
Chapter 1
Frontal singularities and related problems

Goo Ishikawa

Abstract This is a survey of C∞ or complex analytic frontal singularities. A mapping
from a manifold of dimension n to a manifold of dimension m with n ≤ m is called
a frontal, if its differential is well-controlled by a field of tangential n-planes on
the target manifold along the mapping which contain images by the differentials
of tangent spaces to the source manifold. We explain the basic theory on frontal
hypersurfaces, the case m = n+1, and then their generalisations in real and complex
cases. We mention several notions, topics and problems which are related to frontal
singularities from rather wide aspects with future expects.

1.1 Introduction

In the study on geometry of varieties in affine spaces, the behaviour of tangent planes
provides significant information on varieties under study. A frontal hypersurface,
or simply a frontal, is a hypersurface, possibly with singularities, which has well-
defined tangent planes even along its singular loci (see the following paragraphs for
the precise definitions). It should be remarked that frontal map-germs are “special”
in the sense that any non-immersive map-germ of finite codimension with respect to
right-left equivalence is never frontal, provided the source dimension ≥ 2. However
frontal map-germs and their frontal deformations appear, for examples, in the study
of wave fronts for mathematical physics and for the generalised theory of manifolds
in geometry. We should mention that frontals appear also as discriminant sets of
smooth or analytic mappings, as the closures of orbits for reflection groups, as
tangent varieties ruled by embedded tangent spaces to a submanifold, e.g. tangent
developables to curves, and so on, all of which give motivations to study frontals from
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symplectic-contact geometry, differential analysis, algebraic analysis and complex
analytic geometry (see for instance ([9, 6, 8, 7, 98]).

As a background of our study, recall the standard notion in differential geometry.
Given a regular surface in Euclidean 3-space, a unit normal vector field along
the surface is used, due to Gauss, to study the geometric property of the surface
([34, 116]). Actually there are at least two choices of such a field. Anyway we take
one of them and define the mapping from the surface under the study to the unit
sphere S2, the Gauss map, and the properties of the surface are studied via the
behaviour of the Gauss map. Note that the field of tangent spaces to the surface is
recovered from the unit normal vector field as the orthogonal complement to the
normal vector field. Then it would be natural to imagine, even when the surface has
singularities, a sort of Gauss map can be defined, if a unit “normal" vector field, or a
field of “tangent planes" to the surface across the singularities is provided, and then
it would be very useful to study the geometry of singular surfaces, as Gauss did for
regular surfaces. This is the idea of “frontals".

Moreover, as another background of our study, recall the standard notion in
complex analytic geometry. Given a complex analytic hypersurface V in the complex
n-space Cn with singular locus Σ ⊂ V , consider tangent planes TzV to V at regular
points z of V . The Nash blow-up Nash(V) of V is defined as the closure of {(z,T zV) |
z ∈ V \ Σ} in the space of all complex tangential n-planes over Cn. Then Nash(V)|Σ
consists of the limits of tangent spaces TzV at z ∈ V \ Σ when z tends to a point in Σ.
Usually the fibre Nash(V)z over z ∈ Σ is not one point set in Gr(n,TzC

n) � P(T∗
z C

n).
It would be natural to expect that Nash(V)z reflects some properties of the original
variety V ([88, 89, 90]). Then it is the case we treat here when Nash(V)z is just one
point for any z ∈ Σ and Nash blow-up provides a vector bundle of rank n over V ,
even over the singular locus Σ, which restricts to the tangent bundle to the regular
locus V \ Σ. This construction is generalised to to arbitrary variety, not necessarily a
hypersurface, to obtain a Legendre varieties in projective cotangent bundle PT∗Cn.
This is another origin of the idea of frontals.

Frontals are significant subjects to be studied in singularity theory, analytic ge-
ometry and differential geometry and so on.

We call a smooth mapping f : N → M between smooth manifolds N of dimension
n and M of dimension m with n ≤ m, a frontal in a generalised sense, if there exists
a smooth field { f̃ (t)}t∈N of tangential n-planes along f with df (TtN) ⊂ f̃ (t) for
any, even non-immersive, point t ∈ N (Definitions 1.2.5 and 1.3.4). The terminology
“frontal” comes from “wavefront” which means a front of wave propagations in the
case m = n + 1. However the above geometric definition of frontals works also for
any dimensions n,m with n ≤ m. Note that, if n = m, then any smooth mapping
f : N → M is a frontal in the above sense. Including this trivial case, we are able
to treat frontals uniformly via the notion of openings as is explained below (see
also §1.4). One might feel discomfort at the terminology “frontal" when n ≤ m − 2,
i.e. when the relative dimension m − n ≥ 2 or m = n, because the terminology
“front” is usually used for a hypersurface, to describe of wave propagations or to
indicate a boundary, in any mean, of two different regions, say, an in meteorology.
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Alternatively, our terminology “frontals” can be called locally framable maps in
general to make clear their geometrical meaning.

It seems very natural at least to treat generalised frontals of arbitrary relative
dimensions. However it should be remarked that there are both common features and
different features, at the same time, on frontal mappings of our generalised sense.

One of common algebraic features on frontals is that the Jacobi ideal, i.e. the ideal
generated by maximal minors of the Jacobi matrix is principal (Propositions 1.2.12
and 1.3.23). This leads a unified treatment of frontals using notions of ramification
modules and openings as we are going to introduce (see §1.4.1).

However a crucial difference appears for the study of frontals between the cases
m − n = 1 and other cases m − n ≥ 2 or m − n = 0. The plane field f̃ associated to
a frontal f : N → M is regarded as a mapping from N to the Grassmannian bundle
W = Gr(n,T M) over M consisting of tangential n-planes in the tangent bundle of M
with the projection π : W → M . The Grassmannian bundle W = Gr(n,T M) has the
canonical, tautological, or contact distribution D ⊂ TW (Definition 1.3.4) and f̃
is an integral mapping of D, i.e. f̃ satisfies that d f̃ (T N) ⊂ D. Any diffeomorphism
of M lifts to unique diffeomorphism on W which preserves the contact distribution
D. When m = n + 1, it is well-known that a diffeomorphism on W preserving
the contact structure, i.e. a contactomorphism, need not preserve the fibration
π : W → M; the existence of Legendre transformations. Namely the group of
contactomorphisms of W is definitely bigger than the group of diffeomorphisms
of M , and thus two classifications of singularities of f̃ , the contact equivalence
using contactomorphisms of W and the Legendre equivalence using π-preserving
contactomorphisms of W are really different ([55]). On the contrary, when m ≥ n+2,
any diffeomorphism preserving D necessarily preserve the fibration π : W → M; a
kind of Bäcklund’s theorem ([122]). In fact the Cauchy characteristic Ch(D) of D
is intrinsically defined, for any w ∈ W , as Ch(D)w := {v ∈ Dw | ivIw ⊆ Iw}, where
I is the differential ideal generated by 1-form-germs annihilating all sections of D
and iv means the interior product of differential forms by v (see [19]). Then Ch(D) is
equal to Ker(dπ : TW → T M) when m ≥ n+2, while Ch(D) = {0} when m = n+1.
Therefore, in the generalised case m ≥ n + 2, contact equivalence and Legendre
equivalence coincide. (When m = n, they coincide of course.) The difference of the
situations between the case m = n + 1 and m ≥ n + 2 or m = n raises difficult and
interesting problems in singularity theory of frontals and related area. Some of them
will be mentioned in this paper.

Here we would like to present some “history” of investigations on frontals so far,
as far as the author knows, with apologies for possible failures to mention.

First of all, V.I. Arnold, V.M. Zakalyukin and other people originate the study of
fronts in the framework of Legendre singularity theory [127, 128, 3, 18, 129, 9, 5,
6, 8, 39, 7]. Note that in [6], the terminology “frontal map” is used for a Legendre
map, that is a Legendre projection of a Legendre submanifold. The more general
terminology “frontal” was defined and used in V.M. Zakalyukin and A.N. Kurbatskiĭ
related to control theory [131], and in [54] as far as the author knows.
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As for classification problem of frontal singularities, G. Ishikawa studies frontals
from the viewpoint of Legendre projections of singular Legendre varieties [49, 55].
Note that singular Lagrange varieties and their Lagrange projections are studied by
V. I. Arnold, S. Janeczko, A. B. Givental V. M. Zakalyukin and so on [4, 79, 80, 37,
38, 130, 81, 52], which are closely related to the study on singularities of frontals. In
particular works by Givental [37, 38, 39] provide substantial ideas also to the theory of
frontals (see §1.5.1, §1.6.1). As for the study on singularities of frontals, J.J. Nuño-
Ballesteros, C. Muñoz-Cabello, and R. Oset Sinha study frontal deformations of
planar curves, frontal surfaces and frontalisations [104, 98, 100, 101]. K. Saji gives
the recognition criterion of cuspidal Sk-frontal and D4-front [109, 110]. S. Izumiya,
K. Saji and M. Takahashi provide the criteria of cuspidal beaks and of cuspidal
lips [78]. B. Bruce, T. Fukui, M. Hasegawa and G. Ishikawa study singularities of
parallel surfaces [18, 26, 62]. T. Nishimura [102] proves the square of Jacobian ideal
is contained in the ramification module and study frontals in the relation with the
theory of envelopes [103]. S. Janeczko and T. Nishimura study anti-orthotomics of
frontals [82].

As for differential geometric study of frontals, M. Kossowski studies frontal sur-
faces of codimension 2 inR4 of corank 1 in [86] and, M. Kossowski and M. Scherfner
study total curvatures of frontals inR3 [87], under the name of “surface with limiting
tangent bundle”. R. Thom, I. Porteous, C.T.C. Wall, S. Izumiya M. C. Romero Fuster,
A. S. Ruas, F. Tari and other people indicate the scope to differential geometry from
the viewpoint of singularity theory [114, 105, 115, 117, 106, 75, 77]. M. Kokubu,
W. Rossman, K. Saji, M. Umehara, K. Yamada, T. Fukui and other people provide
the recognition method of cuspidal edge and swallowtail for the study on differential
geometry of fronts and frontals [85, 112, 25, 116]. G. Ishikawa and Y. Machida
study singularities of wavefronts appeared in special surfaces [67, 16]. S. Fujimori,
K. Saji, M. Umehara, K. Yamada give the recognition criterion of the folded um-
brella, or, the cuspidal cross cap, and study differential geometry on surfaces with
such singularities [23]. K. Saji, M. Umehara and K. Yamada give Gauss Bonnet for-
mula for frontals and coherent tangent bundles [112, 113]. The case with boundary
is studied by W. Domitrz, M. Zwierzyński and K. Hashibori [21, 43]. T, Fukunaga,
M. Takahashi and T.A. Medina-Tejeda establish the fundamental theorem of frontal
surfaces and related results [31, 95].

Y. Machida, G. Ishikawa and M. Takahashi study tangential frontal surfaces in
various geometries, e.g. G2-geometry, D4-geometry, null frontals and so on [68, 69,
70, 71, 72]. T, Fukunaga, M. Takahashi, S. Honda and T. Fukui study on differential
geometry of frontal curves [27, 28, 29, 45, 30, 24, 32, 46, 33]. G. Ishikawa and
T. Yamashita study frontals ruled by geodesics to frontal curves on manifolds with
affine connections and on the recognition of open swallowtails [73, 74]. A. Honda,
M. Koiso and K. Saji study the fold singularities in Lorentz-Minkowski space [44].

In this survey article, regarding all of the above aspects, first we study frontal hy-
persurfaces in §1.2 and then introduce their generalisations in §1.3, mainly from the
framework of singularity theory of mappings and the modified Thom-Mather theory
[93]. Some of above mentioned previous works will be explained in detail. Both the
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class of frontal hypersurfaces and general frontals are treated uniformly by the notion
of openings. The related key object named ramification module is introduced and
the relations with openings and with frontals are studied in §1.4. Moreover in §1.5,
we mention several topics related to frontals which might induce fruitful applications
in various areas. In particular we touch on some relations of frontals with symplectic
geometry, frontal jets and cofrontals, which are not mentioned in previous sections.
In the last section §1.6, we present several problems and questions related to frontals.
As for descriptions in the exposition, we try to add several basic materials and some
detailed calculations which may be not found in previous references and/or which
would be helpful to understand and to solve, if possible, future problems presented
in this survey article.

Notions and notations. In this article, we use the following notations throughout the
paper unless otherwise stated: For K = R or C, we call a mapping or a manifold
smooth if it is C∞ if K = R and complex analytic if K = C. The K-algebra of K-
valued smooth function-germs on (Kn, a) is denoted by OKn,a or Oa. More generally
the K-algebra of multi-germs of functions on (Kn, A) is denoted by O(Kn,A) for a
finite subset A of Kn. We often abbreviate O(Kn,A) by OA if there is no risk of
confusion. If A = {a1, . . . , as}, then we denote by mi the maximal ideal consisting
of h ∈ OA with h(ai) = 0. We set mA = ∩s

i=1mi , Jacobson radical ([94]). Also
we consider a map-germ f : (Kn, a) → (Km, b) and a multi-germ of mapping
f : (Kn, A) → (Km, b) with f (A) = {b}. Another germ g : (Kn, A′) → (Km, b′) is
called right-left equivalent, A-equivalent or diffeomorphic to f if the diagram

(Kn, A)

σ

��

f // (Km, b)

τ

��
(Kn, A′)

g
// (Km, b′)

commutes for some smooth K-isomorphisms σ and τ.

The author would like to thank the editors, Professors José Luis Cisneros Molina,
Dũng Tráng Lê and José Seade, for giving him the delightful opportunity to write this
survey and he is grateful very much to an anonymous referee for valuable comments
and helpful suggestions which are essential to revise and improve the paper.

