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Abstract

The algebraic notion of openings of a map-germ is introduced in this
paper. An opening separates the self-intersections of the original map-
germ, preserving its singularities. The notion of openings is different
from the notion of unfoldings. Openings do not unfold the singularities.
For example, the swallowtail is an opening of the Whitney cusp map-
germ from plane to plane and the open swallowtail is a versal opening of
them. Openings of map-germs appear as typical singularities in several
problems of geometry and its applications. The notion of openings
has close relations to isotropic map-germs in a symplectic space and
integral map-germs in a contact space. We describe the openings of
Morin singularities, namely, stable unfoldings of map-germs of corank
one. The relation of unfoldings and openings are discussed. Moreover
we provide a method to construct versal openings of map-germs and
give versal openings of stable map-germs (R4, 0) → (R4, 0). Lastly the
relation of lowerable vector fields and openings is discussed.

1 Introduction

There is a sequence of well-known singularities of map-germs: The Whitney
cusp f : (R2, 0) → (R2, 0), f(x, u) = (x3 + ux, u), the swallowtail F :
(R2, 0) → (R3, 0), F (x, u) = (f(x, u), x4 + 2

3ux2), and the open swallowtail
F̃ : (R2, 0) → (R4, 0), F̃ (x, u) = (F (x, u), x5 + 4

9ux3).
They have the same singular locus and the same kernel field of the dif-

ferential along the singular locus, while the self-intersections are resolved.
What is the algebraic structure behind them? One of answers to the

above question is presented in this paper. In fact we observe, for the swal-
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lowtail F (x, u) = (x3 + ux, u, x4 + 2
3ux2), we see that

d(x4 +
2
3
ux2) =

4
3
x d(x3 + ux) − 4

9
x2 du ∈

〈
d(x3 + ux), du

〉
E2

.

For the open swallowtail F̃ (x, u) = (x3 + ux, u, x4 + 2
3ux2, x5 + 4

9ux3), we
have that

d(x5 +
4
9
ux3) =

5
3
x2 d(x3 + ux) − 10

9
x3 du ∈

〈
d(x3 + ux), du

〉
E2

.

Here d means the exterior differential and E2 denotes the R-algebra of C∞

function-germs on (R2, 0).

As the key construction, we introduce the notion of opening of multi-
germs of mappings. To do this, first we summarise the auxiliary notions in
this paper.

Let f : (Rn, A) → (Rm, b) be a multi-germ of a C∞ map with n ≤ m.
Here A is a finite subset of Rn, b ∈ Rm and f(A) = {b}. We define the
Jacobi module Jf of f by

Jf = {
m∑

j=1

pj dfj | pj ∈ ERn,A (1 ≤ j ≤ m) } ⊂ Ω1
Rn,A

in the space Ω1
Rn,A of 1-form-germs on (Rn, A). Note that Jf is just the

first order component of the graded differential ideal J •
f in Ω•

Rn,A generated
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by df1, . . . , dfm. Then the singular locus, the non-immersive locus, of f is
given by

Σf = {x ∈ (Rn, A) | rankJf (x) < n}.

Also we consider the kernel field Ker(f∗ : TRn → TRm) of the differential
of f , along Σf .

For another map-germ f ′ : (Rn, A) → (Rm′
, b′), n ≤ m′, if Jf ′ = Jf ,

then Σf ′ = Σf and Ker(f ′
∗) = Ker(f∗).

Then define the ramification module Rf of f by

Rf = {h ∈ ERn,A | dh ∈ Jf},

(cf. [12][15]).
For f : (Rn, A) → (Rm, b), f ′ : (Rn, A) → (Rm′

, b′), easily we see that
Jf ′ = Jf if and only if Rf ′ = Rf (Lemma 2.1).

Definition 1.1 Given h1, . . . , hr ∈ Rf , the map-germ F : (Rn, A) → Rm×
Rr = Rm+r defined by

F = (f1, . . . , fm, h1, . . . , hr)

is called an opening of f , while f is called a closing of F .

Then, for any opening F of f , we have RF = Rf , JF = Jf , ΣF = Σf

and Ker(F∗) = Ker(f∗).
For example, the swallowtail is an opening of the Whitney cusp. The

open swallowtail is an opening of the swallowtail and of the Whitney cusp.
Note that an opening of an opening of f is an opening of f .

Definition 1.2 An opening F = (f, h1, . . . , hr) of f is called a versal open-
ing (resp. a mini-versal opening) of f : (Rn, A) → (Rm, b), if 1, h1, . . . , hr

form a (minimal) system of generators of Rf as an ERm,b-module via f∗ :
ERm,b → ERn,A.

Note that a versal opening of an opening of f is a versal opening of f .
An opening of a versal opening of f is a versal opening of f .

A mini-versal opening F : (Rn, A) → Rm+r of f is unique up to left-
equivalence and a versal opening G : (Rn, A) → Rm+s of f is left-equivalent
to a mini-versal opening composed with an immersion (Rn, A) → Rm+r ↪→
Rm+s (Proposition 2.14).

Openings of map-germs appear as typical singularities in several prob-
lems of geometry and its applications. The openings naturally appear in the
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classification problem of “tangential singularities”([5][16][17]). Open swal-
lowtails, open folded umbrellas, etc. appear as tangent varieties ([1]). We
have applied opening constructions to solve the “stable”classification prob-
lem of tangent varieties to generic submanifolds in [17]. Moreover openings
are related to singularities of isotropic mappings in symplectic spaces.

Let T ∗Rn = R2m be the 2m-dimensional symplectic space with the
symplectic form ω =

∑m
i=1 dpi ∧ dxi, and f : (Rn, A) → R2m a multi-germ

of isotropic mapping. Since f∗ω = 0, we have that
∑m

i=1(pi ◦ f)d(xi ◦ f) is
closed, so it is exact and there exists e ∈ ERn,A such that

de =
m∑

i=1

(pi ◦ f)d(xi ◦ f).

Define g : (Rn, A) → Rm by g(x) = (x1 ◦f(x), . . . , xm ◦f(x)). Then e ∈ Rg.
Conversely, given e ∈ Rg, we have de =

∑m
i=1 aidgi for some functions

a1, . . . , am, and we obtain an isotropic multi-germ f : (Rn, A) → R2m by
pi ◦ f = ai, xi ◦ f = gi, (1 ≤ i ≤ m). The opening (g, e) : (Rn, A) → Rm+1

is the frontal germ associated to f . For example the frontal of a open
Whitney-Morin umbrella is the folded umbrella (see Proposition 4.1). The
open folded umbrella appears also as a “frontal-symplectic singularity”[18].
Several geometric applications of the theory of openings are given in [16][17].

Remark 1.3 (Relations with known notions.) Pellikaan (his thesis and
[25], p.358), de Jong and van Straten ([19], p.185) introduced the notion of
primitive ideal ∫

I = {h ∈ On | h ∈ I,
∂h

∂xi
∈ I, 1 ≤ i ≤ n}

of an ideal I of the ring On of holomorphic function-germs on (Cn, 0). It
is motivated for the deformation theory of non-isolated singularities. We
can introduce the analogous notion to it in C∞ case and also the notion of
primitive ring by ∫ ′

I = {h ∈ En | ∂h

∂xi
∈ I, 1 ≤ i ≤ n}

It is related to the notion of ramification module as follows: Let f : (Rn, 0) →
(Rm, 0), n ≤ m be a map-germ. We take as I the ideal Jf generated by n-
minors of the Jacobi matrix of f , which is associated with the singular locus
of f . If n = 1 (the case of curves), then we have that

∫ ′
Jf = Rf . However,

they are different in general in the case n ≥ 2. In fact f∗Em 6⊆
∫ ′

Jf and
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∫ ′
Jf does not have the natural Em-module structure via f∗ in general, while

Rf does. For example, let f(x1, x2) = (x1, x
2
2), f : (R2, 0) → (R2, 0). Then∫ ′

Jf = R + x2
2 E2, and Rf = E1 + x2

2 E2 = f∗E2 + x3
2 f∗E2 where E1 means

the ring of functions of x1.
Mond [24] introduced a notion R0(f), which is more closely related to Rf ,

also from the motivation of deformation theory on map-germs in complex
analytic category. Its C∞ analogue is given by

R0(f) = {h ∈ En | dfi1 ∧ · · · ∧ dfn−1 ∧ dh ∈ Jf dx1 ∧ · · · ∧ dxn,
1 ≤ i1 < · · · < in−1 ≤ m}.

