$ consists of two lines, $\Pi \subset \Sigma$). Recall that Σ is the set of non-symplectic forms.

A projective line $P(\Pi)$ in $P(L_4^2) = P^5$ is called *elliptic* (resp. *hyperbolic*, *parabolic*) if Π is elliptic (resp. hyperbolic, parabolic).

Example 6.1. (Product of curves) Let $a,b:(\mathbb{R},0)\to(\mathbb{R}^2,0)$ be planer curve-germs. Then define $f:(\mathbb{R}^2,0)\to(\mathbb{R}^4,0)$ by $f(t_1,t_2)=(a(t_1),b(t_2))$. Then $\ell(f)\geq 1$. In fact there exist two-parameter linear symplectic forms

$$\Omega_{\lambda,\mu} = \lambda dx_1 \wedge dx_2 + \mu dx_3 \wedge dx_4$$

 $\lambda \mu \neq 0$, which satisfy $f^*(\Omega_{\lambda,\mu}) = 0$. In this case $P(LZ_f^2)$ contains a *hyperbolic* line.

For example, taking a and b are planar cusps, then we have the germ defined by

$$f(t_1,t_2) = (t_1^2, t_1^3, t_2^2, t_2^3),$$

which is called the *product of cusps*. Then Z_f^0 is generated by $x_1^3 - x_2^2, x_3^3 - x_4^2$. Then \mathcal{R}_f^1 is described as the set of equivalence classes $[\alpha]$ of 1-forms of form

$$\alpha = (a(x_3, x_4) + x_1b(x_3, x_4))(-3x_2dx_1 + 2x_1dx_2) + (c(x_1, x_2) + x_3e(x_1, x_2))(-3x_4dx_3 + 2x_3dx_4),$$

where the function-germs a,b,c,e are regarded modulo Z_f^0 . Since the product of cusps is quasi-homogeneous and therefore contractible, we conclude that any symplectic zero form ω of f is described as

$$\omega = d\{(a(x_3, x_4) + x_1b(x_3, x_4))(-3x_2dx_1 + 2x_1dx_2) + (c(x_1, x_2) + x_3e(x_1, x_2))(-3x_4dx_3 + 2x_3dx_4)\},$$
 modulo AZ_f^2 .

Note that the products of singular curves and regular curves were studied in [4].

Example 6.2. (Holomorphic curves, anti-holomorphic curves) Let $f:(\mathbb{R}^2,0)=(\mathbb{C},0)\to (\mathbb{C}^2,0)=(\mathbb{R}^4,0)$ be a holomorphic or anti-holomorphic map-germ regarded as an element in $\mathscr{E}_{2,4}$. Then $\ell(f)\geq 1$. In fact there exist two-parameter linear symplectic forms

$$\Omega_w = \text{Re}(wdz_1 \wedge dz_2),$$

 $w \in \mathbb{C} = \mathbb{R}^2, w \neq 0$, which satisfy $f^*(\Omega_w) = 0$. In this case $P(LZ_f^2)$ contains an *elliptic* line.

For example, we have, from $z \in \mathbb{C} \mapsto (z^2, z^3)$, the germ

$$f(t_1,t_2) = (t_1^2 - t_2^2, 2t_1t_2, t_1^3 - 3t_1t_2^2, 3t_1^2t_2 - t_2^3),$$

which is called *complex cusp*.

We are naturally led to the problem: Classify singularities of $f: \mathbb{R}^2 \to \mathbb{R}^4$ with $\ell(f) \ge 1$, in particular for the cases with $\ell(f) = 2,3$.

REFERENCES

- [1] I. Chen, K.-P. Lin, S. Yau, H. Zuo, *Coordinate-free characterization of homogeneous polynomials with isolated singularities*, Comm. Anal. Geom., **19-4** (2011), 667–704.
- [2] W. Domitrz, S. Janeczko, M. Zhitomirskii, *Relative Poincaré lemma, contractibility, quasi-homogeneity and vector fields tangent to a singular variety,* Illinois J. Math., **48-3** (2004), 803–835.
- [3] W. Domitrz, S. Janeczko, M. Zhitomirskii, *Symplectic singularities of varieties: The method of algebraic restrictions*, J. reine angew Math. **618** (2008), 197–235.
- [4] A. B. Givental', *Singular Lagrangian manifolds and their Lagrangian maps*, Journal of Soviet Mathematics, **52–4** (1990), 3246–3278.

- [5] G. Ishikawa, S. Janeczko, *Symplectic invariants of parametric singularities*, in Proceedings of the Conference on Geometry in honour of Shing-Tung Yau's 60th Birthday, April 6–8, 2009, Warsaw, Poland, in *Advances in Geometric Analysis*, Advanced Lectures in Mathematics series **21**, International Press (2012), pp. 259–280.
- [6] G. Ishikawa, S. Janeczko, *Residual algebraic restrictions of differential forms*, Methods and Applications of Analysis, **24–1** (2017), 045–062.
- [7] C. Klotz, O. Pop, J.H. Rieger, *Real double-points of deformations of A-simple map-germs from* \mathbb{R}^n *to* \mathbb{R}^{2n} , Math. Proc. Camb. Phil. Soc. **142** (2007), 341–363.
- [8] K. Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971), 123–142.
- [9] S. Yau, H. Zuo, Lower estimate of Milnor number and characterization of isolated homogeneous hypersurface singularities, Pacific J. Math., **260-1** (2012), 245–255.
- [10] S. Yau, H. Zuo, Characterization of isolated complete intersection singularities with ℂ*-action of dimension ≥ 2 by means of geometric genus and irregularity, Comm. Anal. Geom., 21–3 (2013), 509–526.
- [11] S. Yau, H. Zuo, *Complete characterization of isolated homogeneous hypersurface singularities*, Pacific Journal of Mathematics, **273–1** (2015), 213–224.
- [12] S. Yau, H. Zuo, A sharp upper estimate conjecture for the Yau number of weighted homogeneous isolated hypersurface singularity, Pure Appl.Math. Q., 12-1 (2016), 165–181.
- [13] S. Yau, H. Zuo, *Nine characterizations of weighted homogeneous isolated hypersurface singularities*, Methods Appl. Anal., **24-1** (2017), 155–168.
- [14] S. Yau, H. Zuo, A sharp lower bound for the geometric genus and Zariski multiplicity question, Math. Z. **289** no. 3-4 (2018), 1299–1310.

FACULTY OF SCIENCES, DEPARTMENT OF MATHEMATICS, HOKKAIDO UNIVERSITY, JAPAN. *E-mail address*: ishikawa@math.sci.hokudai.ac.jp

Institute of Mathematics, Polish Academy of Sciences, ul. Sniadeckich 8, 00-956 Warszawa, Poland.

Warsaw University of Technology, Faculty of Mathematics and Information Science, Plac Politechniki 1, 00-661 Warszawa, Poland.

E-mail address: janeczko@impan.pl