1.2 Frontal hypersurfaces

1.2.1 Examples of frontal singularities

We start this section by introducing typical examples of frontal singularities.
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Example 1.2.1 Consider the map-germ f : (K, 0) → (K2, 0) defined by t 7→
(t2, t3), which gives a planar cusp. The tangent vector along f is given by

t 7→ df
dt
= (2t, 3t2). Off the origin, the tangent line through f (t) = (t2, t3) with

direction 1
2t (2t, 3t2) = (1, 3

2 t) is given by the parametric equation s 7→ (x1, x2) =
(t2, t3)+s(1, 3

2 t) = (t2+s, t3+ 3
2 st). By taking limit t → 0, we have the same equation

defining the tangent line s 7→ (s, 0) even at t = 0. Thus the planar cusp turns to be a
frontal curve.

planar cusp and its tangent lines

As a counter-example, consider the C∞ curve g : (R, 0) → (R2, 0) defined by
g(t) = (0, exp( 1

t )) when t < 0, g(0) = (0, 0) and g(t) = (exp(− 1
t ), 0) when t > 0.

Then g is not a frontal. In fact the tangent line has direction of (−1, 0) when t > 0
and (0, 1) when t < 0 and therefore there never exist any C∞, even C0 tangent line
field along g.

An example of non-frontal curves.

Remark 1.2.2 It is easily shown that any real analytic curve or complex holomorphic
curve (K, A) → Km is a frontal (see [59] §12).

Example 1.2.3 We introduce three typical examples of frontals.
Consider the map-germ (K2, 0) → (K3, 0) defined by (t1, t2) 7→ (t1, t2

2, t
3
2 ), which

is called a cuspidal edge. Then the tangent plane at (t1, t2) with t2 , 0 is spanned
by vectors (1, 0, 0) and (0, 1, 3

2 t2), and the tangent plane field is extended across the
singular locus t1 = 0.

The map-germ (K2, 0) → (K3, 0) defined by (t1, t2) 7→ (t1, t3
2 + t1t2, 3

4 t4
2 +

1
2 t1t2

2 ),
which is called a swallowtail. Then the tangent plane at (t1, t2) with 3t2

2 + t1 , 0 is
spanned by (1, t2, t2

2 ) and (0, 1, t2), and the tangent plane field is extended across the
singular locus 3t2

2 + t1 = 0.
The map-germ (K2, 0) → (K3, 0) defined by (t1, t2) 7→ (t1, t2

2, t1t3
2 ), which is called

a folded umbrella or a cuspidal cross-cap. Then the tangent plane at (t1, t2) with
t2 , 0 is spanned by (1, 0, 0) and (0, 1, 2

3 t2), and the tangent plane field is extended
across the singular locus t2 = 0.
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Cuspidal edge Swallowtail Folded umbrella

One observe that the induced map-germ (K2, 0) → Gr(2,TK3), which is
called the Legendre lift, is described, via Grassmannian coordinates, (t1, t2) 7→
(t1, t2

2, t
3
2 ; 0, 3

2 t2) for the cuspidal edge, (t1, t2) 7→ (t1, t3
2 + t1t2, 3

4 t4
2 +

1
2 t1t2

2 ;− 1
2 t2

2, t2)
for the swallowtail and (t1, t2) 7→ (t1, t2

2, t1t3
2 ; t3

2,
3
2 t1t2) for the folded umbrella. Then

the Legendre lift is an immersion for the cuspidal edge and for the swallowtail, but
is not an immersion for the folded umbrella.

Example 1.2.4 The map-germ (K2, 0) → (K3, 0) defined by (t1, t2) 7→ (t1, t2
2, t1t2) is

called a cross cap or a Whitney umbrella. It is not a frontal. In fact it is immersive
outside of 0 but its Legendre lift (K2 \ 0, 0) → Gr(2,TK3) is not extended to (K2, 0).
Alternative proof is obtained by observing that Jacobi ideal of f turns to be the
maximal ideal of OK2,0 which is not principal (see Propositions 1.2.12). Moreover
it is shown that non-immersive A-finite map-germ (K2, 0) → (K3, 0) can not be a
frontal (see Proposition 1.5.4).

For details see the following sections.

1.2.2 Frontal hypersurface singularities

Now let us define the class of frontal hypersurface singularities.

Definition 1.2.5 Let f : (Kn, A) → (Kn+1, b) be a multi-germ of smooth (C∞ or
holomorphic) mapping. The germ f is called a frontal hypersurface germ or
simply a frontal if there exists a smooth (C∞ or holomorphic) family of n-planes
f̃ (t) ⊆ Tf (t)K

n+1 along f , t ∈ (Kn, A), i.e. there exists a smooth map f̃ : (Kn, A) →
P(T∗Kn+1) which satisfies the “integrality condition”

df (TtKn) ⊂ f̃ (t) (⊂ Tf (t)K
n+1),

for any t ∈ Kn nearby A such that π ◦ f̃ = f , namely the following mapping diagram
commutes:

P(T∗Kn+1)

π

��
(Kn, A)

f
//

f̃
99ssssssssss

(Kn+1, b).

The lift f̃ is called a Legendre lift, or an integral lift of f .
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Here P(T∗Kn+1) = (T∗Kn+1 \ {0})/K× is the projective cotangent bundle over
Kn+1, whose fibre is the projective cotangent space P((TxK

n+1)∗) = ((TxK
n+1)∗ \

{0})/K× of the cotangent space (TxK
n+1)∗ � Kn+1∗.

Moreover, if the Legendre lift f̃ of f can be taken to be an immersion, then f is
called a front.

The planar cusp, the cuspidal edge and the swallowtail are front. The folded
umbrella (cuspidal cross cap) is not a front but a frontal.

Let us consider the Jacobi matrix J f of f , which is (n+1)×n-matrix consisting of
partial derivatives of f for a representative of the map-germ f : (Kn, A) → (Kn+1, b).
Then the differential map df : TtKn → Tf (t)K

n+1, for t ∈ Kn nearby a, is defined by
df (v) = (J f (t))(v), (v ∈ TtKn). Then t is a regular point (resp. a singular point) of
f if the rank of J( f ) at t is equal to n (resp. less than n). If t is a regular point of f ,
then any point t ′ which is sufficiently near t is a regular point of f as well and df is
injective there. Then, in a neighbourhood of a regular point t of f , the Legendre lift f̃
uniquely exists as f̃ (t) = df (TtKn). Thus the condition that f is a frontal means that
the Legendre lift f̃ which is uniquely determined on the domain of regular points of
f can be extended smoothly across the locus Sing( f ) of singular points.

Definition 1.2.6 We call a frontal f a proper frontal or a fair frontal if Sing( f ) is
nowhere dense.

If f : (Kn, A) → (Kn+1, b) is a proper (or a fair) frontal, then Legendre lift f̃ is
uniquely determined, because f̃ must be continuous.

Remark 1.2.7 In [59], a frontal with nowhere dense singular locus was called proper.
However in the global study the terminology “proper" can be rather confusing since
its usage is different from the ordinary meaning of properness (inverse images of
any compact is compact) in the context of differential topology. Therefore here we
have suggested the terminology “fair" in addition to “proper".

Note that the projective space P(T∗
xK

n+1) of the cotangent space T∗
xK

n+1 for any
x ∈ Kn+1, which is of dimension n, is regarded as the space of linear hyperplanes
of the tangent space TxK

n+1, and P(T∗Kn+1) is a manifold of dimension 2n + 1.
Each linear hyperplane of TxK

n+1 is called a contact element of Kn+1 at x and
thus P(T∗Kn+1) is regarded as the space of contact elements of Kn+1. Recall that
P(T∗Kn+1) has the canonical contact structure D ⊂ TP(T∗Kn+1), which is defined,
for (x, [α]) ∈ P(T∗Kn+1), by D(x,[α]) := (dπ)−1(Ker (α)), where π : P(T∗Kn+1) →
Kn+1 is the bundle map, π(x, [α]) = x, and α : TxK

n+1 → K is a non-zero linear
map, so [α] ∈ P(T∗

xK
n+1). Note that, for v ∈ T(x,[α])P(T∗Kn+1), v ∈ D(x,[α]) if and

only if α(dπ(v)) = 0. If α =
∑n+1

i=0 aidxi and if we regard a1, . . . , an, an+1 as the
homogeneous coordinates of fibres, then D(x,[α]) ⊂ T(x,[α])P(T∗Kn+1) is defined by
the equation

∑n+1
i=0 aidxi = 0, for some representative of [α].

Remark 1.2.8 Since the definition that a multi-germ f : (Kn, A) → (Kn+1, b) is a
frontal is given by the existence of Legendre lift f̃ over (Kn, A), it can be proved that
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f is a frontal if and only if each component fi : (Kn, ai) → (Kn+1, b) of f is a frontal
for any i = 1, . . . , r , where A = {a1, . . . , ar } ⊂ Kn.

Remark 1.2.9 (Grassmannian coordinates). It will be better to recall here how to take
coordinates on the bundle Gr(n,T M) = PT∗M of tangential n-planes in the tangent
bundle, or the projective cotangent bundles, over an (n + 1)-dimensional manifold
M . Let U ⊂ M be a coordinate neighbourhood with coordinates (x1, . . . , xn, xn+1).
Let Π : Gr(n,T M) → M be the canonical projection. Let Wi ⊂ Π−1(U), i =
1, 2, . . . , n + 1, be the set of tangential n-planes V over U such that the differential
of the projection (x1, . . . , xi−1, xi+1, . . . , xn+1) : U → Kn induces an isomorphism
of V and Kn. For the sake of simplicity, let i = n + 1, and V ∈ Wn+1. Then
(x1, . . . , xn)∗ |V : V → Kn is an isomorphism and we can take unique basis v1, . . . , vn
of V such that vj = ∂

∂x j
+ pj

∂
∂xn+1

, j = 1, . . . , n. Then (x1, . . . , xn, xn+1; p1, . . . , pn)
gives a system of local coordinates on Π−1(U). See also Example 1.2.21.

Remark 1.2.10 (Unit normal). In the real case K = R, a map-germ f : (Rn, A) →
(Rn+1, b) is a frontal if and only if there exists a smooth unit vector field ν : (Rn, A) →
TRn+1 along f such that ν(t) · f∗(TtRn) = 0 for any t ∈ (Rn, A) for some, or
equivalently, for any Riemannian metric on (Rn+1, b). Here · means the inner product
of the metric. To see this equivalence in the real case, it is sufficient to take ν(t) as
a unit frame of the orthogonal complement to f̃ (t), i.e. a unit normal, for the metric
on Tf (t)R

n+1, t ∈ (Rn, A).

We rewrite the condition of frontal maps in different languages.
Let f : (Kn, A) → (Kn+1, b) be a smooth map-germ.
Let us take a system of coordinates t1, . . . , tn of Kn and y1, . . . , yn+1 of Kn+1. We

set fi = yi ◦ f . We write, in coordinates,

f (t1, . . . , tn) = ( f1(t1, . . . , tn), f2(t1, . . . , tn), . . . , fn+1(t1, . . . , tn)).

Consider the Jacobi matrix

J f :=

©«

∂ f1
∂t1

∂ f1
∂t2

· · · ∂ f1
∂tn

∂ f2
∂t1

∂ f2
∂t2

· · · ∂ f2
∂tn

...
... · · ·

...

∂ fn+1

∂t1

∂ f1
∂t2

· · · ∂ fn+1

∂tn

ª®®®®®®®®®®¬
,

which is the matrix representation of the differential map df : TKn → TKn+1 with
respect to the frame ∂

∂t1
, . . . , ∂

∂tn
of TKn and ∂

∂y1
, . . . , ∂

∂yn+1
of TKn+1 respectively.

Then easily we have

Proposition 1.2.11 The following conditions are equivalent to each other.
(i) f is a frontal in the sense of Definition 1.2.5.
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(ii) Ker{(dft )∗ : f ∗T∗(Kn+1, b) → T∗(Kn, A)} has a smooth section ν : (Kn, A) →
f ∗T∗(Kn+1, b) \ (zero-section).

(iii) There exists a smooth map-germ ν = (ν1, ν2, . . . , νn+1) : (Kn, A) → Kn+1\{0}
such that ν1 df1 + ν2 df2 + · · · + νn+1 dfn+1 = 0. □

In the condition (ii), df : TtKn → Tf (t)K
n+1 is the differential of f at t,

f ∗T∗(Kn+1, b) := {(t, α) | t ∈ (Kn, A), α ∈ T∗
f (t)K

n+1} is the pull-back bun-
dle of T∗(Kn+1, b) by f over (Kn, A) and the dual (dft )∗ of dft is defined by
(dft )∗( f (t), α) := (t, α ◦ df ). Here α : Tf (t)K

n+1 → K a co-vector (dual vector)
at f (t) ∈ Kn+1.

We observe an algebraic property of frontal-germs.
Let f : (Kn, a) → (Kn+1, b) be a mono-map-germ. Consider the Jacobi ideal Jf

of f in OKn,0, which is generated by n-minor determinants��������������������

∂ f1
∂t1

∂ f1
∂t2

· · · ∂ f1
∂tn

∂ f2
∂t1

∂ f2
∂t2

· · · ∂ f2
∂tn

...
... · · ·

...
∂ fi−1
∂t1

∂ fi−1
∂t2

· · · ∂ fi−1
∂tn

∂ fi+1
∂t1

∂ fi+1
∂t2

· · · ∂ fi+1
∂tn

...
... · · ·

...
∂ fn+1
∂t1

∂ fn+1
∂t2

· · · ∂ fn+1
∂tn

��������������������
, (i = 1, . . . , n + 1),

of the Jacobi matrix J f of f .

Proposition 1.2.12 Let f : (Kn, a) → (Kn+1, b) be a map-germ. If f is a frontal,
then Jacobi ideal Jf is principal, i.e. Jf is generated by one element. Conversely,
if Jf is principal then f is a frontal, provided the singular locus S( f ) is nowhere
dense.