Then clearly we have Rf ⊆ R0(f). We have that, for two map-germ f, f ′,
Rf = Rf ′ implies R0(f) = R0(f ′). If n = 1, then Rf = R0(f) =

∫ ′
Jf .

Moreover we have that, if n = m and the singular locus of f is nowhere dense,
then Rf = R0(f), using Cramer’s rule in linear algebra. We conjecture that
the equality Rf = R0(f) holds also in the case n < m under a rather mild
condition. Note that, in Propositions 4.1 and 4.3 of [24], they were already
given the related results to the results in the present paper (Lemma 2.2,
Corollary 2.10, Proposition 2.16 and Proposition 5.2).

In §2, we give a detailed exposition on ramification modules and openings
of multi-germs.

In §3, the relation of unfoldings and openings are discussed. We treat the
problem to find a versal opening of an unfolding of a given map-germ. Then
the notion of extendability of an unfolding is introduced. If the given map-
germ is of corank one, then any unfolding is extendable and, in particular
its versal opening is obtained from that of its stable unfolding. Then, in §4,
we give the explicit presentation on versal openings of stable unfoldings of
map-germs of corank 1, namely, versal openings of Morin maps.

In §5, we remark the existence of versal openings in finite analytic case.
In §6, we give a direct method to find versal openings for several exam-
ples and show the existence of the versal opening for any stable map-germ
(R4, A) → (R4, b), explicitly. In §7, the relation of lowerable vector fields of
map-germs and openings is discussed.

In this paper we often abbreviate E(Rn,A) by EA, the R-algebra of C∞

function-germs on (Rn, A). If A = {a1, . . . , as}, then we denote by mi the
maximal ideal consisting of h ∈ EA with h(ai) = 0. We set mA = ∩s

i=1mi. If
A consists of the origin, then we use En, mn instead of EA, mA respectively.

All manifolds and mappings we treat in this paper are assumed to be of
class C∞, unless otherwise stated.
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2 Ramification modules and openings

In Introduction, we have introduced the notion of openings based on that
of Jacobi modules and ramification modules.

Lemma 2.1 For map-germs f : (Rn, A) → (Rm, b), f ′ : (Rn, A) → (Rm′
, b′),

we have that Jf ′ = Jf if and only if Rf ′ = Rf .

Proof : It is clear that Jf ′ = Jf implies Rf ′ = Rf . Conversely suppose
Rf ′ = Rf . Then any component f ′

j of f ′ belongs to Rf ′ = Rf , hence
df ′

j ∈ Jf . Therefore Jf ′ ⊆ Jf . By the symmetry we have Jf ′ = Jf . 2

Lemma 2.2 Let f : (Rn, A) → (Rm, b) be a map-germ. Then we have
(1) f∗Eb ⊆ Rf ⊆ EA.
(2) Rf is an Eb-submodule via f∗ : Eb → EA of EA.
(3) Rf is C∞-subring of EA.
(4) If τ : (Rm, b) → (Rm, b′) is a diffeomorphism-germ, then Rτ◦f = Rf . If
σ : (Rn, A′) → (Rn, A) is a diffeomorphism-germ, then Rf◦σ = σ∗(Rf ).

Proof : Assertions (1) and (2) follow from the fact that, if h ∈ Rf and
dh =

∑m
j=1 pjdfj , then

d{(k ◦ f)h} =
m∑

j=1

{(k ◦ f)pj + h (∂k/∂yj)} dfj .

Assertion (3) follows from the fact that, if h1, . . . , hr ∈ Rf and if τ : Rr → R
is a C∞ function, then

d{τ(h1, . . . , hr)} =
r∑

i=1

∂τ

∂yi
(h1, . . . , hr) dhi ∈ Jf .

Assertion (4) follows from the fact that Jτ◦f = Jf and Jf◦σ = σ∗(Jf ). 2

Lemma 2.3 Let f : (Rn, A) → (Rm, b) be a map-germ with A = {a1, . . . , as}.
We denote by fi : (Rn, ai) → (Rm, b) the restriction of f to (Rn, ai). Then
Rf

∼=
∏s

i=1 Rfi
as Eb-module.

Proof : We have the isomorphism ϕ : Rf →
∏s

i=1 Rfi
defined by ϕ(h) =

(h|(Rn,ai))
s
i=1. 2

Remark 2.4 Any multi-germ f : (Rn, A) → (Rm, b), #(A) = s, is right-
equivalent to a map-germ of form

∐
s fi :

∐
s(R

n, 0) → (Rm, b) from the
disjoint union of s-copies of (Rn, 0).
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A map-germ f : (Rn, A) → (Rm, b) is called finite if EA is a finite Eb-
module. The condition is equivalent to that dimR EA/(f∗mb)EA < ∞ by the
preparation theorem (see for example [4]). Moreover f is finite if and only
if K-finite and n ≤ m ([26]).

Proposition 2.5 If f : (Rn, A) → (Rm, b) is finite and of corank at most
one. Then we have
(1) Rf is a finite Eb-module. Therefore there exists a versal opening of f .
(2) 1, h1, . . . , hr ∈ Rf generate Rf as Eb-module if and only if they generate
the vector space Rf/(f∗mb)Rf over R.

Proof : In the case A consists of a point, the assertions are proved in Theorem
1.3 of [13] and Corollary 2.4 of [15]. For a general finite set A, the assertions
are reduced to the case that A consists of a point by Lemma 2.3. 2

Remark 2.6 In §5, we define the analytic counterpart Rω
f of the notion

of ramification modules for an analytic map-germ f : (Rn, A) → (Rm, 0).
Then it is essentially obvious that, if f is a finite map-germ, then Rω

f is
a finite module over the ring O(Rn,A) of analytic function-germs. In fact
O(Rn,A) is a Noetherian ring and it is a finite O(Rm,0)-module via f∗. More-
over Rω

f is an O(Rm,0)-submodule of O(Rn,A). Since every submodule of a
finite module over a Noetherian ring is finite, we have that Rω

f is a finite
module over the ring O(Rn,A).

Furthermore, in §5, we show that Rf is a finite Eb-module if f is finite
and analytic (Proposition 5.2).

For a map-germ f : (Rn, A) → (Rm, b), n ≤ m, we have defined in
Introduction the notions of openings and versal openings of f .

Example 2.7 (1) Let h : (R, 0) → (R, 0), h(x) = x2. Then Rh =〈
1, x3

〉
f∗(E1)

. The map-germ H : (R, 0) → (R2, 0),H(x) := (x2, x3), the
simple cusp map, is the mini-versal opening of h.
(2) Let g : (R, 0) → (R, 0), g(x) = x3. Then Rg =

〈
1, x4, x5

〉
f∗(E1)

. The
map-germ G : (R, 0) → (R3, 0), G(x) := (x3, x4, x5) is the mini-versal
opening of g.
(3) Let f : (R2, 0) → (R2, 0), f(x, u) = (x3 + ux, u), an unfolding of g.
Then Rf =

〈
1, x4 + 2

23ux2, x5 + 4
9ux3

〉
f∗(E2)

. The map-germ F : (R2, 0) →
(R4, 0) defined by F (x, u) := (x3 +ux, u, x4 + 2

23ux2, x5 + 4
9ux3), the open

swallowtail is the mini-versal opening of Whitney cusp f .
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(4) Let consider the multi-germ k : (R, A) → (R2, 0), A = {0, 1} defined
by k(t) = (t, 0) near t = 0 and k(t) = (0, t − 1) near t = 1. Then Rk is
generated by 1 ∈ EA and s ∈ EA defined by s(t) = 1 near t = 0 and s(t) = 0
near t = 1, over k∗E2. Then K = (k, s) : (R, A) → R3 is the versal opening
of k. In fact K resolves the self-intersection by the over and underpasses.