A proof of Proposition 1.2.12 will be given in a more general setting (see Propo-
sition 1.3.23).

Example 1.2.13 Let fCE, fSW, fFU : (K2, 0) → (K3, 0) be defined by fCE(t1, t2) =
(t1, t2

2, t
3
2 ), the cuspidal edge, by fSW(t1, t2) = (t1, t3

2+t1t2, 3
4 t4

2+
1
2 t1t2

2 ), the swallowtail,
and by fFU(t1, t2) = (t1, t2

2, t1t3
2 ), folded umbrella, respectively. Then the Jacobi ideal

JfCE (resp. JfSW, JfFU ) is generated by one element t2 (resp. 3t2
2 + t1, t2).

Example 1.2.14 The tangent surface or tangent developable of a space curve is
defined as the ruled surface by tangent lines to the curve (see [53, 56, 62]). Some
of local models of frontal surfaces are provided by tangent surfaces or tangent
developables to space curves in K3. The tangent surfaces have flat induced metrics
and degenerate Gauss mapping. The diffeomorphism classes, cuspidal edge (CE),
folded umbrella (FU), swallowtail (SW), Shcherbak surface (SB) and Mond
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surface (MD) are exactly characterised as those of tangent surfaces in affine space
K3 of curves of type (1, 2, 3), (1, 2, 4), (2, 3, 4), (1, 3, 5), (1, 3, 4) respectively. Here a
curve γ : (K, 0) → K3 is of type (a1, a2, a3), for some sequence a1, a2, a3 of integers
with 1 ≤ a1 < a2 < a3 if γ is represented as γ(t) = (ta1, ta2+higher order terms, ta3+

higher order terms), up to an affine transformation of K3 and a diffeomorphism of
(K, 0).

A map-germ (K2, a) → (K3, b) is called a folded pleat (FP) if it is diffeomorphic
to the tangent surface of a curve of type (2, 3, 5) in K3. The diffeomorphism classes
of folded pleats fall into two classes, the generic folded pleat and the non-generic
folded pleat.

Tangent surfaces to curves in the following pictures are frontals R2 → R3 which
appear in [68].

Cuspidal Edge Folded Umbrella (Cuspidal Cross Cap) SWallowtail

ShcherBak surface MonD surface Folded Pleat

The notion of “global frontality” is defined locally:

Definition 1.2.15 Let N, M be real or complex smooth manifolds with dim(N) =
n, dim(M) = n + 1. A smooth (C∞ or holomorphic) map f : N → M is called a
frontal map or simply a frontal if the germ of f at any point t ∈ N is a frontal
germ in the sense of Definition 1.2.5 for some (and therefore for any) smooth local
coordinates around t of N and around f (t) of M . (See Lemma 1.3.5.)

1.2.3 Lagrangian and Legendrian Geometry

Now, for a moment, recall the notions of symplectic vector spaces and of contact
structures. For details see [9] for instance.

Definition 1.2.16 (Symplectic vector space).
(1) Let V be a K-vector space, K = R or C. A skew-symmetric bilinear form

Ω : V ×V → K is called a symplectic form if Ω is non-degenerate, i.e. the K-linear
map V → V∗ to the dual vector space V∗ defined by u ∈ V 7→ (v ∈ V 7→ Ω(u, v) ∈ K)
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is a K-linear isomorphism. This is equivalent to that Ω is represented as a (skew-
symmetric) regular matrix for a basis of V . Then dimK V is necessarily even.

(2) A vector space (V,Ω) with a symplectic form Ω is called a symplectic vector
space.

(3) A subspace I ⊂ V of is called isotropic if Ω|I×I is the zero form.
(4) An isotropic subspace L ⊂ V is called a Lagrange subspace if dimK L = n.

Lemma 1.2.17 Let (V,Ω) be a symplectic vector space of dimension 2n. Then the
dimension of any isotropic subspace I ⊂ V is less than or equal to n.

Proof Since the inclusion I → V is injective, the dual map V∗ → I∗ is surjective.
That Ω|V×V is non-degenerate implies that the induced linear map V → V∗ is an
isomorphism. Then the composition V → V∗ → I∗ is surjective and its kernel is
equal to the skew orthogonal space Is = {u ∈ V | Ω(u, v) = 0 for any v ∈ I} to I. If
dimR I = r , then dimR Is = 2n − r . If I is isotropic, then I ⊂ Is . Therefore we have
r ≤ 2n − r , which means r ≤ n. □

Definition 1.2.18 (contact structure, contactomorphism). Let W be a manifold. A
smooth (C∞ or holomorphic) subbundle D ⊂ TW of codimension 1 of the tangent
bundle of W is called a contact structure on W if, for any point w0 ∈ W , there
exists a smooth differential 1-form α on an open neighborhood U, called a contact
form, such that D |U is equals to {(w, v) ∈ TW |U | ⟨α(w), v⟩ = 0} and the exterior
differential dα restricted to Dw , dα |Dw×Dw is a symplectic form on Dw , for any
w ∈ U. Then D is of even rank, say 2n, and therefore W is of odd 2n+1 dimensional.

A manifold endowed with a contact structure is called a contact manifold. Any
contact manifold is of odd dimension.

A diffeomorphismΦ : (W,D) → (W ′,D′) between contact manifolds (W,D) and
(W ′,D′) is called a contactomorphism if dΦ(D) = D′.

Definition 1.2.19 (integral mapping, Legendre submanifold, Legendre fibration,
Legendre equivalence). Let W be a contact manifold with a contact structure D.
A mapping g : N → W from a manifold N is called an integral mapping if
dg(T N) ⊂ D, for the differential map dg : T N → TW of g. If dim(N) = n, then g

is called a Legendre immersion. A submanifold L of (W,D) is called a Legendre
submanifold if the inclusion L ↪→ W is a Legendre immersion.

A fibration π : (W,D) → Z from a contact manifold of dimension 2n + 1 to
a manifold Z of dimension n + 1 is called a Legendre fibration if every fibre
π−1(z), (z ∈ Z) is a Legendre submanifold of W . Two mappings g, h : N → W
are called contact equivalent or contactomorphic if there exist a diffeomorphism
σ : N → N and a contactomorphism Φ : W → W such that Φ ◦ g = hσσ. They are
called Legendre equivalent if moreover Φ is taken to be π-fibre preserving.

Lemma 1.2.20 For any integral mapping g : N → (W,D) to a contact manifold of
dimension 2n + 1, we have dimK(dg(TtN)) ≤ n for any t ∈ N . In particular, if g is
an integral immersion, then dim(N) ≤ n.
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Proof For a contact form α defining D in a neighborhood of f (t), we have g∗α = 0,
so g∗(dα) = 0. This means, for any t ∈ N , dg(TtN) is an isotropic subspace in the
symplectic vector space Dg(t) of dimension 2n. Therefore by Lemma 1.2.17, we have
that dimK(dg(TtN)) ≤ n. □

Example 1.2.21 For W = P(T∗Kn+1), the subbundle D ⊂ TW defined in above is
a contact structure. To see this, suppose an+1 , 0 without loss of generality. If we
set pi = − ai

an+1
, then x1, . . . , xn, xn+1, p1, . . . , pn form a system of local coordinates

of P(T∗Kn+1). Then D is locally defined by the 1-form α := dxn+1 − ∑n
i=1 pidxi .

Then dα =
∑n

i=1 dxi ∧ dpi . Let v be a tangent vector to W over the neighborhood of
coordinates and let v = A ∂

∂xn+1
+
∑n

i=1 Bi
∂
∂xi
+
∑n

j=1 Ci
∂

∂pi
. Then the condition ⟨α, v⟨=

0 is equivalent to that A =
∑n

i=1 Bipi . Thus we have that ∂
∂x1
+ p1

∂
∂xn+1

, . . . , ∂
∂xn
+

pn ∂
∂xn+1

, ∂
∂p1

, . . . , ∂
∂pn

form a basis of D, and the skew-symmetric form dθ |D is
represented, for this basis, by the regular matrix(

O I
−I O

)
,

where I is the unit n × n matrix.

Remark 1.2.22 By the Darboux theorem, it is known that any contact manifold of
dimension 2n + 1 is locally contactomorphic to the above example P(T∗Kn+1).
Moreover any Legendre fibration W → M is locally isomorphic to the projection
π : P(T∗Kn+1) → Kn+1 ([5]). Note also that, though we do not go into details,
the Darboux theorem has generalisations in various directions (see for instance
[7, 132, 20]).

1.2.4 Deformations of integral mappings

Singularities of frontals are regarded, via their integral lifts, as those of integral
mappings for Legendre equivalence on Legendre fibration of a contact manifold.

Let W be a contact manifold of dimension 2n+1 with a contact structure D ⊂ TW
and N a manifold of dimension n.

Let ℓ : (N, A) → W be a Legendre (or integral) map-germ, i.e. ℓ∗α = 0, for some
(and any) local contact form α of D defined in a neighbourhood of f (A).

A map-germ L : (N × K, (a, 0)) → W is called a Legendre deformation of ℓ if,
setting ℓu(t) = L(t, u) for a representative of L, we have ℓ0 = ℓ and ℓu is Legendre,
ℓ∗uα = 0, for any sufficiently small u ∈ R. A vector field v : (N, a) → TW along ℓ,
(π ◦ v = ℓ, π : TW → W is the projection), is called an infinitesimal Legendre
deformation if there is a Legendre deformation ℓ = (ℓu) of ℓ such that v = dℓu

du |u=0.
Let us describe infinitesimal Legendre deformations using coordinates.
Let x1, . . . , xn, xn+1, p1, . . . , pn be a system of local coordinates of W such that

the contact structure of W is given locally by
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dxn+1 −
n∑
i=1

pidxi = 0.

If we write simply

ℓu = (x1u, . . . , xnu, xn+1u, p1u, . . . , pnu),

then, by the condition that ℓu is a Legendre deformation, we have

dxn+1u −
n∑
i=1

piudxiu = 0.

Note that here the exterior differential d is on coordinates t1, . . . , tn of N . By differ-
entiating with respect to u we have

d ∂xn+1 u

∂u − ∑n
i=1

∂piu
∂u dxiu − ∑n

i=1 piud ∂xiu
∂u = 0, · · · · · · (∗).

Let x1, . . . , xn, xn+1, p1, . . . , pn; ξ1, . . . , ξn, ξn+1, φ1, . . . , φn be the induced system of
local coordinates of the tangent bundle TW . Then the condition on the coordinates
of v = dℓu

du |u=0 is given, setting u = 0 from (*), by

dξn+1 −
n∑
i=1

φidxi −
n∑
i=1

pidξi = 0.

or by

d

(
ξn+1 −

n∑
i=1

piξi

)
−

n∑
i=1

φidxi +
n∑
i=1

ξidpi = 0.

Note that the function ξn+1 −
∑n

i=1 piξi is equal to the paring ⟨ℓ∗α, v⟩.

Here we digress to recall a general theory on differential analysis on manifolds.

Definition 1.2.23 (Lie derivative). Let N,W be a K-manifold, ℓ : N → W a dif-
ferentiable K-mapping and v : N → TW be a vector field over ℓ. For a differential
p-form α on W , we define a differential p-form Lvα on N by

Lvα :=
d

du

����
u=0

ℓ∗uα,

for a deformation ℓu, (u ∈ (K, 0)) of ℓ with d
du

��
u=0 ℓu = v. Then Lvα does not depend

on the choice of a deformation but depends only on v (see [52, 55]).

Proposition 1.2.24 [126, 125, 55] For any differential form α on any manifold W ,
there is a unique differential form α̃ on the tangent bundle TW of W which satisfies
the followings:
(0) Let 1 : TW → TW be the identity regarded as a vector field along π : TW → W .
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Then α̃ = L1α.
(1) We have X∗α̃ = LXα for any vector field X : W → TW . Here LXα means the
Lie derivative of α by X .
(2) For any smooth map f : N → W and for any vector field v : N → TW along
f , we have v∗α̃ = Lvα and f̃ ∗α = ( f∗)∗α̃. Here f∗ : T N → T M is the bundle
homomorphism defined by the differential of f .
(3) We have dα̃ = d̃α, for the exterior differential d. □

We call α̃ the natural lifting or the complete lift of α.

Corollary 1.2.25 (1) For a 0-form i.e. a function h on W , we have h̃(v) = v(h) for
any v ∈ TW . Here v(h) means the directional derivative of h by the tangent vector v.
(2) α̃ + β = α̃ + β̃ for any p-forms α, β on W for any p = 0, 1, 2, 3, . . . .
(3) α̃ ∧ β = α̃ ∧ π∗β + π∗α ∧ β̃, for any forms α, β on W . Here ∧ means the wedge
product of forms and π∗ the pull-back by the natural projection π : TW → W . □

Example 1.2.26 Let x = (x1, x2, . . . , xm) be a system of local coordinates on U ⊂ W .
Then a point in π−1(U) is uniquely represented by v1

∂
∂x1

|x + · · · + vm
∂
∂x1

|x . Let
(x, v) = (x1, . . . , xm; v1, v2, . . . , vm) be the induced system of local coordinates on
π−1(U) ⊂ TW . For this system of coordinates, we have h̃(x, v) = ∑m

i=1 vi
∂h
∂xi

(x) on
π−1(U), for any function h on W .

Let ℓ : (N, A) → W be a map-germ to a contact manifold with the contact
structure D ⊂ TW . Let D be defied by α = 0 locally around f (A). Then we set

V Iℓ := {v : (N, A) → TW | v∗α̃ = 0, π ◦ v = ℓ}.

We call V Iℓ the space of infinitesimal integral deformations of ℓ.
In the next section, we apply the argument to the case ℓ is a Legendre lift f̃ of a

frontal map-germ f .