Example 2.8 Here we add several additional illustrative examples. Let us
consider the following five map-germs: f : (R2, 0) → (R2, 0), g : (R2, 0) →
(R3, 0), h : (R2, 0) → (R3, 0), k : (R2, 0) → (R2, 0), ` : (R2, 0) → (R2, 0)
defined by

f(x, t) = (x, t2), g(x, t) = (x, xt, t2), h(x, t) = (x2, xt, t2),

k(x, t) = (x2, t2), `(x, t) = (x2 − t2, xt).

Then we have

Rk ( Rh ( Rg, R` ( Rh, Rf ( Rg.

In fact

Jf = 〈dx, tdt〉E2 , Jg = 〈dx, xdt, tdt〉E2 , Jh = 〈xdx, xdt + tdx, tdt〉E2 ,

Jk = 〈xdx, tdx〉E2 , J` = 〈xdx − tdt, tdx + xdt〉E2 .

Then we see that Rf is minimally generated by 1, t3 over f∗E2, Rg is min-
imally generated by 1, t3 over g∗E3, and Rh is minimally generated by
1, x3, x2t, xt2, t3 over h∗E3. Moreover we have that Rk is minimally gen-
erated by 1, x3, t3, x3t3 over k∗E2 and that R` is minimally generated by
1, x3 − 3xt2, 3x2t − t3, x2(x2 + t2)2 over `∗E2.

Remark 2.9 (continued with Remark 2.4). Let
∐

s fi :
∐

s(R
n, 0) →

(Rm, b) be a multi-germ of map. Suppose Fi = (fi;hi1, . . . , hiri) : (Rn, 0) →
(Rm+ri , b × 0) be a versal opening of fi. Then, setting r = max1≤i≤s ri

and hij = 0 if j > ri, then F =
∐

s(fi, hi1, . . . , hiri , . . . ) :
∐

s(R
n, 0) →

(Rm+r, b × 0) is a versal opening of
∐

s fi.

By Proposition 2.5, we have

Corollary 2.10 Let f : (Rn, A) → (Rm, b) be finite and of corank at most
one. Then there exists a versal opening of f .
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Remark 2.11 The existence of a versal opening for a finite C∞ map-germ
of arbitrary corank is still open. However, using Proposition 5.2 together
with the analytic result, we can show that Corollary 2.10 for finitely A-
determined map-germs (Rn, A) → (Rm, b) with n ≤ m without the corank
condition.

Moreover we have the following:

Corollary 2.12 Let f : (Rn, A) → (Rm, b) be finite and of corank at most
one. Then an opening F = (f, h1, . . . , hr) of f is a mini-versal opening of
f , namely, 1, h1, . . . , hr ∈ Rf form a minimal system of generators of Rf as
Eb-module if and only if they form a basis of R-vector space Rf/(f∗mb)Rf .

The following is useful for the classification problem of map-germs in a
geometric context ([16][17]).

Proposition 2.13 Let f : (Rn, A) → (Rm, b), n ≤ m be a C∞ map-germ.
(1) For any versal opening F : (Rn, A) → (Rm+r, F (A)) of f and for any
opening G : (Rn, A) → (Rm+s, G(A)), there exists an affine bundle map
Ψ : (Rm+r, F (A)) → (Rm+s, G(A)) over (Rm, b) such that G = Ψ ◦ F .
(2) For any mini-versal openings F : (Rn, A) → (Rm+r, F (A)) and F ′ :
(Rn, A) → (Rm+r, F ′(A)) of f , there exists an affine bundle isomorphism
Φ : (Rm+r, F (A)) → (Rm+r, F ′(A)) over (Rm, b) such that F ′ = Ψ ◦ F . In
particular, the diffeomorphism class of mini-versal opening of f is unique.
(3) Any versal openings F ′′ : (Rn, A) → (Rm+s, F ′′(A)) of f is diffeomor-
phic to (F, 0) for a mini-versal opening F of f .

Proof : (1) Let F = (f, h1, . . . , hr) and G = (f, k1, . . . , ks). Since kj ∈ Rf ,
there exist c 0

j , c 1
j , . . . , c r

j ∈ Eb such that kj = c 0
j ◦ f + (c 1

j ◦ f)h1 + · · · +
(c r

j ◦ f)hr. Then it suffices to set Ψ(y, z) = (y, (c 0
j (y) + c 1

j (y)z1 + · · · +
c r
j (y)zr)1≤j≤s). (2) By (1) there exists an affine bundle map Ψ with F ′ =

Ψ◦F . From the minimality, we have that the matrix (c i
j (b)) is regular. (See

Remark 2.12). Therefore Ψ is a diffeomorphism-germ. (3) Let F = Ψ◦F ′′ for
some affine bundle map Ψ. Then the matrix (c i

j (b)) is of rank r. Therefore
F ′′ is diffeomorphic to (F, k1, . . . , ks−r) for some kj ∈ Rf . Write each kj =
Kj ◦F for some Kj ∈ EF (a). Then we set Ξ(y, z, w) = (y, z, w−K ◦F ). Then
Ξ is a local diffeomorphism on Rm+r+(s−r) and Ξ◦(F, k1, . . . , ks−r) = (F, 0).
2
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Two map-germs F : (Rn, A) → (Rp, B) and G : (Rn, A) → (Rq, C) is
called L-equivalent, or, left-equivalent, if there exists a diffeomorphism-germ
Ψ : (Rp, B) → (Rq, C) such that G = Ψ ◦ F .

Then, by Proposition 2.13, we have:

Corollary 2.14 Let f : (Rn, A) → (Rm, b) be a C∞ map-germ (n ≤ m).
Then a mini-versal opening of f is unique up to L-equivalence. A versal
opening of f is L-equivalent to a mini-versal opening composed with an
immersion.

We introduce further the following notion:

Definition 2.15 An opening F = (f, h1, . . . , hs) of a map-germ

f = (f1, . . . , fm) : (Rn, A) → (Rm, b)

is called L-minimal if f1, . . . , fm, h1, . . . , hr minimally generate the C∞-ring
Rf over R, in other words, if Rf = (f, h)∗(Em+r) and (f, h) in minimal with
this property.

Then we have a similar uniqueness result for L-equivalence of L-minimal
openings.

In Example 2.8, we have seen that 1, x3, t3, x3t3 minimally generate Rk

as k∗E2-module. However 1, x3, t3 already minimally generate Rk as k∗E2-
C∞-ring. Therefore K = (x2, y2, x3, t3, x3t3) is a mini-versal opening of
k = (x2, y2) : (R2, 0) → (R2, 0) and K ′ = (x2, y2, x3, t3) is a L-minimal
opening of k.

Lastly we show injectivity of versal openings:

Proposition 2.16 Let f : (Rn, A) → (Rm, b) be a finite map-germ. Sup-
pose F : (Rn, A) → (Rm+r, F (A)) is a versal opening of f . Then F has an
injective representative.

Remark 2.17 The corresponding result to Proposition 2.16 in the analytic
case is already proved in an earlier paper (Corollary 1.2 of [13]). Proposition
5.2 proved in §5 together with the analytic result, we can show that Propo-
sition 2.16 for finitely A-determined map-germs (Rn, A) → (Rm, b) with
n ≤ m. Note that the proof of Corollary 1.2 in [13] heavily depends, via
the finite coherence theorem in analytic geometry, on that the map-germ is
finite and analytic. It seems very difficult to find a unified proof of Proposi-
tion 2.16 for C∞ case with a similar vein to the analytic case, because of the
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lack of the notion of “coherence” in the general C∞ case. Here we provide
an alternative proof applicable to any finite C∞ map-germs, which can be
applied to finite real analytic map-germs, of course. The proof is similar one
to the proof for a similar result given in [9].

Proof of Proposition 2.16: Let A = {a1, . . . as}. If each restriction F |(Rn,ai)

for i = 1, 2, . . . , s is injective, then F is injective. In fact, for each i and
for each v ∈ Rm, we can take a map-germ F i,v : (Rn, A) → (Rm, Fi(A))
which coincides with F near aj , (j 6= i) and F + v near ai. Since any F i,v is
an opening of f , and F is a versal opening, different branches of F can not
intersect each other. (See Proposition 2.13 (1)).

Now suppose that f is a mono-germ f : (Rn, a) → (Rm, b). Assume
the versal opening map-germ F = (f, h) : (Rn, a) → (Rm+r, F (a)) of f has
no injective representative. Then there must be a sequence of points bi in
Rm+r which tends to F (a) when i → ∞, and a1

i , a
2
i , a

1
i 6= a2

i in Rn which
tend to a respectively when i → ∞, such that F (a1

i ) = F (a2
i ) = bi. We

may suppose bi 6= bj if i 6= j. Take a C∞ function h on Rm such that the
support is a disjoint union of small balls centred at bi, i = 1, 2, . . . . Note
that such function must be infinitely flat at b, that is, j∞h(b) = 0. Take the
C∞ function k = F ∗h on Rn. Since F is finite, the support of k is a disjoint
union of closed neighbourhoods of a1

i and those of a2
i , after shrinking the

neighbourhood of {bi} on which h is non-zero if necessary. Take the function
k′ on Rn which coincides with k except on the closed neighbourhoods of a2

i ,
and is identically zero there. Then we see that k′ is C∞, k′ belongs to
RF = Rf and k′(a1

i ) 6= k′(a2
i ) for any i = 1, 2, . . . .

In fact, k′ is C∞ on Rn\{0} and it extends to an infinitely flat function on
Rn at a. Moreover we have dk =

∑m
i=1 F ∗(∂h/∂yi)dfi+

∑r
j=1 F ∗(∂h/∂zj)dhj ,

where y1, . . . , ym, z1, . . . , zr are the coordinates of Rm+r. Take the function
ai (resp. bj) on Rn which coincides with F ∗(∂h/∂yi) (resp. F ∗(∂h/∂zj))
except on the closed neighbourhoods of a2

i , and is identically zero there.
Then ai and bj are C∞ and, then we have dk′ =

∑m
i=1 aidfi +

∑r
j=1 bjdhj ∈

JF = Jf . Therefore we have k′ ∈ Rf .
Consider the opening (f, k′) : (Rn, a) → (Rm+1, (b, 0)) of f . Since F

is a versal opening of f , we must have k′ = τ ◦ F for a function-germ τ :
(Rn, a) → R. See Proposition 2.13 (1), or, the definition of versal openings
(Definition 1.2). Then we must have k′(a1

i ) = τ(F (a1
i )) = τ(F (a2

i )) = k′(a2
i )

for a sufficiently large i. This leads a contradiction. Therefore we have that
F is injective. 2
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Remark 2.18 The quotient vector space ERn,A/Rf is not necessarily finite-
dimensional over R for a finite map-germ f : (Rn, A) → (Rm, b). For
example, let f be the fold map f : (R2, 0) → (R2, 0) defined by f(x, t) =
(x, t2). Then the cuspidal-edge F : (R2, 0) → (R3, 0) defined by F (x, t) =
(x, t2, t3) is a versal opening of f (Example 2.8). Then Rf = RF = F ∗ER3,0

and t, xt, x2t, . . . , x`t are linearly independent in ER2,0/Rf over R for any
` ≥ 0. Therefore dimR ER2,0/Rf = ∞.

Remark 2.19 By Proposition 2.16, the versal opening F = (f, h1, . . . , hr)
of a finite map-germ f is injective. However F is not necessarily finitely A-
determined. For example, the cuspidal edge is a versal opening of the fold
map and it is not finitely A-determined (Example 2.8 and Remark 2.18). In
fact a higher order perturbation of F destroys the singular locus of F . On
the other hand, whether an opening F of f is versal or not depends only
on finite jets of h1, . . . , hr. This follows from the preparation theorem (cf.
Proposition 2.13).

Remark 2.20 Related to the above Proposition 2.16, T. Gaffney suggested
a relation of the notion of openings and that of weak normalisations [6],
which is left to be our open problem.

3 Unfoldings and openings

We recall the notion of unfolding of map-germs ([21]).
Let f : (Rn, A) → (Rm, b) be a map-germ. An unfolding of f is a map-

germ F : (Rn+`, A× 0) → (Rm+`, (b, 0)) of form F (x, u) = (F1(x, u), u) and
F1(x, 0) = f(x), for (x, u) ∈ (Rn+`, A × 0).

For another unfolding G : (Rn+`, A × 0) → (Rm+`, (b, 0)), F and G are
called isomorphic if there exist an unfolding Σ : (Rn+`, A×0) → (Rn+`, A×
0) of the identity map on (Rn, A) and an unfolding T : (Rm+`, (b, 0)) →
(Rm+`, (b, 0)) of the identity map on (Rm, b) such that G ◦ Σ = T ◦ F .

Proposition 3.1 (Unfoldings and openings) Let f : (Rn, A) → (Rm, b) be
a C∞ map-germ and F : (Rn+`, A × 0) → (Rm+`, (b, 0)) be an unfolding of
f . Let i : (Rn, A) → (Rn+`, A × 0) be the inclusion, i(x) = (x, 0). Then we
have:
(1) i∗RF ⊂ Rf .
(2) If f is of corank ≤ 1 with n ≤ m, then i∗RF = Rf . If 1,H1, . . . ,Hr

generate RF via F ∗, then 1, i∗H1, . . . , i
∗Hr generate Rf via f∗.
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Proof : For the mono-germ case the assertions are proved in Proposition 1.6
of [13], Lemma 2.4 of [14]. Here we present the proof for the general case:
(1) is clear. (2) Let H ∈ RF . Then dH ∈ JF . Hence d(i∗H) = i∗(dH) ∈
i∗JF ⊂ Jf . Therefore i∗H ∈ Rf . Let f be of corank at most one. Suppose
h ∈ Rf . Then dh =

∑m
j=1 ajdfj for some aj ∈ Ea. There exist Aj , Bk ∈ E(a,0)

such that i∗Aj = aj and the 1-form
∑m

j=1 Ajd(F1)j +
∑`

k=1 Bkdλk is closed
(cf. Lemma 2.5 of [15]). Then there exists an H ∈ E(a,0) such that dH =∑m

j=1 Ajd(F1)j +
∑`

k=1 Bkdλk ∈ JF and d(i∗H) = i∗(dH) = dh. Then
there exists c ∈ R such that h = i∗H + c = i∗(H + c), and H + c ∈ RF .
Therefore h ∈ i∗RF . Since i∗ is a homomorphism over j∗ : E(b,0) → Eb,
where j : (Rm, 0) → (Rm+`, 0) is the inclusion j(y) = (y, 0), we have the
consequence. 2

An unfolding F : (Rn+`, A × 0) → (Rm+`, (b, 0)) of a map-germ f :
(Rn, A) → (Rm, b) is called extendable if i∗RF = Rf for the inclusion
i : (Rn, A) → (Rn+`, A × 0). By Proposition 3.1, we have:

Corollary 3.2 If corank of f is at most one, then any unfolding of f is
extendable.

In §6, we will see that there exist non-extendable unfoldings for map-
germs of corank ≥ 2. Therefore the opening constructions do not behave
well under unfoldings in general.