1.2.5 Frontal deformations and frontal stability

Definition 1.2.27 Let f : (Kn, A) → (Kn+1, b) be a frontal germ. A deformation
F : (Kn × Kr, A × {0}) → (Kn+1, b) of f , F(t, u) = fu(t), f0 = f , is called a frontal
deformation if there exists a lift F̃ : (Kn × Kr, A × {0}) → Gr(n,TKn+1),

Gr(n,TKn+1)

π

��
(Kn × K, A × {0})

F
//

F̃

66mmmmmmmmmmmmm
Kn+1,

satisfying ( fu)∗(TtKn) ⊂ f̃u(t), for any (t, u) ∈ Kn × Kr nearby A × {0}. Here
F̃(t, u) = f̃u(t).
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Example 1.2.28 The following first two pictures designate examples of frontal de-
formations, while the third does not.

Frontal deformations.

A non-frontal deformation.

Definition 1.2.29 Let f : (Kn, A) → (Kn+1, b) be a frontal. Then f is called frontally
stable if any frontal deformation F : (Kn ×K, (A, 0)) → (Rn+1, b) of f is trivial: i.e.
there exist diffeomorphisms

Σ : (Kn × K, A × {0}) → (Kn × K, A × {0}), Σ(t, u) = (σu(t), u),

T : (Kn+1 × K, (b, 0)) → (Kn+1 × K, (b, 0)),T(x, u) = (τu(x), u),
such that (T ◦ (F, idRr ) ◦ Σ)(t, u) = ( f (t), u), or equivalently,

τu ◦ fu ◦ σu = f .

Here we recall the key notion of contact Hamilton vector fields for the study on
frontal stability from [55].

Let (W,D) be a contact manifold. A vector field X over W is called a contact
vector field if the flow generated by X preserves the contact distribution D. This
is equivalent to that the Lie derivative LXα = µα for some (and any) local contact
form α giving D ⊂ TW and for a function µ.

Deleting W if necessary, we assume a contact form α is taken over W . Let
H : W → K be a smooth function. Then there exists a unique contact vector field
X = XH over W with the condition ⟨α, X⟩ = H. The contact vector field XH is called
the contact Hamilton vector field with Hamiltonian H. If α = dxn+1−

∑n
i=1 pidxi ,

then XH is explicitly given by

XH =

n∑
i=1

(
∂H
∂xi
+ pi

∂H
∂xn+1

)
∂

∂pi
−

n∑
i=1

∂H
∂pi

∂

∂xi
+

(
H −

n∑
i=1

pi
∂H
∂pi

)
∂

∂xn+1
.

Conversely, any contact vector field is locally a contact Hamilton vector field with
some Hamilton function.
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Associated to a contact form α, we define the Reeb vector field R by ⟨α, R⟩ =
1, iRdα = 0. Here i means the interior product, i.e. iRdα is the 1-form which satisfies
iRdα(v) = dα(R, v) for any tangent vector v. Note that, since α is a contact form, R
is characterised uniquely. If α = dxn+1 −

∑n
i=1 pidxi , then R = ∂

∂xn+1
.

Lemma 1.2.30 [55] Let α be a contact form on W , and H : W → K a function.
Then we have (1) LXHα = R(H)α and iXH dα = R(H)α − dH. (2) Let η be a vector
field on W . If iηdα = 0, then η = (iηα)R. (3) X1 = R. □

We have the following formula for the contact Hamilton vector field with the sum
(resp. product) of two contact Hamiltonians:

Lemma 1.2.31 [55] For functions K,H on W , we have XK+H = XK + XH and

XKH = K · XH + H · XK − (KH) · R = K · XH + H · XK − (KH) · X1.

In particular, XaH = aXH, (a ∈ K). □

We denote by VHW the vector space of contact Hamilton vector fields over W
and by OW theK-algebra of smooth functions on W . Define a linear mapΦ : OW →
VHW by Φ(H) = XH . Then Φ is an isomorphism of vector spaces. Therefore VHW

is endowed with OW -module structure induced from Φ, namely, K ∗ XH = XKH .
Here, we distinguish this new functional multiplication, using ∗, with the ordinary
functional multiplication in VW .

Let π : W → M be a Legendre fibration (Definition 1.2.19). Then a contact
vector field X over W is called a Legendre vector field if X is π-lowerable, namely,
if there exists a vector field Y over M such that tπ(X) = wπ(Y ) as vector fields along
π. Then we have:

Proposition 1.2.32 [55] Let (x1, . . . , xn, xn+1, p1, . . . , pn) be a system of local coor-
dinates of a contact manifold W , so that α = dxn+1 −

∑n
i=1 pidxi is a contact form

and π is given by π(x1, . . . , xn, xn+1, p1, . . . , pn) = (x1, . . . , xn, xn+1). Then a contact
Hamilton vector field XH with Hamiltonian H = H(x, p) is a Legendre vector field if
and only if H is an affine function with respect to π : W → M , namely, H is of form
H(x, p) = a0(x1, . . . , xn, xn+1)+a1(x1, . . . , xn, xn+1)p1+ · · ·+an(x1, . . . , xn, xn+1)pn.

We denote by V LW = V L(W,π), the totality of Legendre vector fields over W with
respect to π.

The following is the infinitesimal characterisation of frontal stability proved in
[55, 101].

Theorem 1.2.33 (Mather’s type characterisation). Let f : N = (Kn, A) → M =

(Kn+1, b) be a frontal map-germ with a Legendre lift of corank ≤ 1. Then the
following conditions are equivalent to each other:

(i) f is frontally stable.
(ii) Any Legendre lift f̃ : N → W = Gr(n,TRn+1) of f is infinitesimally Legendre

stable i.e.,
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V I f̃ = t f̃ (VN ) + w f̃ (V LW ).

(iii) f is a proper frontal and the unique Legendre lift f̃ : N → W = Gr(n,TRn+1)
of f is infinitesimally Legendre stable.

(iv) f is a proper frontal and f is infinitesimally frontally stable i.e.,

V fr
f ⊂ t f (VN ) + w f (VM ).

□

Here VN,VM denote the space of vector fields over N, M respectively, Vf the space
of vector field along f : N → M , and V LW the space of Legendre vector fields as is
defined in above. Moreover V fr

f ⊂ Vf is defined by

V fr
f :=

{
v ∈ Vf

���� v = dfu
du

����
u=0

, for a frontal deformation fu of f
}

Remark 1.2.34 In Theorem 1.2.33 (iv), the converse inclusion V fr
f ⊃ t f (VN ) +

w f (VM ) holds always.
If f is a frontally stable germ with a Legendre lift of corank ≤ 1, then f is

has a proper (= singular locus is nowhere dense) representative, and therefore the
Legendre lift f̃ of f is uniquely determined. Then f is frontally stable if and only if
f̃ is “Legendre stable” in the sense of [55].

Remark that in [55] only the case of single germs and in [101] the case of multi-
germs are proved. The detailed proof of Theorem 1.2.33 will not repeated in this
survey paper. We only mention following observations (Lemmas 1.2.35, 1.2.37)
which play key roles for the proof of Theorem 1.2.33.

Lemma 1.2.35 ([101]) Let f : (Kn, A) → (Kn+1, b) be a proper frontal map-germ
with the Legendre lift f̃ . Then the linear map dπ : V I f̃ → Vf defined dπ(̃v) = dπ ◦ ṽ
is injective. If f̃ is of corank ≤ 1, then dπ(V I f̃ ) = V fr

f . In particular dπ givens a
linear isomorphism between V I f̃ and V fr

f .

Here we give an alternative proof of Lemma 1.2.35.

Proof of Lemma 1.2.35. Let ṽ ∈ V I f̃ and take its representative ṽ : U → TW ,
where W = P(T∗Kn+1) on a sufficiently small open neighbourhood U of a such that
Π ◦ ṽ = f : U → Kn+1 has dense regular locus in U. Here Π : TW → Kn+1 is the
composition of the natural projections π : TW → W and π′ : W = P(T∗Kn+1) →
Kn+1. Take any regular point t0 ∈ U. Then, after taking appropriate local coordinates
t1, . . . , tn centred at t0 and x1, . . . , xn, xn+1 at f (t0) respectively, we may suppose
f (t) = (t1, . . . , tn, 0) and then f̃ (t) = (t1, . . . , tn, 0; [0, . . . , 0, 1]). Taking induced co-
ordinates x1, . . . , xn, xn+1; p1, . . . , pn of W such that α = dxn+1 − ∑n

i=1 pidxi = 0
gives the contact structure of W , we have f̃ (t) = (t1, . . . , tn, 0; 0, . . . , 0). Let
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ṽ(t) = (t1, . . . , tn, 0; 0, . . . , 0; ξ1, . . . , ξn, ξn+1; φ1, . . . , φn) by using the induced lo-
cal coordinates on TW . Note that dπ(̃v)(t) = (t1, . . . , tn, 0; ξ1, . . . , ξn, ξn+1). Then the
condition ṽ∗α̃ = 0 reads that dξn+1−

∑n
i=1 φidti = 0. Therefore each φi is determined

as ∂ξn+1
∂ti

. This shows ṽ is determined by v in a neighbourhood of the regular point
t0. Since the singular locus Sing( f ) is nowhere dense, it can be proved ṽ is uniquely
determined by v = dπ(̃v). This means dπ is injective. Suppose f̃ is of corank ≤ 1.
Then V I f̃ is equal to the set of w ∈ Vf̃ such that w = d f̃u

du |u=0 for some integral
deformation of f̃u of f̃ . Then π ◦ f̃u gives a frontal deformation of f . Conversely any
frontal deformation fu of f uniquely lifts to an integral deformation f̃u of f̃ . Thus
we have the equality dπ(V I f̃ ) = V fr

f . □

Lemma 1.2.36 [55] Suppose that corank of f̃ ≤ 1. Then, for any v ∈ V I f̃ , there exist
a frontal deformation F : (Kn ×K, A× 0) → Kn+1 of f and an integral deformation
F̃ : (Kn × K, A × 0) → W = P(T∗Kn+1) of f̃ covering F such that d

du fu
��
u=0 = v. □

It can be proved that, by Lemma 1.2.35, f is infinitesimally frontally stable if
and only if f̃ is infinitesimally integrally stable. Moreover it can be proved that f
is frontally stable if and only if f̃ is Legendre stable, and then, by Lemma 1.2.36,
f (resp. f̃ ) must be infinitesimally frontally stable (resp. infinitesimally frontally
stable).

Suppose f is infinitesimally frontally stable. This is equivalent to that f̃ is in-
finitesimally integrally stable. To show f is frontally stable, we need to find, for
any integral deformation ( f̃u) of f̃ , a deformation (σu) of idN an integral defor-
mation τu of idW covering a deformation (τ̄u) of idM via π : W → M satisfying
τ−1
t ◦ f̃u ◦ σt = f̃ , and thus τ̄−1

u ◦ ft ◦ σu = f . For this, it is sufficient to solve
d f̃u/du = ηu ◦ f̃u − T f̃u ◦ ξu(= w f̃u(ηu) − t f̃u(ξu)) : N × K → TW with ξu ∈ VN

and ηu ∈ V LW .
For an unfolding F = ( f̃u, u) : N × J → W × J, u ∈ J = (K, 0), we set

V IF/J = {v : N × J → TW | vu ∈ V I f̃u , u ∈ J}.

If ( f̃u) is an integral deformation of f̃ , then we have (d f̃u/du)u∈J ∈ V IF/J . We
define an OW×J -module structure on V IF/J by

au ∗ vu = ( f̃ ∗u au) · vu + ⟨α, ivu ⟩(Xau − au · R) ◦ f̃u,

for vu ∈ V IF/J, au ∈ OW×J , using Hamilton vector field Xau of au and Reeb vector
field R. Let f̃ be finite and of corank at most one. Then it can be proved that
the quotient V IF/J is a finite OW×J -module. We define tF/J : VN → V IF/J by
ξ 7→ (t f̃u(ξ))u∈J and wF/J : VW → V IF/J by η 7→ (w f̃u(η))u∈J . We set

SF/J = V IF/J/((wF/J)(VHW ) + (tF/J)(VN )),

which is an OW×J -module, and set
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S f̃ = V I f̃ /(w f̃ (V LW ) + t f̃ (VN )),

which is an OW -module. Then we have:

Lemma 1.2.37 ([55]) The quotient SF/J/mJSF/J is isomorphic to S f̃ as an OW -
modules. □

Now if f̃ is infinitesimally integrally stable, then S f̃ = 0 and then, by Lemma
1.2.37, we have mJSF/J = SF/J , and then, by Nakayama’s Lemma, we have SF/J = 0,
i.e. V IF/J = ((wF/J)(VHW ) + (tF/J)(VN )). This means that any integral defor-
mation f̃u of f̃ is recovered by deformations of infinitesimal Legendre equivalences
(ξu, η̃u) such that

d
du

f̃u = (w f̃u)(η̃u) − (t f̃u)(ξu).

By integrating on u, we have that f̃ is Legendre stable and f is frontally stable.

Remark 1.2.38 In [101], a characterisation of frontal stability in terms of K-
equivalence is given. Moreover also a characterisation of frontal stability of multi-
germs of frontals is given. We can say, in some sense, they complete the frontal
analogue of Thom-Mather’s theory eventually.