4 Openings of stable maps of corank one

We will give the explicit versal opening in the case of corank one. As is
seen in Remark 2.9, it is sufficient to treat the case of mono-germs, namely,
germs f : (Rn, 0) → (Rm, 0) of corank one. Moreover, by Corollary 3.2, it
is sufficient to treat the case that f is stable, namely, f is a Morin map.

Let k ≥ 0,m ≥ 0. To present the normal forms of Morin maps, consider
variables t, λ = (λ1, . . . , λk−1), µ = (µij)1≤i≤m,1≤j≤k and polynomials

F (t, λ) = tk+1 +
k−1∑
i=1

λjt
j , Gi(t, µ) =

k∑
j=1

µijt
j , (1 ≤ i ≤ m).

Let f : (Rk+km, 0) → (Rm+k+km, 0) be a Morin map defined by

f(t, λ, µ) := (F (t, λ), G(t, µ), λ, µ),
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for the above polynomials F and G.
For ` ≥ 0, we denote by F(`), Gi(`) the polynomials

F(`)(t, λ) =
∫ t

0
s`F (s, λ)ds, Gi (`)(t, µ) =

∫ t

0
s`Gi(s, µ)ds.

Then we have:

Proposition 4.1 (Theorem 3 of [12]) The ramification module Rf of the
Morin map f is minimally generated over f∗Em+k+km by the 1+k+(k−1)m
elements

1, F(1), . . . , F(k), G1 (1), . . . , G1 (k−1), . . . , Gm (1), . . . , Gm (k−1).

The map-germ F : (Rk+mk, 0) → (Rm+k+km×Rk+(k−1)m, 0) = (R2(k+km), 0)
defined by

F =
(
f, F(1), . . . , F(k), G1 (1), . . . , G1 (k−1), . . . , Gm (1), . . . , Gm (k−1)

)
is a mini-versal opening of f .

Proof : The first half is proved in [12]. The second half follows from the
definition. 2

Remark 4.2 It is shown in [12] moreover that F is an isotropic map for a
symplectic structure on R2(k+km).

In particular we have:

Lemma 4.3 Let ` be a positive integer and F = (F1(t, u), u) : (Rn, 0) →
(Rn, 0) an unfolding of f : (R, 0) → (R, 0), f(t) = F1(t, 0) = t`. Suppose
H1, . . . ,Hr ∈ RF ∩mn. Then 1,H1, . . . ,Hr generate RF via F ∗ if and only
i∗H1, . . . , i

∗Hr generate m`+1
1 /m2`

1 . In particular F1(1), . . . , F1(`−1) form a
system of generators of RF via F ∗ over En.

Proof : It is easy to show that Rf = R + m`
1. By Proposition 2.5 (2),

1,H1, . . . ,Hr generate RF as En-module via F ∗ if and only if they generate
RF /F ∗(mn)RF over R. Since

RF /F ∗(mn)RF
∼= (R + m`

1)/(f∗m1)(R + m`
1) ∼= m`+1

1 /m2`
1

we have the consequence. 2
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5 Versal openings of analytic map-germs

In this section we discuss the case f is analytic.
First we recall the complex analytic case briefly from [13].
Let (X,A) be a germ of complex analytic space at a finite set A with

the structure sheaf OX,A, and f = (f1, . . . , fm) : (X,A) → (Cm, b) a fi-
nite analytic map-germ. In the graded differential OX,A-algebra (de Rham
algebra) ΩX,A on (X,A), consider the graded differential ideal If gener-
ated by df1, . . . , dfm. Then the differential d on ΩX,A induces the f∗OCm-
homomorphism d : ΩX,A/If → ΩX,A/If and then OCm,b-homomorphism
d : f∗(ΩX,A/If ) → f∗(ΩX,A/If ). Then we consider the i-th cohomology
Hi(f∗(ΩX,A/If ); d) for the complex (f∗(ΩX,A/If ), d). It is evident that
Hi(f∗(ΩX,A/If ); d) is a finite OCm,b-module (cf. Remark 2.6). In fact, we
have moreover:

Proposition 5.1 (Proposition 1.1 of [13]) Hi(f∗(ΩX,A/If ); d) is a coherent
OCm,b-module (i = 0, 1, 2, . . . ).

We remark that the stalk of H0(f∗(ΩX,A/If ); d) at A is the complex
analytic counterpart of Rf in the real C∞ case. We write it Rhol

f to distin-
guish with the real C∞ case. By Proposition 5.1, in particular, that Rhol

f is
a finite OCm-module.

Now let f : (Rn, A) → (Rm, b) be a finite real analytic map-germ. We
denote by ORn,A (resp. ORm,b) the germ of sheaf of analytic functions on
(Rn, A) (resp. (Rm, b)). Then, besides with Rf , we consider the sheaf

Rω
f := {h ∈ ORn,A | dh ∈ 〈df1, . . . , dfm〉ORn,A

}

and the direct image f∗(Rω
f ) as ORm,b-module. Then we see that, in par-

ticular, f∗(Rω
f ) is a finite ORm,b-module by Proposition 5.1 in the case

X = (Cn, A). Thus we have that f∗(Rω
f ) is generated over ORm,b by

some 1, h1, . . . , hr ∈ Rω
f . Moreover it turns out that F = (f, h1, . . . , hr) :

(Rn, A) → (Rm+r, b × h(A)) is injective (See [13]).
Then we show the following:

Proposition 5.2 Let f : (Rn, 0) → (Rm, 0) be a finite analytic map-germ.
Suppose 1, h1, . . . , hr generate Rω

f over ORm,0 via f∗. Then 1, h1, . . . , hr

generate Rf over ERm,0 via f∗.
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Proof : First we may suppose hi(0) = 0, (1 ≤ i ≤ r). The opening

F = (f1, . . . , fm, h1, . . . , hr) : (Rn, 0) → (Rm+r, 0)

of f is injective by [13].
Let Fp stand for the R-algebra of formal functions on (Rn, p). (Fp =

ERn,p/m∞
Rn,p, and it is the completion of ORn,p as well.) Define a sheaf F̃Rn

on Rn by F̃Rn(U) =
∏

p∈U Fp, for any open subset U of Rn. Denote by F̃n

the stalk of F̃Rn at 0. For the definition see also Ch. III §4, pp. 45–46 of
[20]. Then F̃n is faithfully flat over On (Ch. III §4, p. 47, Corollary 4.13 of
[20]). Define the formal counterpart

R̃f = {(ĝp)p∈(Rn,0) ∈ F̃n | dĝp ∈ 〈df̂1,p, . . . , df̂n,p〉Fp , p ∈ (Rn, 0)}

of Rf . Here ĝp means the formal function at a point p near 0 defined by
g ∈ ERn,p. Then, for our F = (f, h1, . . . , hr), we have that 1, h1, . . . , hr

generate R̃f over F̃m.
For a map-germ F : (Rn, 0) → (Rm+r, 0), we say that a function-germ

g ∈ En formally belongs to F ∗Em+r if, for any q ∈ (Rm+r, 0), there exists a
formal function k̂ ∈ Fq such that, for any p ∈ F−1(q), ĝp = F̂ ∗k̂. Then, it is
known the following Glaeser’s type theorem on characterisation of composite
differentiable functions: If g ∈ En formally belongs to F ∗Em+r, then g be-
longs to F ∗(Em+r). In fact the theorem follows, for instance, from Theorem
D and Theorem C (3) of [2]. (We apply Theorem D of [2] to the case that
φ = F is a finite map-germ, and X = (Rn, 0), Y = (Rm+r, 0), s = 1, p = q =
r = 1, A = 1, B = 0 for the notations in [2].) See also Theorem 11.8 of [3].

Since F is injective in our case, we have that any element of Rf formally
belongs to F ∗Em+r, therefore we have Rf ⊆ F ∗Em+r. Since F is an opening
of f , we have that Rf = F ∗Em+r.

Let π : (Rm+r, 0) → (Rm, 0) be the projection. Then π∗ : Em → Em+r

is the inclusion. Regard F ∗Em+r as an Em+r-module via F ∗. By the
preparation theorem, 1, h1, . . . , hr generate F ∗Em+r = Rf as Em-module
via F ∗ ◦ π∗ = f∗ if 1, h1, . . . , hr generate F ∗Em+r/(f∗mm)F ∗Em+r over R.

We will show that

m∞
n ∩ F ∗Em+r ⊆ (f∗mm)F ∗Em+r.

Define h =
∑m

i=1 f2
i : (Rn, 0) → (R, 0). Since f is finite, h−1(0) = {0}, and

moreover, the norms of 1/h and its partial derivatives up to order say ` are
bounded above by 1/‖x‖α for some α = α(`) > 0. Then 1/h is a multiplier
for the ideal m∞

n in the sense of Malgrange (Ch. IV §1, p.54, Proposition 1.4
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of [20]). Hence, for any k ∈ m∞
n , k/h is a C∞ function on (Rn, 0) and it is

an element of m∞
n , if we set (k/h)(0) = 0. Moreover let k ∈ m∞

n ∩ F ∗Em+r.
Then k/h formally belongs to F ∗Em+r. In fact, the Taylor series of k/h at
0 ∈ Rn is 0, and, outside of 0, k/h is a composite function of F . Therefore,
again by the Glaeser’s type theorem as above, we have k/h ∈ F ∗Em+r. Then

k = (
m∑

i=1

f2
i )(k/h) =

m∑
i=1

fi(fik/h) ∈ (f∗mm)F ∗Em+r.

Thus we have m∞
n ∩ F ∗Em+r ⊆ (f∗mm)F ∗Em+r.

Now let H ∈ Rf = F ∗Em+r. Then

H ≡ a0 ◦ f + a1 ◦ f · h1 + · · · + ar ◦ f · hr

≡ a0(0) + a1(0)h1 + · · · + ar(0)hr,

for some functions a0, a1, . . . , ar, modulo (f∗mm)F ∗Em+r +m∞
n ∩F ∗Em+r ⊆

(f∗mm)F ∗Em+r. Thus we see 1, h1, . . . , hr generate F ∗Em+r/(f∗mm)F ∗Em+r

over R, and therefore they generate Rf over ERm,0 via f∗. 2

6 The cases of corank ≥ 2

If corank(f) ≥ 2, then the restriction of a versal opening of an unfolding of
f is not necessarily a versal opening of f . That phenomenon was observed
already in [15]. We utilise Proposition 5.2 if necessary to treat the following
examples.

Example 6.1 (cf. Example 2.8.) Let f : (R2, 0) → (R2, 0), h(x, y) =
(1
2x2, 1

2y2) = (z, w). Then Rf is minimally generated by 1, x3, y3, x3y3 over
f∗ER2,0. Therefore if we set F : (R2, 0) → (R5, 0) by

F (x, y) = (
1
2
x2,

1
2
y2, x3, y3, x3y3),

then F is the mini-versal opening of f .
Here we give a concrete method to find the minimal generators as above.
Let h ∈ ER2,0 = E2. Then by the preparation theorem we have

h ≡ (a ◦ f)x + (b ◦ f)y + (c ◦ f)xy, (mod. f∗E2).

The condition that h ∈ Rf is equivalent to that dh belongs to Jacobi module
Jf . We calculate

dh ≡ (a ◦ f)dx + (b ◦ f)dy + (c ◦ f)(ydx + xdy), (mod. Jf ),
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and set

(a ◦ f)dx + (b ◦ f)dy + (c ◦ f)(ydx + xdy) = Axdx + Bydy,

for some function A,B ∈ E2. Again by the preparation theorem, we put

A = (a1 ◦ f) + (a2 ◦ f)x + (a3 ◦ f)y + (a4 ◦ f)xy,
B = (b1 ◦ f) + (b2 ◦ f)x + (b3 ◦ f)y + (b4 ◦ f)xy.

Then

Ax = (a1 ◦ f)x + (a2 ◦ f)x2 + (a3 ◦ f)xy + (a4 ◦ f)x2y
= 2(za2) + a1x + 2(za4)y + a3 xy,

By = (b1 ◦ f)y + (b2 ◦ f)xy + (b3 ◦ f)y2 + (b4 ◦ f)xy2

= 2(wb3) + 2(wb4) + b1y + b2xy.

omitting “◦f”, where z = 1
2x2 and w = 1

2y2. Then we have

a + cy = 2za2 + a1x + (2za4)y + a3xy,
b + cx = 2wb3 + 2(wb4) + b1y + b2xy.

and therefore

(a − 2za2) + (−a1)x + (c − 2za4)y + (−a3)xy = 0,
(b − 2wb3) + (c − 2wb4)x + (−b1)y + (−b2)xy = 0.

Since E2 is free over f∗E2 in this example, we have

a = 2za2, a1 = 0, c = 2za4, a3 = 0, b = 2wb3, c = 2wb4, b1 = 0, b2 = 0.

Then we have (a4, b4) = k(w, z) for a function k ∈ E2 and

h ≡ (2za2 ◦ f)x + (2wb3 ◦ f)y + (2zwk ◦ f)xy, (mod. f∗E2).

Thus we find a minimal system of generators 1, 2zx, 2wy, 2zwxy, namely
1, x3, y3, x3y3 of Rf over f∗E2.

In each case of the following three examples, we have the mini-versal
openings using Proposition 5.2.

Example 6.2 Let g : (R3, 0) → (R3, 0) be a map-germ defined by

g(x, y, u) = (z, w, u) = (
1
2
x2 + uy,

1
2
y2 + ux, u),
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which is an unfolding of f in Example 6.1. Then Rg is minimally generated
over g∗ER3,0 by 1 and

ψ3 = x3 + y3 + 3xyu,

ψ5,0
5 = x5 + 5x3yu − 12x2u3 + 9yu4,

ψ0,5
5 = y5 + 5xy3u − 12y2u3 + 9xu4,

ψ3,3
6 = x3y3 − 12x2y2u2 − 11x3u3 − 11y3u3 − 12xyu4.

Therefore i∗Rg ( Rf , where i : (R2, 0) → (R3, 0), i(x, y) = (x, y, 0), and we
see that g is not an extendable unfolding of f .

The versal opening of g is given by G : (R3, 0) → (R7, 0) = (R3×R4, 0),

G(x, y, u) = (g(x, y, u), x3 + y3 + 3xyu, x5 + 5x3yu − 12x2u3 + 9yu4,

y5 + 5xy3u − 12y2u3 + 9xu4, x3y3 − 12x2y2u2 − 11x3u3 − 11y3u3 − 12xyu4).

Then
G(x, y, 0) = (

1
2
x2,

1
2
y2, x3 + y3, x5, y5, x3y3)

is not a versal opening of f = (1
2x2, 1

2y2). Note that the element ψ3 gives
a Lagrange immersion of type D+

4 , which is a Lagrange stable lifting of g.
Other elements are obtained by operating lowerable vector fields of g to ψ3.
See §7.

Example 6.3 (Hyperbolic case.) Let h : (R4, 0) → (R4, 0) be the stable
map-germ

h(x, y, λ, µ) = (z, w, λ, µ) = (
1
2
x2 + yλ,

1
2
y2 + xµ, λ, µ).

of K-class I2,2 ([22]). Then Rf is minimally generated over h∗ER4,0 by 1 and

ϕ4 = x3µ + y3λ + 3xyλµ

ϕ3,2
5 = x3y2 − 2x2yλµ + xλ2µ2

ϕ2,3
5 = x2y3 − 2xy2λµ + yλ2µ2

ϕ5,0
5 = x5 + 5x3yλ + 15yλ3µ

ϕ0,5
5 = y5 + 5xy3µ + 15xλµ3

ϕ6 = x3y3 − 3xyλ2µ2.
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We have the mini-versal opening H : (R4, 0) → (R4 × R6, 0) = (R10, 0) of
h by

H = (f, ϕ4, ϕ
3,2
5 , ϕ2,3

5 , ϕ5,0
5 , ϕ0,5

5 , ϕ6).