Now we present examples of frontally stable germs. Here is the list of frontally
stable frontals of low dimensions. These owe mainly the results by Arnold [2],
Zakalyukin [127], Givental [38], Bogaevskii, Ishikawa [15] and Ishikawa [55].

n = 1. Any stable frontal f : (K, 0) → (K2, 0) is right-left (A-) equivalent to
(regular) t1 7→ (t1, 0), or (cusp) (t2

1, t
3
1 ).

n = 2. Any stable frontal f : (K2, 0) → (K3, 0) of integral corank ≤ 1 is right-left
equivalent to (regular) (t1, t2) 7→ (t1, 0, 0), (cuspidal edge) (t1, t2) 7→ (t1, t2

2, t3
2 ),

(swallowtail) (t1, t2) 7→ (t1, t3
2 + t1t2, 3

4 t4
2 +

1
2 t1t2

2 ), or (folded umbrella, or, cuspidal
cross-cap) (t1, t2) 7→ (t1, t2

2, t1t3
2 ).

n = 3. Any stable frontal f : (R3, 0) → (R4, 0) of integral corank ≤ 1 is
right-left equivalent to regular A1 : (t1, t2, t3) 7→ (t1, 0, 0, 0), (three dimensional
cuspidal edge) A2 : (t1, t2, t3) 7→ (t1, t2, t2

3, t3
3 ), (three dimensional swallowtail) A3 :

(t1, t2, t3) 7→ (t1, t2, t3
3 + t1t3, 3

4 t4
3 +

1
2 t1t2

3 ), (butterfly) A4 : (t1, t2, t3) 7→ (t1, t2, t4
3 +

t1t2
3 + t2t3, 4

5 t5
3 +

1
2 t1t2

2 ),
(hyperbolic umbilical point, wallet D+4 ) and (elliptic umbilical point, pyramid D−

4 ) :
(t1, t2, t3) 7→ (t1, t2

2 ± t2
3, t2t3 + t1t2, t2

2 t3 ± 1
3 t3

3 +
1
2 t1t2

2 ),
(folded umbrella S3 = A2,1) : (t1, t2, t3) 7→ (t1, t2, t2

3, t1t3
3 ), or

S4 = A3,1 : (t1, t2, t3) 7→ (t1, t2, t3
3 + t1t3, 3

5 t5
3 +

3
4 t2t4

3 +
1
3 t1t3

3 +
1
2 t1t2t2

3 ).

We do not give the three dimensional pictures in R4. Instead, here we present the
bifurcation diagram of S4-singularities.
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S

A A

A

S

3

4

2
S3

33

Bifurcation around S4-singularities.

1.3 General frontals

1.3.1 Examples of general frontals

Before introducing a generalization of the notion of frontals in the next section,
we mention several typical examples of frontal surface singularities in K4 in a
generalised sense.

Example 1.3.1 (Embedded cuspidal edges). A map-germ f : (K2, a) → (K4, b) is
called an embedded cuspidal edge if f is right-left equivalent to the germ defined
by (t1, t2) 7→ (t1, t2

2, t3
2, 0). More generally a map-germ f : (K2, a) → (Km, b),m ≥ 4

is called an embedded cuspidal edge if f is right-left equivalent to the germ defined
by (t1, t2) 7→ (t1, t2

2, t3
2, 0, . . . , 0). This is a cuspidal edge in K3 composed with the

embedding K3 → K3 × {0} ⊂ Km.

Example 1.3.2 (Open swallowtails (OSW) and open folded umbrellas (OFU)). A
map-germ f : (K2, a) → (K4, b) is called an open swallowtail if f is right-left
equivalent to the germ defined by (t1, t2) 7→ (t1, t3

2 + t1t2, 3
4 t4

2 +
1
2 t1t2

2,
3
5 t5

2 +
1
3 t1t3

2 ). It
will be seen that f is a frontal in the sense of §1.3.2 and has an injective representative
as depicted “virtually” in R4 (see also [80]).

A map-germ f : (K2, a) → (K4, b) is called an open folded umbrella or an open
cuspidal cross-cap if f is right-left equivalent to the germ defined by (t1, t2) 7→
(t1, t2

2, t1t3
2, t5

2 ), which is also a frontal and has an injective representative.

Open swallowtail and open folded umbrella.

Example 1.3.3 (Products of cusps (PCU) and complex cusps (CCU)). A map-germ
f : (K2, a) → (K4, b) is called a product of cusps if f is right-left equivalent to the
germ defined by (t1, t2) 7→ (t2

1, t
2
2, t

3
1, t

3
2 ). It is a frontal (front) which has an injective

representative.
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Consider, in complex case, the map-germ (C, 0) → (C2, 0) defined by z → (z2, z3).
We regard it as a map-germ (R2, 0) → (R4, 0) by taking z = t1 +

√
−1t2, which is

given by (t1, t2) 7→ (t2
1 − t2

2, 2t1t2, t3
1 − 3t1t2

2, 3t2
1 t2 − t2 − 3). Then a map-germ

f : (K2, a) → (K4, b) is called a complex cusp, in each case K = R or K = C,
if f is right-left equivalent to the germ (K2, 0) → (K4, 0) which is defined by
(t1, t2) 7→ (t2

1 − t2
2, 2t1t2, t3

1 − 3t1t2
2, 3t2

1 t2 − t3
2 ). It is also a frontal (front) which has

an injective representative.

Product of cusps and complex cusp.

The above examples Examples 1.3.2 and 1.3.3 are obtained by the process of
“openings” (see §1.4).

1.3.2 General frontal singularities

We generalise the notion of frontals defined in §1.2.

Definition 1.3.4 Let f : (Kn, A) → (Km, b) be a map-germ. Suppose n ≤ m. Then f
is called a frontal map-germ or, briefly a frontal in short, if there exists a smooth
family of n-planes f̃ (t) ⊆ Tf (t)K

m along f , t ∈ (Kn, A), i.e. there exists a smooth lift
f̃ : (Kn, A) → Gr(n,TKm) satisfying the “integrality condition”

df (TtKn) ⊂ f̃ (t) (⊂ Tf (t)K
m),

for any t ∈ Kn nearby A, such that π◦ f̃ = f , namely the following mapping diagram
commutes:

Gr(n,TKm)

π

��
(Kn, A)

f
//

f̃
88rrrrrrrrrr
(Km, b).

Here Gr(n,TKm) is the Grassmannian bundle consisting of n-dimensional linear
K-subspaces V ⊂ TxK

m (x ∈ Km) with the canonical projection π(x,V) = x, and
df : TtKn → Tf (t)K

m is the differential map of f at t ∈ (Kn, A). The lift f̃ is called a
Legendre lift or an integral lift of the frontal f . Actually f̃ is an integral mapping
to the canonical or contact distribution on Gr(n,TKm) (cf. [56]). The canonical
distribution D ⊂ TGr(n,TKm) is defined, for (x,V) ∈ Gr(n,TKm), by
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D(x,V ) := {w ∈ T(x,V )Gr(n,TKm) | dπ(w) ∈ V},

where π : Gr(n,TKm) → Km is the projection defined by π(x,V) = x, therefore
dπ : T(x,V )Gr(n,TKm) → TxK

m maps w ∈ T(x,V )Gr(n,TKm) to dπ(w) ∈ TxK
m.

Then f̃ satisfies that d f̃ (TtKn) ⊂ D(x,V ). This means that df (TtKn) ⊂ f̃ (t) for any
t ∈ Kn nearby A.

A frontal f : (Kn, A) → (Km, b) is called a front if there exists an immersive
Legendre lift of f .

Lemma 1.3.5 If f is a frontal (resp. a front) and g is right-left equivalent to f , then
g is a frontal (resp. a front).

Proof The diffeomorphism-germ τ induces the isomorphism τ∗ : TKm → TKm

covering τ and the diffeomorphism τ̃ : Gr(n,TKm) → Gr(n,TKm) covering τ,
where τ̃ is defined by τ̃(V) = τ∗(V) for V ∈ Gr(n,TKm). Then, if there is a Legendre
lift f̃ of f , then g̃ := τ̃◦ f̃ ◦σ−1 is a Legendre lift of g. Moreover if f̃ is an immersion,
then g̃ is an immersion. □

Remark 1.3.6 As is remarked in Remark 1.2.8, f : (Kn, A) → (Km, b) is a frontal
if only if each component fi : (Kn, ai) → (Km, b) is a frontal for any i = 1, . . . , r ,
where A = {a1, . . . , ar } ⊂ Kn. We would like to keep to treat multi-germs for the
generality of the exposition as far as possible.

The notion of “global frontality" is defined locally in the general cases as in
Definition 1.2.15 :

Definition 1.3.7 Let N (resp. M) be a manifold of dimension n (resp. m). Suppose
n ≤ m. A map f : N → M is called a frontal map or simply a frontal (resp. a front)
if, for any a ∈ N , the germ of f at a is frontal (resp. front) under local coordinates
around a and f (a).

We rewrite the condition of frontal maps to different languages.
Let f : (Kn, a) → (Km, b) be a smooth map. We write, in coordinates,

f (t1, . . . , tn) = ( f1(t1, . . . , tn), f2(t1, . . . , tn), . . . , fm(t1, . . . , tn)).

Proposition 1.3.8 The following conditions are equivalent to each other.
(i) f is a frontal in the sense of Definition 1.2.5.
(ii) Ker{(dft )∗ : f ∗T∗(Km, b) → T∗(Kn, a)} has a smooth section ν : (Kn, a) →

f ∗T∗(Km, b) \ (zero-section).
(iii) There exists a smooth map-germ ν = (ν1, ν2, . . . , νm) : (Kn, a) → Km \ {0}

such that ν1 df1 + ν2 df2 + · · · + νm dfm = 0.

In the condition (ii), df : TtKn → Tf (t)K
m is the differential of f at t,

f ∗T∗(Km, b) := {(t, α) | t ∈ (Kn, a), α ∈ T∗
f (t)K

m is the pull-back bundle ofT∗(Km, b)
by f and the dual (dft )∗ of df is defined by (df )∗(x, α) := (x, α ◦ df ).
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Proof of Proposition 1.3.8. The condition (iii) is equivalent to that

ν1
∂ f1
∂t1
+ ν2

∂ f2
∂t1
+ · · · + νm ∂ fm

∂t1
= 0,

ν1
∂ f1
∂t2
+ ν2

∂ f2
∂t2
+ · · · + νm ∂ fm

∂t2
= 0,

· · · · · · · · ·

ν1
∂ f1
∂tn
+ ν2

∂ f2
∂tn
+ · · · + νm ∂ fm

∂tn
= 0,

or, to that

(ν1, ν2, . . . , νm)

©«

∂ f1
∂t1

∂ f1
∂t2

· · · ∂ f1
∂tn

∂ f2
∂t1

∂ f2
∂t2

· · · ∂ f2
∂tn

...
... · · ·

...
∂ fm
∂t1

∂ fm
∂t2

· · · ∂ fm
∂tn

ª®®®®®®®¬
= (0, . . . , 0),

for some ν = (ν1, . . . , νm) : (Kn, a) → Km \ {0}. Thus we see (ii) and (iii) are
equivalent.

The condition (iii) is a rewrite of the condition (i), f̃ being ( f , [ν]). □

Now we recall the notion of contact structures in a generalised sense.

Definition 1.3.9 (Generalised contact distribution [121, 122, 123, 124]). Let M be
a manifold of dimension m. Suppose n ≤ m. Let W = Gr(n,T M) be the Grassmann
bundle with the projection π : W = Gr(n,T M) → M . The fibre of π is given by the
Grassmannian Gr(n,Km) consisting of K-linear subspaces of dimension n in Km.
Note that dimK Gr(n,Km) = n(m − n) and dim(W) = n(m − n) + m. The contact
distribution D ⊂ TW is defined by, for any (x,V) ∈ W,V ⊂ TxM, dim(V) = n,

D(x,V ) := (dπ)−1(V) = {v ∈ T(x,V )W | (dπ)(v) ∈ V} ⊂ T(x,V )W .

Note that D is a subbundle of TW of corank m − n and of rank n(m − n + 1).

To simplify the story, consider the case M = Km. Decompose Km = Kn ×Km−n.
Let Ω be the open subset of Gr(n,TKm) consisting of tangential n-planes V such
that the projection of V to the former component Kn in Km = Kn × Km−n is a
K-isomorphism. Then V ∈ Ω is regarded as the graph of a K-linear map TxK

n →
TyK

m−n for some (x, y) ∈ Kn × Km−n = Km, and Ω is identified with the 1-jet
space J1(Kn,Km−n) = Kn × Km−n × Kn(m−n). Taking the system of coordinates on
Ω ⊂ Gr(n,TKm), x1, . . . , xn, y1, . . . , ym−n, pi j (1 ≤ i ≤ m − n, 1 ≤ j ≤ n), we set

αi := dyi −
∑n

j=1 pi jdxj, (1 ≤ i ≤ m − n).

Then the contact distribution is given by the Pfaff system

D : α1 = 0, α2 = 0, . . . , αm−n = 0.
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Lemma 1.3.10 Let f : N → M be a frontal map. Then for any a ∈ N , there exists
an open neighbourhood U of a ∈ N and smooth vector fields X1, . . . Xn : U → T M
along f |U such that they are linearly independent point-wise on U and df (TtN) ⊂
⟨X1(t), . . . , Xn(t)⟩K for any t ∈ U.
Proof Let a ∈ N and f̃ : U → Gr(n,T M) be an integral map covering f (Legendre
lift) on a neighbourhood U of a. We write Vt := f̃ (t) ⊂ Tf (t)M . After a linear change
of coordinates of M , we may suppose Va is mapped isomorphically to Kn by the
projection to the first n-components. Then so is Vt for any t ∈ U, after shrinking U
if necessary. Then there exists a frame (X1, . . . Xn) of Vt of the form

X1 =
∂

∂x1
+

m∑
j=2

aj1(t)
∂

∂xj
, X2 =

∂

∂x2
+

m∑
j=3

aj1(t)
∂

∂xj
, . . . , Xn =

∂

∂xn
+

m∑
j=n+1

ajn(t)
∂

∂xj
.

where aji(t) are smooth function on U. □
Example 1.3.11 (1) Any immersion is a frontal. In that case, the Legendre lift is given
by f̃ (t) := Tt f (TtKn), the image of the differential map Tt f : TtKn → Tf (t)K

m.
(2) When n = m, namely when the dimension of source equals to that of target,
any map-germ (Kn, a) → (Kn, b) is a frontal. In fact the Legendre lift is given by
f̃ (t) := Tf (t)K

n.
(3) Any constant map-germ is a frontal. In fact we can take any lift f̃ of f .
(4) Any wavefront (Kn, a) → (Kn+1, b), that is a Legendre projection of a Legendre
submanifold in Gr(n,TKn+1) = PT∗Kn+1, is a frontal. The inclusion of the Legendre
submanifold is regarded as the Legendre lift f̃ .
Example 1.3.12 (Singularities of tangent surfaces to curves). Let γ : (K, a) → Km

be a smooth curve-germ in the affine space Km. The curve-germ γ is called of type
L = (ℓ1, ℓ2, ℓ3, . . . , ), (1 ≤ ℓ1 < ℓ2 < ℓ3 < · · · ), if

γ(t) = (tℓ1, tℓ2 + · · · , tℓ3 + · · · , . . . )

for a system of affine coordinates of Km centred at γ(a) and a smooth coordinate t
of (K.a) centred at a. Then the velocity vector of γ is given by

γ′(t) = (ℓ1tℓ1−1, ℓ2tℓ2−1 + · · · , ℓ3tℓ3−1 + · · · , · · · ),

and the tangent line to γ at t is given by γ(t)+ s 1
ℓ1t

ℓ1−1 γ
′(t) using an affine parameter

s. Note that, if ℓ1 ≥ 2, then γ′(t) vanishes at t = 0, i.e. at a. Therefore we divide by
ℓ1tℓ1−1 to get a limiting direction vector 1

ℓ1t
ℓ1−1 γ

′(t).
The tangent surface Tan(γ) : (K, a) × K → Km of γ is defined as the ruled

surface generated by tangent lines along the curve, i.e.

Tan(γ)(t, s) := γ(t) + s
1

ℓ1tℓ1−1 γ
′(t).

The parametrisation of tangent surface depends on the choice of coordinate t, direc-
tion vector and affine coordinates of Km. The tangent surface turns to be a frontal.
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In fact a Legendre lift T̃an(γ) is given by the planes spanned by

X1(t) =
1

ℓ1tℓ1−1 γ
′(t), X2(t) =

ℓ1

ℓ2(ℓ2 − ℓ1)tℓ2−ℓ1−1 X ′
1(t),

at Tan(γ)(t, s).
Then it is known that the singularity of Tan(γ) is uniquely determined by the

type L and called cuspidal edge (CE) if L = (1, 2, 3, . . . ), folded umbrella (FU) or
cuspidal cross cap (CCC) if (1, 2, 4), swallowtail (SW) if (2, 3, 4), Mond (MD) or
cuspidal beaks (CB) if (1, 3, 4), Shcherbak (SB) if (1, 3, 5), cuspidal swallowtail (CS)
if (3, 4, 5), open folded umbrella (OFU) if (1, 2, 4, 5, . . . ), open swallowtail (OSW) if
(2, 3, 4, 5, . . . ), open Mond (OMD) or open cuspidal beaks (OCB) if (1, 3, 4, 5, . . . )
(see [56]).

Note that the classification in the paper [56] is performed over the real, i.e. in C∞

case. However the same proofs work over the complex analytic case.

Remark 1.3.13 In the real case, there is an equivalent definition to the above definition
of frontals: f : (Rn, a) → (Rm, b) is a frontal if and only if there exists a system of
smooth orthonormal vector fields ν1, . . . , νm−n : (Rn, a) → TRm along f such that

νi(t) · f∗(TtRn) = 0, (1 ≤ i ≤ m − n),

for any t ∈ (Rn, a) (for some, or equivalently, for any Riemannian metric on (Rm, b)).
In other words, f is frontal if and only if, there exists a system of smooth vector fields
V1, . . . ,Vn : (Rn, a) → TRm along f , which are linearly independent point-wise, and
satisfy that, any t ∈ (Rn, a),

f∗(TtRn) ⊂ ⟨V1(t), . . . ,Vn(t)⟩R (⊂ Tf (t)R
m).

1.3.3 Stability of general frontals

Ler f : (Kn, A) → (Km, b) be a frontal.

Definition 1.3.14 A deformation F : (Kn × Kr, A × {0}) → (Km, b) of f , F(t, u) =
fu(t), f0 = f , is called a frontal deformation, similarly to the case m = n + 1, if
there exists a lift F̃ : (Kn × Kr, A × {0}) → Gr(n,TKm),

Gr(n,TKm)

π

��
(Kn × Kr, A × {0})

F
//

F̃

66mmmmmmmmmmmmm
Km,

satisfying ( fu)∗(TtKn) ⊂ f̃u(t), for any (t, u) ∈ Kn × Kr nearby A × {0}. Here
F̃(t, u) = f̃u(t).
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A germ of frontal f : (Kn, A) → (Km, b) is called frontally stable if any frontal
deformation F : (Kn × Kr, A × {0}) → (Rm, b) of f is trivialised: i.e. there exist
diffeomorphisms

Σ : (Kn × Kr, A × {0}) → (Kn × Kr, A × {0}), Σ(t, u) = (σu(t), u),

T : (Km × Kr, (b, 0)) → (Km × Kr, (b, 0)),T(x, u) = (τu(x), u),
such that (T ◦ (F, idRr ) ◦ Σ)(t, u) = ( f (t), u), or equivalently, τu ◦ fu ◦ σu = f .

The characterisation of frontal stability of frontal curves is given directly as
follows.

Proposition 1.3.15 Let f : (K, a) → (Km, b),m ≥ 2 be a frontal curve-germ. Then
f is frontally stable if and only if f is right-left equivalent to t 7→ (t, 0) (immersion)
or t 7→ (t2, t3, 0, . . . , 0) (embedded cusp).

Proof Suppose that f is frontally stable. It is clear that f is immersion, then f is
frontally stable. Suppose f is not an immersion. Up to right-left equivalence, we may
suppose f : (K, 0) → (Km, 0) and 2 ≤ ord0 f1 < ord0 fi(i = 2, . . . ,m). Since f is a
frontal curve, there exists pi : (K, 0) → (K, 0) such that f ′i (t) = p(t) f ′1 (t). Consider
any deformation F1(t, u) of f1(t) and Pi(t, u) of pi(t) with F1(0, u) = 0, Pi(0, u) =
0, u ∈ (K, 0). Then we have a frontal deformation F(t, u) of f (t) which is defined by

Fi(t, u) :=
∫ t

0
P(s, u)∂F1

∂s
(s, u), (i = 2, . . . ,m).

In particular take F1 and Pi such that, for any (t, u) sufficiently near (0, 0) and for
fixed u , 0, there exists a critical point t0 of F1(t, u) and moreover any critical point
t0 of F1(t, u), dF1

dt (t0) = 0 is non-degenerate d2F1
dt2 (t0) , 0. Moreover take Pi such that

(F1(t, u), P2(t, u), . . . , Pm(t, u)

is an immersion. The existence of such a deformation is guaranteed by Thom’s
transversality theorem for K = R and by Bertini’s type theorem for K = C, for
instance. Then, for any critical point t0 of F1(t, u), there exist a coordinate t centred
at t0 and a system of coordinates (x1, . . . , xm) centred at F(0, u) such that F1(t, u) = t2

and, for some i, 2 ≤ i ≤ m, Fi(t, λ) has a Taylor expansion at t = 0 like Fi(t, u) =
a0t2 + a1t3 + higher order terms, with a0, a1 ∈ K, a1 , 0. Then it can be proved
that F(·, u) is left equivalent to t 7→ (t2, t3, 0, . . . , 0). In the case K = R, we use
Malgrange-Mather preparation theorem if necessary ([17, 92]). Thus we have that
the original f must be right-left equivalent to t 7→ (t2, t3, 0, . . . , 0) by the frontal
stability condition, provided f is not immersive. The proof that the embedded cusp
germ is actually frontally stable will be given by the above argument. We omit here
the details, which is left to the readers. (See also [55]). □
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We give an formulation on infinitesimal frontal stability of frontal-germs in gen-
eral case.

Here we recall some materials on natural liftings of differential forms to tangent
bundle for the basic on Legendre stability or frontal stability.

Let W = Gr(n,TKm) be the Grassmann bundle with the projection π : W =

Gr(n,TKm) → Km. Then we define the natural lifting D̃ ⊂ T(TW) of the contact
distribution D ⊂ TW locally by

D̃ : α̃1 = 0, α̃2 = 0, . . . , α̃m−n = 0.

using the natural lifting of the Pfaff system defining D,

D : α1 = 0, α2 = 0, . . . , αm−n = 0.

See Proposition 1.2.24.
For the system of local coordinates

x1, . . . , xn, y1, . . . , ym−n, pi j ; Ûx1, . . . , Ûxn, Ûy1, . . . , Ûym−n, Ûpi j

on the tangent bundle TW of W = Gr(n,TKm), we have

α̃i = d ©«yi −
n∑
j=1

pi j Ûxj
ª®¬ +

n∑
j=1

Ûxjdpi j −
n∑
j=1

Ûpi jdxj .

We explain infinitesimal integral and frontal deformations in general case.

Definition 1.3.16 A vector field ṽ : (Kn, A) → TW = TGr(n,TKm) along a map-
germ ℓ = f̃ : (Kn, A) → W = Gr(n,TKm) is called integral if ṽ is D̃-integral, i.e.,
ṽ∗(TtKn) ⊂ D̃ṽ(t).

Let ℓ : (N, A) → W be a map-germ to W with the (generalised) contact structure
D ⊂ TW . Let D be defined by α1 = 0, . . . , αm−n = 0 locally around f (A). Then we
set, as similarly as in the case m = n + 1,

V Iℓ := {ṽ : (N, A) → TW | ṽ is a D̃-integral vector field along ℓ}
= {ṽ : (N, A) → TW | ṽ∗α̃i = 0, i ≤ i ≤ m − n, π ◦ ṽ = ℓ},

where π : TW → W is the natural bundle projection and α̃i is the natural lifting of
αi . We call V Iℓ the space of infinitesimal integral deformations of ℓ.

A vector field v : (Kn, A) → TKm along a frontal map-germ f : (Kn, A) →
(Km, b) is called an infinitesimal frontal deformation of f if v lifts to an infinites-
imal integral deformation ṽ of a Legendre lift f̃ of f , i.e. ṽ ∈ V I f̃ . We denote by V fr

f
the space of infinitesimal frontal deformations of f .

Here we present the natural generalisation on Mather’s type characterisation of
the frontal stability in the general case.
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Theorem 1.3.17 (Infinitesimal characterisation of frontal stability II). Let f : N =
(Kn, A) → M = (Km, b), (m ≥ n+ 2) be a frontal map-germ of corank ≤ 1. Then the
following conditions are equivalent to each other:

(i) f is frontally stable.
(ii) V I f̃ = t f̃ (VN )+w f̃ (V LW, f̃ (b), for any Legendre lift f̃ : N → W = Gr(n,TKm)

of f .
(iii) f is a proper frontal and V I f̃ = t f̃ (VN )+w f̃ (V LW, f̃ (b)), for unique Legendre

lift f̃ : N → W = Gr(n,TKm) of f .
(iv) f is a proper frontal and V fr

f ⊂ t f (VN ) + w f (VM ).

Here we introduce several notions and give an outline of the proof for Theorem
1.3.17.

Definition 1.3.18 A germ of vector field X over W is a (generalised) contact vector
field if X generates contactomorphisms of (W,D), i.e. LXD ⊆ D. Let b ∈ Km and
b̃ ∈ W with π(b̃) = b. We denote by VC

W,b̃ the set of germs of contact vector fields
over (W, b̃). A contact vector filed X ∈ VC

W,b̃ is called a Legendre vector field
if X is π-lowerable, i.e. if there exists a vector field η over M = (Km, b) such that
dπ((X)(w)) = η(π(w)) for any w ∈ (W, b̃). The set of Legendre vector fields over
(W, b̃) is denoted by V L

W,b̃ .

Given a function-germ h : (Km, b) → K, we define Hamilton vector fields
X = Xi,h, 1 ≤ i ≤ m − n, over (Km, b) by

Xi,h := h
∂

∂yi
+

n∑
j=1

(
∂h
∂xj
+

m−n∑
k=1

∂h
∂yk

pik

)
∂

∂pi j
.

Then it can be proved that Xi,h is a contact vector field and ⟨αk, Xi,h⟩ = δkih.
Compare with the explanation after Definition 1.2.29.

Define the OKm,b-module structure of VC
W,b̃ by

h ∗ X := (h ◦ π)X +
m−n∑
i=1

⟨αi, X⟩
(
Xi,h − hXi,1

)
.

Here we present several preliminary results.

Lemma 1.3.19 ([101]) Let f : (Kn, A) → (Km, b) be a proper frontal map-germ
with the Legendre lift f̃ . Then the linear map dπ : V I f̃ → Vf defined dπ(̃v) = dπ ◦ ṽ
is injective. If f is of corank ≤ 1, then dπ(V I f̃ ) = V fr

f . In particular dπ givens a
linear isomorphism between V I f̃ and V fr

f .

The proof of Lemma 1.3.19 is similarly established as that of Lemma 1.2.35
supposing f itself is of corank ≤ 1. Also we have

Lemma 1.3.20 Suppose f : (Rn, A) → (Rm, b) is a frontal of corank ≤ 1. Then, for
any v ∈ V I f̃ , there exist a frontal deformation F : (Kn × K, A × 0) → Km of f and
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an integral deformation F̃ : (Kn × K, A × 0) → W = P(T∗Kn+1) of f̃ covering F
such that d

du fu
��
u=0 = v. □

We have that, by Lemma 1.3.19, f is infinitesimally frontally stable if and only
if f̃ is infinitesimally integrally stable. Moreover it can be proved that f is frontally
stable if and only if f̃ is Legendre stable, and then, by Lemma 1.2.36, f (resp. f̃ )
must be infinitesimally frontally stable (resp. infinitesimally frontally stable).