Moreover we see that

j∗Rh ( Rg(( ER3,0), (j ◦ i)∗Rh ( i∗Rg ( Rf (( ER3,0),

where j : (R3, 0) → (R4, 0), j(x, y, u) = (x, y, u, u). Thus the unfolding h of
f is not extendable, which is also not extendable regarded as an unfolding
of g as well.

Now we show the concrete way of calculations for Example 6.3 to make
sure ourselves:

Let k ∈ ER4,0 = E4. By the preparation theorem, we set,

k = (a0 ◦ h) + (a1 ◦ h)x + (a2 ◦ h)y + (a3 ◦ h)xy.

Then

dk ≡ ((a1 ◦ h) + (a3 ◦ h)y)dx + ((a2 ◦ h) + (a3 ◦ h)x)dy (mod. Jh).

We suppose dk is equal to the form

Adz + Bdw + Cdλ + Ddµ
= (Ax + Bµ)dx + (Aλ + By)dy + (Ay + C)dλ + (Bx + D)dµ.

Then we have

(a1 ◦ h) + (a3 ◦ h)y = Ax + Bµ, (a2 ◦ h) + (a3 ◦ h)x = Aλ + By,
Ay + C = 0, Bx + D = 0.

Then C = −Ay,D = −Bx. Now set

A = (A0 ◦ h) + (A1 ◦ h)x + (A2 ◦ h)y + (A3 ◦ h)xy,
B = (B0 ◦ h) + (B1 ◦ h)x + (B2 ◦ h)y + (B3 ◦ h)xy.

Then we have

Ax = (2zA1 − 4wA3) + (A0 + 4λµA3)x + (−2λA1 + 2zA3)y + A2xy,

omitting “◦h”. Similarly we have

By = (2wB2 − 4zµB3) + (−2µB2 + 2wB3)x + (B0 + 4λµB3)y + B1xy,
Aλ = (λA0) + (λA1)x + (λA2)y + (λA3)xy.
Bµ = (µB0) + (µB1)x + (µB2)y + (µB3)xy.
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Then we set, to find analytic or formal generators,

a1 = 2zA1 − 4wλA3 + µB0, a3 = −2λA1 + 2zA3 + µB2,
0 = A0 + 4λµA3 + µB1, 0 = A2 + µB3,

and

a2 = 2wB2 − 4zµB3 + λA0, a3 = −2µB2 + 2wB3 + λA1,
0 = B0 + 4λµB3 + λA2, 0 = B1 + λA3.

Then we are led to the relation:

3λA1 − 3µB2 − 2zA3 + 2wB3 = 0 · · · · · · · · · (∗).

If A1, A2, B2, B3 satisfy the relation (*), then A0, A2, B0, B1 are determined
from them and so a1 ◦ h, a2 ◦ h, a3 ◦ h:

A0 = −3λµA3, A2 = −µB3, B0 = −3λµB3, B1 = −λA3,

and
a1 = 2zA1 − 4wλA3 − 3λµ2B3,
a2 = −3λ2µA3 + 2wB2 − 4zµB3,
a3 = −2λA1 + 2zA3 + µB2(= λA1 − 2µB2 + 2wB3).

Since (3λ,−3µ,−2x, 2w) are regular sequence in E4, the first Koszul coho-
mology for them vanishes (see for instance, [23]). Then, by setting (A1, B2, A3, B3)
as

(µ, λ, 0, 0), (2z, 0, 3λ, 0), (2w, 0, 0, −3λ),
(0, 2z, −3µ, 0), (0, 2w, 0, 3µ), (0, 0, w, z),

respectively, we have elements ϕ4, ϕ
3,2
5 , ϕ2,3

5 , ϕ5,0
5 , ϕ0,5

5 , ϕ6. such that

1, ϕ4, ϕ
3,2
5 , ϕ2,3

5 , ϕ5,0
5 , ϕ0,5

5 , ϕ6

generate Rω
h over h∗O4. Then, by Proposition 5.2, they generate Rh over

h∗E4.

Similarly we have the following.

Example 6.4 (Elliptic case.) Let k : (R4, 0) → (R4, 0) be the stable map-
germ given by

k(x, y, λ, µ) = (
1
2
(x2 − y2) + λx + µy, xy + µx − λy, λ, µ),
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of K-class II2,2. Then Rk is minimally generated over k∗E4 by 1 and
ρ4, ρ

3,2
5 , ρ2,3

5 , ρ5,0
5 , ρ0,5

5 , ρ6, where

ρ = a1x + a2y + 1
2a3(x2 + y2),

a1 = 2zA1 + 2wA2 + (−3
2λ3 − 3

2λµ2 − 3zλ − 3wµ)A3

+(−3
2λ2µ − 3

2µ3 − 3zµ + 3wλ)B3,

a2 = −2wA1 + 2zA2 + (3
2λ2µ − 3

2µ3 + zµ − wλ)A3,
+(3

2λ3 + 3
2λµ2 − zλ − 3wµ)B3,

a3 = −λA1 − µA2 + (z − 1
2λ2 + 1

2µ2)A3 + (w − λµ)B3,

and ρ = ρ4, ρ
3,2
5 , ρ2,3

5 , ρ5,0
5 , ρ0,5

5 , ρ6 respectively for

(A1, A2, A3, B3) = (λ, µ, 0, 0),
(0, z − 3

2λ2 + 3
2µ2, 0, 3λ),

(0, w − 3λµ,−3λ, 0),
(z − 3

2λ2 + 3
2µ2, 0, 0,−3µ),

(w − 3λµ, 0, 3µ, 0),
(0, 0, z − 3

2λ2 + 3
2µ2, w − 3λµ)).

Note that, in the process of calculations, we see that A1, A2, A3, B3 obey the
relation

(3µ)A1 + (−3λ)A2 + (−w + 3λµ)A3 + (z − 3
2
λ2 +

3
2
µ2)B3 = 0.

and that 3µ,−3λ,−w + 3λµ, z − 3
2λ2 + 3

2µ2 form a regular sequence in E4.

Theorem 6.5 Any stable mono-germ (R4, a) → (R4, b), and therefore any
stable multi-germ (R4, A) → (R4, b) has a versal opening.

Proof : Let f : (R4, a) → (R4, b) be a stable map-germ. Then f is of
corank ≤ 1 and is diffeomorphic to a Morin map or f is of corank 2 and
is diffeomorphic to the germ h of Example 6.3 or k of Example 6.4 (see
for instance [7]). In the case of corank one, we have constructed the versal
opening in Proposition 4.1. In the case of corank two, we have constructed
the versal opening, using a normal form of f in Examples 6.3 and Example
6.4. If a map-germ ` has a versal opening and f is diffeomorphic to `, then f
has a versal opening (cf. Lemma 2.2 (3)). Therefore f has a versal opening.
Let f : (R4, A) → (R4, b) be a stable multi-germ. Then, for each ai ∈ A,
the restriction fi : (R4, ai) → (R4, b) of f to (Rn, ai) is a stable germ. Since
each fi has a versal opening, we see that f itself has a versal opening by
Remark 2.9. 2
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7 Openings and lowerable vector fields

Let f : (Rn, A) → (Rm, b) a map-germ. A germ of vector field ξ over (Rn, A)
is called lowerable for f , or f -lowerable, if there exists a germ of vector field
η over (Rm, b) such that f∗ξ = η ◦ f as a germ of vector field along f . The
lowerable vector fields form an f∗ERm,b-module, which is denoted by Xf .

Lemma 7.1 (cf. [14]) Let f : (Rn, A) → (Rm, b) be a map-germ and ξ a
lowerable vector field for f . Then ξ(f∗ERm,b) ⊆ f∗ERm,b and ξ(Rf ) ⊆ Rf .
Therefore Xf (f∗ERm,b) ⊆ f∗ERm,b and Xf (Rf ) ⊆ Rf .