Then the proof of Theorem 1.3.17 is completed by using the following: For an
unfolding F = ( f̃u, u) : N × J → W × J, u ∈ J = (K, 0), we set

V IF/J = {v : N × J → TW | vu ∈ V I f̃u , u ∈ J}.

If ( f̃u) is an integral deformation of f̃ , then we have (d f̃u/du)u∈J ∈ V IF/J . We
define an OW×J -module structure on V IF/J by

au ∗ vu = ( f̃ ∗u au) · vu +
m−n∑
i=1

⟨αi, vu⟩(Xi,au − au · Xi,1) ◦ f̃u,

for vu ∈ V IF/J, au ∈ OW×J , using Hamilton vector fields Xi,au of au . Let f̃ be
finite and of corank at most one. Then it can be proved that the quotient V IF/J is
a finite OW×J -module. We define tF/J : VN → V IF/J by ξ 7→ (t f̃u(ξ))u∈J and
wF/J : VW → V IF/J by η 7→ (w f̃u(η))u∈J . We set

SF/J = V IF/J/((wF/J)(VHW ) + (tF/J)(VN )),

which is an OW×J -module, and set

S f̃ = V I f̃ /(w f̃ (V LW ) + t f̃ (VN )),

which is an OW -module. Then we have:

Lemma 1.3.21 ([55]) The quotient SF/J/mJSF/J is isomorphic to S f̃ as an OW -
modules. □

Proof of Theorem 1.3.17. Let f be a frontal map-germ of corank ≤ 1. First note
that, if a frontal f is frontally stable, then f must be a proper frontal, i.e. the singular
locus S( f ) is nowhere dense. Actually, using notions in the next section, any front
of corank ≤ 1 is an opening of a germ g : (Rn, A) → (Rn, c) of corank ≤ 1. Take
any deformation of g, say, a stable deformation gu of g with nowhere dense singular
locus. Then (gu, u) lifts to an opening (Gu, u) : (Rn, A) → Rm with G0 = f . The
germ Gu is a proper frontal. and f must be right-left equivalent to the germ of Gu at
some multi-point of Rn. Thus f must be a proper frontal.

Then we have the implications (i) ⇒ (iii) ⇒ (ii), (i) ⇒ (iv) and (iii) ⇔ (iv).
Therefore it is enough to show that (ii) ⇒ (i).

Now if f̃ is infinitesimally integrally stable, then S f̃ = 0 and then, by Lemma
1.3.21, we have mJSF/J = SF/J , and then, by Nakayama’s Lemma, we have SF/J = 0,
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i.e. V IF/J = ((wF/J)(VHW ) + (tF/J)(VN )). This means that any integral defor-
mation f̃u of f̃ is recovered by deformations of infinitesimal Legendre equivalences
(ξu, η̃u) such that

d
du

f̃u = w( f̃u)(η̃u) − t( f̃u)(ξu).

By integrating on u, we have that f̃ is Legendre stable and f is frontally stable for
1-parameter deformation. The case of arbitrary number of parameters follows from
the triviality of 1-parameter deformations. □

Example 1.3.22 Here are the list of frontally stable frontals in low dimensions.
n = 1,m ≥ 2. f : (K, a) → (Km, b) is frontally stable if and only if f is right-left

equivalent to t1 7→ (t1, 0, . . . , 0) or (t2
1, t

3
1, 0, . . . , 0).

n = 2,m = 4. If f : (K2, a) → (K4, b) is frontally stable and of corank ≤ 1,
then f is right-left equivalent to (regular germ) : (t1, t2) 7→ (t1, t2, 0, 0), (cuspidal
edge) : (t1, t2) 7→ (t1, t2

2, 0, t3
2 ), or (open swallowtail) : (t1, t2) 7→ (t1, t3

2 + t1t2, 3
4 t4

2 +
1
2 t1t2

2,
3
5 t5

2 +
1
3 t1t3

2 ).

1.3.4 An algebraic characterisation of frontals

Here we present a simple criterion of frontality in the general case. It suffices to treat
the case of mono-germs (cf. Remarks 1.2.8, 1.3.6).

Denote by Γ the set of subsets I ⊆ {1, 2, . . . ,m} with #(I) = n. For a map-germ
f : (Kn, a) → (Km, b), n ≤ m and I ∈ Γ, we set DI = det(∂ fi/∂tj)i∈I,1≤ j≤n. Then
Jacobi ideal Jf of f is defined as the ideal generated in Oa = OKn,a by all n-minor
determinants DI (I ∈ Γ) of Jacobi matrix Jf of f . Then we have:

Proposition 1.3.23 (Criterion of frontality [61]). Let f : (Kn, a) → (Km, b) be a
map-germ. If f is a general frontal, then the Jacobi ideal Jf of f is principal. In fact
Jf is generated by DI for some I ∈ Γ. Conversely, if Jf is principal and the singular
locus

S( f ) = {t ∈ (Kn, a) | rank(Tt f : TtKn → Tf (t)K
m) < n}

of f is nowhere dense in (Kn, a), then f is a general frontal.

Because of the importance of Proposition 1.3.23, we will repeat the proof here.

Proof of Proposition 1.3.23. Let f be a frontal and f̃ a Legendre lift of f . Take I0 ∈ Γ
such that f̃ (a) projects isomorphically by the projectionKm → Kn to the components
belonging to I0. Let (pI )I ∈Γ be the Plücker coordinates of f̃ . Then pI0 (a) , 0. This
implies that for any I ∈ Γ, there exists hI ∈ Oa such that DI = hI DI0 . Set λ = DI0 .
Then the Jacobi ideal Jf is generated by λ.

Conversely suppose Jf is generated by one element λ ∈ Oa. Since Jf is generated
by λ, we have that there exists kI ∈ Oa for any I ∈ Γ such that DI = kIλ. Since
λ ∈ Jf , there exists ℓI ∈ Oa for any I ∈ Γ such that λ =

∑
I ∈Γ ℓI DI . Therefore
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(1 − ∑
I ∈Γ ℓI kI )λ = 0. Suppose (ℓI kI )(a) = 0 for any I ∈ Γ. Then 1 − ∑

I ∈Γ ℓI kI is
a unit and therefore λ = 0. Thus we have Jf = 0. This contradicts to the assumption
that S( f ) is nowhere dense. Hence there exists I0 ∈ Γ such that (ℓI0 kI0 )(a) , 0. Then
kI0 (a) , 0. Therefore Jf is generated by DI0 . Hence DI = hI DI0 for any I ∈ Γ with
hI0 (a) = 1. Then the Legendre lift f̃ on Kn \ S( f ) extends to (Kn, a), which is given
by Plücker coordinates (hI )I ∈Γ. □

Similarly we have

Proposition 1.3.24 Let F : (Kn × Kr, (a, 0)) → (Km, b), F(t, u) = ( fu(t), u) be a
deformation of a mono-germ of mapping. Then F is a frontal deformation of a frontal
map-germ if and only if the Jacobi ideal J generated by n-minor determinants of
Jacobi matrix JtF = (∂( fu)i/∂tj) of F on t = (t1, . . . , tn) is a principal (= with a
single generator) ideal J = ΛOt,u in Ot,u for some Λ ∈ Ot,u .

The function Λ : (Kn × Kr, (a, 0)) → K is uniquely determined up to PK-
equivalence ([77]). We call Λ = ΛF Jacobian of the frontal deformation F.

1.4 Openings

1.4.1 Jacobi modules, ramification modules and openings

Now, as the key constructions to study frontals generally, we would like to introduce
the notion of openings of multi-germs of mappings. An origin of the notion of
openings can be found in author’s earlier work [48]. By this notion of openings we
can treat arbitrarily codimensional “frontals” uniformly. To do this, first we recall
auxiliary notions according to the paper [57]. We start with an example.

Example 1.4.1 There is a sequence of well-known singularities of map-germs: The
Whitney cusp f : (K2, 0) → (K2, 0), f (t, u) = (t3 + ut, u), the swallowtail F :
(K2, 0) → (K3, 0), F(t, u) = ( f (t, u), t4 + 2

3 ut2), and the open swallowtail F̃ :
(K2, 0) → (K4, 0), F̃(t, u) = (F(t, u), t5 + 4

9 ut3).
They have the same singular locus and the same kernel field of the differential

along the singular locus, while the self-intersections are resolved.

We are then led to ask the natural question: What is the common algebraic
structure behind these singularities?

Definition 1.4.2 Let f : (Kn, A) → (Km, b) be a multi-germ of a smooth map with
n ≤ m. We define the Jacobi module Jf of f by

Jf = {
m∑
j=1

pj dfj | pj ∈ OKn,A (1 ≤ j ≤ m) } ⊂ Ω1
Kn,A

in the space Ω1
Kn,A of differential 1-form-germs on (Kn, A).
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f

F

F~

As for the notations, we distinguish Jf from the Jacobi matrix J f and the Jacobi
ideal Jf which appeared in previous sections §1.2 and §1.3.

Note that Jf is the first order component of the graded differential ideal J •
f in

Ω•
Kn,A generated by df1, . . . , dfm. Then the singular locus, the non-immersive locus,

of f is given by
S( f ) = {t ∈ (Kn, A) | rank Jf (t) < n}.

Also we consider the kernel field Ker( f∗ : TKn → TKm) of the differential of f ,
along Σ f . Note that Ker( f∗) is a subset-germ of (TKn,TKn |A).

For another map-germ f ′ : (Kn, A) → (Km′
, b′), n ≤ m′, if Jf ′ = Jf , then

S( f ′) = S( f ) and Ker( f ′∗ ) = Ker( f∗).

Definition 1.4.3 The ramification module R f of f is defined by R f = {h ∈ OKn,A |
dh ∈ Jf } (cf. ([49, 52, 61]).

It is shown that R f is an OKm,b-module. Moreover R f is a C∞ or an analytic ring
in the sense of if g1, . . . , gk ∈ R f and h ∈ OKk,g(A) then h(g1, . . . , gk) ∈ R f , where
g = (g1, . . . , gk).

Remark 1.4.4 In the case n > m, the module R f was studied by Moussu, Tougeron
(see [99]), related to the characterisation of composite differentiable functions and
structure of relative de Rham cohomologies of map-germs. In the case n ≤ m, the
module R f appears in singularity theory in symplectic and contact geometries. Also
we remark that a closed related ring R0 f was introduced and studied already by
David Mond in [97] from a different motivation.

Lemma 1.4.5 For map-germs f : (Kn, A) → (Km, b), f ′ : (Kn, A) → (Km′
, b′), we

have that Jf ′ = Jf if and only if R f ′ = R f .
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Proof It is clear that Jf ′ = Jf implies R f ′ = R f . Conversely suppose R f ′ = R f .
Then any component f ′j of f ′ belongs to R f ′ = R f , hence df ′j ∈ Jf . Therefore
Jf ′ ⊆ Jf . By the symmetry we have Jf ′ = Jf . □

We mention several properties on the introduced notions.

Lemma 1.4.6 Let f : (Kn, A) → (Km, b) be a map-germ. Then we have
(1) f ∗OKm,b ⊆ R f ⊆ OKn,A.
(2) R f is an OKm,b-submodule via f ∗ : OKm,b → OKn,A of OKn,A.
(3) If τ : (Km, b) → (Km, b′) is a diffeomorphism-germ, then Rτ◦ f = R f . If σ :
(Kn, A′) → (Kn, A) is a diffeomorphism-germ, then R f ◦σ = σ∗(R f ).
(4) R f is a C∞-subring of OKn,A in the case K = R.

For the notion of C∞-rings, see [48] for instance.

Proof of Lemma 1.4.6.
The assertions (1) and (2) follow from that, if h ∈ R f and dh =

∑m
j=1 pjdfj , then

d{(k ◦ f )h} =
m∑
j=1

{
(k ◦ f )pj + h

(
∂k/∂yj

)}
dfj .

The assertion (3) follows from that Jτ◦ f = Jf and Jf ◦σ = σ∗(Jf ). The assertion
(4) follows from that, if h1, . . . , hr ∈ R f and if τ : Rr → R is a C∞ function, then

d{τ(h1, . . . , hr )} =
r∑
i=1

∂τ

∂yi
(h1, . . . , hr ) dhi ∈ Jf .

□

Lemma 1.4.7 Let f : (Kn, A) → (Km, b) be a map-germ with A = {a1, . . . , ar }. We
denote by fi : (Kn, ai) → (Km, b) the restriction of f to (Rn, ai). ThenR f �

∏r
i=1 R fi

as Ob-module.

Proof We have the isomorphism φ : R f → ∏r
i=1 R fi defined by φ(h) =

(h|(Rn,ai ))ri=1. □

Definition 1.4.8 Let f : (Kn, A) → (Km, b) be a map-germ. Given h1, . . . , hr ∈ R f ,
the map-germ F : (Kn, A) → Km×Kr = Km+r defined by F = ( f1, . . . , fm, h1, . . . , hr )
is called an opening of f . Then f is called a closing of F.

Openings of map-germs appear as typical singularities in several problems of
geometry and its applications. They appear also in the classification problem of
“tangent varieties” [56][58]. Open swallowtails, open folded umbrellas, etc. appear
as tangent varieties. We have applied opening constructions to solve the “stable”
classification problem of tangent varieties to generic submanifolds in [58]. Moreover
openings are related to singularities of isotropic mappings in symplectic spaces. See
§1.5.1.
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Example 1.4.9 Consider Whitney cusp map f : (K2, 0) → (K2, 0) of the form
f (t, u) = (t3 + ut, u). For the swallowtail F(t, u) = (t3 + ut, u, t4 + 2

3 ut2), we
have that

d(t4 +
2
3

ut2) = 4
3

t d(t3 + ut) − 4
9

t2 du ∈
⟨
d(t3 + ut), du

⟩
O2
.