Proof : Suppose f∗ξ = η ◦ f as in the above definition.
Let a ∈ f∗ERm,b. Then

ξ(f∗a)(x) = 〈d(f∗a)(x), ξ(x)〉 = 〈f∗(da)(x), ξ(x)〉 = 〈(da)(f(x)), f∗(ξ(x))〉
= 〈(da)(f(x)), η(f(x))〉 = (ηa)(f(x)) = (f∗(ηa))(x).

Therefore ξ(f∗a) = f∗(ηa).
Let b ∈ Rf . Then db =

∑m
i=1 pidfi for some pi ∈ ERn,A. Then we have

d(ξb) = Lξ(
m∑

i=1

pidfi) =
m∑

i=1

(ξpi)dfi +
m∑

i=1

pid(ξfi).

Since each ξfi ∈ f∗ERm,b ⊆ Rf , we see d(ξb) ∈ Jf . Therefore ξb ∈ Rf . 2

The differential operator D : ERn,A → ERn,A is called lowerable for f :
(Rn, A) → (Rm, b), if D is a finite sum of operators of form

ξ1ξ2 · · · ξs

with coefficients in f∗ERn,b, where ξ1, ξ2, . . . , ξs are lowerable vector field
(regarded as first order differential operators) for f . The lowerable differen-
tial operators form a (non-commutative) f∗ERn,b-algebra, which is denoted
by Lf .

By Lemma 7.1, we have:

Corollary 7.2 Let f : (Rn, A) → (Rm, b) be a map-germ and D : ERn,A →
ERn,A be a lowerable differential operator for f . Then D(f∗ERm,b) ⊆ f∗ERm,b

and D(Rf ) ⊆ Rf . Therefore Lf (f∗ERm,b) ⊆ f∗ERm,b and Lf (Rf ) ⊆ Rf .

We conclude the present paper by examining how lowerable vector fields
act on the ramification modules and the structure of mini-versal openings
for Example 6.1, Example 6.2 and Example 6.3.
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Example 7.3 The module of lowerable vector fields for f in Example 6.1
is generated by

ξ1 = x
∂

∂x
, ξ2 = y

∂

∂y

over f∗E2. Then we have

ξ1(x3) = 3x3, ξ2(x3) = 0,
ξ1(y3) = 0, ξ2(y3) = 3y3,

ξ1(x3y3) = 3x3y3, ξ2(x3y3) = 3x3y3.

Define the module S = 〈1, x3, y3〉f∗Em ( Rf over f∗Em. Then we see

Xf (S) = S, Lf (S) = S.

The module of lowerable vector fields for g in Example 6.2 is generated
by

ξ0 = x
∂

∂x
+ y

∂

∂y
+ u

∂

∂u
,

ξ1 = (−3
2u3 + 1

3zx)
∂

∂x
+ (−1

2u2x)
∂

∂y
+ (−1

3zu)
∂

∂u
,

ξ2 = (1
3wx + 1

2u2y)
∂

∂x
+ (3

2u3 − 1
2uxy)

∂

∂y
+ 2

3wu
∂

∂u
,

ξ3 = (−3
2wu2 − 1

2zuy + 1
2wxy)

∂

∂x
+ (3

2u3 + 1
2zxy)

∂

∂y
+ (−zw)

∂

∂u
,

over g∗E2, where z = 1
2x2 + uy,w = 1

2y2 + ux. Then we have that

1, ξ0ψ3, ξ1ψ3, ξ2ψ3, ξ3ψ3

generate Rg over g∗E3. This fact is a consequence of Lagrange stability
of induced Lagrangian immersion from (g, ψ3), g̃ : (R3, 0) → T ∗R3 = R6

defined by

g̃ = (z, w, u, p1, p2, p3) = (z =
1
2
x2 + uy, w =

1
2
y2 + ux, u, 3x, 3y, −3xy).

See [11]. Therefore, if we consider the g∗E3-module T generated by 1, ψ3,
then we have that

Xg(T ) = Rg, Lg(T ) = Rg.
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The lowerable vector fields for h in Example 6.3 is generated by

ξ0 = x
∂

∂x
+ y

∂

∂y
+ λ

∂

∂λ
+ µ

∂

∂µ
,

ξ1 = x
∂

∂x
− y

∂

∂y
+ (3λ)

∂

∂λ
+ (−3µ)

∂

∂µ
,

ξ2 = (−3λµ + xy)
∂

∂x
+ (−µx)

∂

∂y
+ (−x2 − 2λy)

∂

∂λ
,

ξ3 = (−λy)
∂

∂x
+ (−3λµ + xy)

∂

∂y
+ (−y2 − 2µx)

∂

∂µ

Then we have ξ0ϕ4 = 4ϕ4, ξ1ϕ4 = 0 and

ξ2ϕ4 = −ϕ2,3
5 − 8λ(w2 + zµ2) ≡ −ϕ2,3

5 (mod. h∗E4),

ξ3ϕ4 = −ϕ3,2
5 − 8µ(z2 + wλ2) ≡ −ϕ3,2

5 (mod. h∗E4).

Moreover

ξ0ϕ
3,2
5 = 5ϕ3,2

5 , ξ0ϕ
2,3
5 = 5ϕ2,3

5 , ξ0ϕ
5,0
5 = 5ϕ5,0

5 , ξ0ϕ
0,5
5 = 5ϕ0,5

5 ,

ξ1ϕ
3,2
5 = ϕ3,2

5 , ξ1ϕ
2,3
5 = −ϕ2,3

5 , ξ1ϕ
5,0
5 = 5ϕ5,0

5 , ξ1ϕ
0,5
5 = −5ϕ0,5

5 ,
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and
ξ2ϕ

3,2
5 = 3ϕ3,3

6 + 18λµϕ4 − 36zwλµ − 3λ3µ3

≡ 3ϕ3,3
6 + 18λµϕ4 (mod. h∗E4),

ξ2ϕ
2,3
5 = −4λϕ0,5

5 − 32z2µ2 + 68wλ2µ2

≡ −4λϕ0,5
5 (mod. h∗E4),

ξ2ϕ
5,0
5 = 5λϕ3,2

5 − 16z2µ − 4wλ2µ

≡ 5λϕ3,2
5 (mod. h∗E4),

ξ2ϕ
0,5
5 = 15µ2ϕ4 − 60zwµ2 − 45λ2µ4

≡ 15µ2ϕ4 (mod. h∗E4),

ξ3ϕ
3,2
5 = −4µϕ5,0

5 − 32w2λ2 + 68zλ3µ2

≡ −4µϕ5,0
5 (mod. h∗E4),

ξ3ϕ
2,3
5 = 3ϕ3,3

6 + 18λµϕ4 − 36zwλµ − 3λ3µ2

= 3ϕ3,3
6 + 18λµϕ4 (mod. h∗E4),

ξ3ϕ
5,0
5 = 15λ2ϕ4 − 60zwλ2 − 45λ4µ2

≡ 15λ2ϕ4 (mod. h∗E4),

ξ3ϕ
0,5
5 = 5µϕ2,3

5 − 16w2λ − 4zλµ2

≡ 5µϕ2,3
5 (mod. h∗E4).

We consider the h∗E4-module U generated by 1, ϕ4 and V generated by
1, ϕ4, ϕ

3,2
5 , ϕ2,3

5 , ϕ5,0
5 , ϕ0,5

5 . Then we have

Xh(U) = V, Lh(U) = Rh.

It would be an interesting open problem, for the geometry of openings, to
find a submodule U , as small as possible, of Rf which satisfies Xf (U) = Rf

or Lf (U) = Rf , for any stable map-germ f : (Rn, A) → (Rm, b), n ≥ 5.
In this paper we have solved the problem just for the case n = 4,m = 4.
To understand the structure of openings in general case, it seems to be
necessary to study more higher dimensional cases n ≥ 5.
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