Therefore t4 + 2
3 ut2 ∈ R f and the swallowtail is an opening of Whitney cusp map.

For the open swallowtail F̃(t, u) = (t3 + ut, u, t4 + 2
3 ut2, t5 + 4

9 ut3), we have that

d(t5 +
4
9

ut3) = 5
3

t2 d(t3 + ut) − 10
9

t3 du ∈
⟨
d(t3 + ut), du

⟩
O2
.

Therefore the open swallowtail is an opening of the swallowtail and of Whitney cusp
map as well.

Note that an opening of an opening of f is an opening of f . We have

Lemma 1.4.10 For any opening F of f , we have RF = R f , JF = Jf , S(F) = S( f )
and Ker(F∗) = Ker( f∗). □

Let g : (Kn, A) → (Kn, c) be a map-germ and f = (g, h1, . . . , hr ) : (Kn, A) →
Kn×Kr = Km,m = n+r, be an opening of g. Let F = ( fu) : (Kn×Kk, A×0) → Km,
F(t, u) = (G(t, u),H1(t, u), . . . ,Hr (t, u)) be a deformation of f . Then we have

Lemma 1.4.11 The deformation F is a frontal deformation of f if and only if
H1, . . . ,Hr ∈ R(G,u). □

1.4.2 Versal openings

Definition 1.4.12 An opening F = ( f , h1, . . . , hr ) of f is called a versal opening
(resp. a mini-versal opening) of f : (Kn, A) → (Km, b), if 1, h1, . . . , hr form
a system (resp. a minimal system) of generators of R f as an OKm,b-module via
f ∗ : OKm,b → OKn,A.

Note that a versal opening of an opening of f is a versal opening of f . An opening
of a versal opening of f is a versal opening of f .

A mini-versal opening F : (Kn, A) → Km+r of f is unique up to left-equivalence
and a versal opening G : (Kn, A) → Km+s of f is left-equivalent to a mini-versal
opening composed with an immersion (Kn, A) → Km+r ↪→ Rm+s (Corollary 1.4.18).

A map-germ f : (Kn, A) → (Km, b) is called finite if OKn,A is a finite OKm,b-
module via f ∗. The condition is equivalent to that dimK OKn,A/( f ∗mKm,b)OKn,A <
∞ by Nakayama’s lemma (see for example [17]). Moreover f is finite if and only if
f is K-finite ([118]).

Proposition 1.4.13 Suppose f : (Kn, A) → (Km, b) is finite. In the C∞ case, K = R,
we assume f is of corank at most one. Then we have
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(1) R f is a finite OKm,b-module. Therefore there exists a versal opening of f .
(2) 1, h1, . . . , hr ∈ R f generate R f as OKm,b-module if and only if they generate the
vector space R f /( f ∗mKm,b)R f over K.

Proof (1) In the complex case, since OCn,A is a finite OKm,b-module, R f is an
OKm,b-submodule of OCn,A and OKm,b is Noetherian, we have that R f is a finite
OKm,b-module.

In the real case of mono-germs, the assertion is proved in Theorem 1.3 of [50]
and Corollary 2.4 of [52]. For the case of multi-germs, the assertions are reduced to
the case that A consists of a point.

(2) follows from Nakayama’s lemma. □

Example 1.4.14 Let us consider the following five map-germs: f : (K2, 0) →
(K2, 0), g : (K2, 0) → (K3, 0), h : (K2, 0) → (K3, 0), k : (K2, 0) → (K2, 0), ℓ :
(K2, 0) → (K2, 0) defined by

f (t, s) = (t, s2), g(t, s) = (t, ts, s2), h(t, s) = (t2, ts, s2),

k(t, s) = (t2, s2), ℓ(t, s) = (t2 − s2, ts).

Then we have
Rk ⊊ Rh ⊊ Rg, Rℓ ⊊ Rh, R f ⊊ Rg .

In fact

Jf = ⟨dt, sds⟩O2, Jg = ⟨dt, tds, sds⟩O2, Jh = ⟨tdt, tds + sdt, sds⟩O2,

Jk = ⟨tdt, sdt⟩O2, Jℓ = ⟨tdt − sds, sdt + tds⟩O2 .

Then it can be proved that R f is minimally generated by 1, s3 over f ∗O2, Rg is mini-
mally generated by 1, s3 over g∗O3, and Rh is minimally generated by 1, t3, t2s, ts2, s3

over h∗O3. Moreover it can be proved that Rk is minimally generated by 1, t3, s3, t3s3

over k∗O2 and that Rℓ is minimally generated by 1, t3 − 3ts2, 3t2s − s3, t2(t2 + s2)2
over ℓ∗O2.

By Proposition 1.4.13, we have

Corollary 1.4.15 Let f : (Kn, A) → (Km, b) be finite and of corank at most one.
Then there exists a versal opening of f . □

Moreover we have the following:

Corollary 1.4.16 Let f : (Kn, A) → (Km, b) be finite and of corank at most one.
Then an opening F = ( f , h1, . . . , hr ) of f is a mini-versal opening of f , namely,
1, h1, . . . , hr ∈ R f form a minimal system of generators of R f as Ob-module if and
only if they form a basis of K-vector space R f /( f ∗mb)R f .

The following is useful for the classification problem of map-germs in a geometric
context ([56][58]).
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Proposition 1.4.17 Let f : (Kn, A) → (Km, b), n ≤ m be a smooth map-germ.
(1) For any versal opening F : (Kn, A) → (Km+r, F(A)) of f and for any opening

G : (Kn, A) → (Km+s,G(A)), there exists an affine bundle map Ψ : (Km+r, F(A)) →
(Km+s,G(A)) over (Km, b) such that G = Ψ ◦ F.

(2) For any mini-versal openings F : (Kn, A) → (Km+r, F(A)) and F ′ :
(Kn, A) → (Km+r, F ′(A)) of f , there exists an affine bundle isomorphism Φ :
(Km+r, F(A)) → (Km+r, F ′(A)) over (Km, b) such that F ′ = Ψ ◦F. In particular, the
diffeomorphism class of mini-versal opening of f is unique.

(3) Any versal openings F ′′ : (Kn, A) → (Km+s, F ′′(A)) of f is diffeomorphic to
(F, 0) for a mini-versal opening F of f . □

Two map-germs F : (Kn, A) → (Kp, B) and G : (Kn, A) → (Kq,C) is called L-
equivalent, or, left-equivalent, if there exists a diffeomorphism-germ Ψ : (Kp, B) →
(Kq,C) such that G = Ψ ◦ F.

Then, by Proposition 1.4.17, we have:

Corollary 1.4.18 Let f : (Kn, A) → (Km, b) be a smooth map-germ (n ≤ m). Then
a mini-versal opening of f is unique up to L-equivalence. A versal opening of f is
L-equivalent to a mini-versal opening composed with an immersion. □

As for a geometric property, we show injectivity of versal openings.

Proposition 1.4.19 (Corollary 1.2 of [50], Proposition 2.16 [57]) Let f : (Kn, A) →
(Km, b) be a finite map-germ. Suppose F : (Kn, A) → (Km+r, F(A)) is a versal
opening of f . Then F has an injective representative.

Proof First we reduce Proposition 1.4.19 to the case of mono-germs.
Let A = {a1, . . . as}. Suppose each restriction F |(Kn,ai ) for i = 1, 2, . . . , s is

injective. Then we show that F is injective. Suppose F is not injective. Then F |A
must be not injective. In fact, suppose F is injective and F |A is not injective. Then
there exists i , j with F(ai) = F(aj). We take v , 0 ∈ Km+r and take a map-germ
Fi : (Kn, A) → (Km, Fi(A)) which coincides with F near aj and F + v near ai . Since
Fi is an opening of f , and F is a versal opening of f , we must have Fi = g ◦ F
for a function g ∈ OKm+r ,F(A). Then Fi(ai) = g(F(ai)) = g(F(aj)) = Fi(aj), while
Fi(ai) = F(ai)+ v = F(aj)+ v , F(aj) = Fi(aj), which leads a contradiction. (See
Proposition 1.4.17 (1)).

Second we treat mono-germs in holomorphic case, K = C, following [50]. Sup-
pose that f is a mono-germ f : (Cn, a) → (Cm, b). Let us take sufficiently small
neighbourhoods U of a in Cn, V of b in Cm and a representative f : U → V of the
germ f which is proper and finite-to-one and f −1(b) = {a} in U. Define the sheaf
R f over U, for any open subset U ′ ⊂ U, by

R f (U ′) := {h ∈ OU′ | for any x ∈ U ′, dhx ∈
m∑
i=1

OCm,xdfix}.
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Let Ω1
U be the sheaf of holomorphic differential forms on U and JU the sheaf

of OU -submodules generated by df1, . . . , dfm (cf. Definition 1.4.2). Consider the
quotient sheaf Ω1

U/IU . Then both Ω1
U and Ω1

U/IU are coherent OU -modules. By
Grauert’s finite coherence theorem ([41, 42]), f∗(Ω1

U ) and f∗(Ω1
U/IU ) are coherent

OV -modules. Using the exterior differential, define d : f∗(OU ) → f∗(Ω1
U/IU ) by

d(h) := [dh], the residue class of dh. Then d turns out to be an OV -homomorphism.
In fact we have

d((k ◦ f )h) =
s∑
j=1

( ∂k
∂yj

◦ f )h dfj + (k ◦ f )dh ≡ (k ◦ f )dh, mod.JU .

Moreover we have that f∗(R f ) = Ker(d) and that f∗(R f ) is a coherent OV -module.
Set F = ( f , h1, . . . , hr ), a versal opening of f . Then 1, h1, . . . , hr generate f∗(R f )b

over Ob . Since f∗(R f ) is a coherent OV -module, we have that 1, h1, . . . , hr generate
f∗(R f )V over OV , if we shrink U,V if necessary. Then we have, for y ∈ V , that

f∗(R f )y = {h ∈ OCn, f −1(y) | dh ∈
m∑
i=1

OCn, f −1(y)dfi}

contains the stalk of push-forward f∗CU at y, where CU is the constant sheaf over U.
Therefore h1, . . . , hr separate points of f −1(y). Hence the representative F : U →
Cm+r is injective. This proves Proposition 1.4.19 in the complex case.

Lastly we treat mono-germs in real C∞ case,K = R, following [57] with additional
technical modifications. Suppose that f is a mono-germ f : (Rn, a) → (Rm, b).
Assume the versal opening map-germ F : (Rn, a) → (Rm+r, F(a)) of f has no
injective representative. Take any representative F : Rn → Rm+r . Then there must
be a sequence of points bi in Rm+r which tends to b̃ = F(a) when i → ∞, and a1

i , a
2
i

in Rn which tend to a respectively when i → ∞, such that F(a1
i ) = F(a2

i ) = b̃i . We
may suppose b̃i , b̃j if i , j. Take a C∞ function h onRm+r such that (1) the support
of h is a disjoint union of small balls Bi centred at b̃i , i = 1, 2, . . . . We define C∞

functions hi on Rm+r such that hi = h|Bi and hi = 0 outside of Bi . Then we impose,
by modifying the functions hi if necessary, that (2)

∑ℓ
i=1 hi and each of its partial

derivative converges uniformly to h when ℓ → ∞. Note that such a function h must
be flat at b̃, i.e., all partial derivatives vanish at b̃. Take the C∞ function k = F∗h on
Rn. Since F is finite, the support of k is a disjoint union of compact neighbourhoods
W1

i of a1
i and W2

j of a2
i , possibly with other additional compact set. Modify the

function k to k ′ such that the support of k ′ equals that of k, k ′ coincides with k on
W1

i and k ′ = F ◦h′ on W2
i for some C∞ function h′ onRm+r with the same properties

(1),(2) as above and with h′(bi) , h(bi) for each i. We set k ′ identically 0 outside of
W1

i and W2
i . Define K1

i (resp. K2
i ) by K1

i (x) = hi ◦F(x) (x ∈ W1
i ), 0 (otherwise) (resp.

K2
i (x) = h′

i ◦ F(x) (x ∈ W2
i ), 0 (otherwise)). Then K1

i ,K
2
i are C∞ functions and the

sequence
∑ℓ

i=1(K1
i + K2

i ) and all partial derivatives converge to k ′ uniformly when
ℓ → ∞. Therefore we have that k ′ is C∞. Moreover if we set aj(x) := ∂h

∂yj
◦F(x) (x ∈

W1
i ),

∂h′

∂yj
◦ F(x) (x ∈ W2

i ), 0 (otherwise), then it can be shown, similarly as for k ′,
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that each aj is a C∞ function on Rn and dk ′ =
∑m+r

j=1 ajdFj . Thus we see that k ′

belongs to RF = R f . Further we have k ′(a1
i ) , k ′(a2

i ) for any i = 1, 2, . . . . Consider
the opening ( f , k ′) : (Rn, a) → (Rm+1, (b, 0)) of f . Since F is a versal opening of f ,
we have ( f , k ′) is a composite mapping of F. Since F(a1

i ) = F(a2
i ), we must have

k ′(a1
i ) = k ′(a2

i ). This leads a contradiction and we complete the proof of Proposition
1.4.19. □

We recall the notion of unfolding of map-germs ([92]).

Definition 1.4.20 Let f : (Kn, A) → (Km, b) be a multi-germ of map. An un-
folding of f is a map-germ F : (Kn+ℓ, A × {0}) → (Km+ℓ, (b, 0)) of form
F(x, u) = (F1(x, u), u) and F1(x, 0) = f (x), for (x, u) ∈ (Kn+ℓ, A × {0}).

For another unfolding G : (Kn+ℓ, A × {0}) → (Km+ℓ, (b, 0)) of f , F and G are
called isomorphic as unfoldings if there exist an unfolding Σ : (Kn+ℓ, A × 0) →
(Kn+ℓ, A × 0) of the identity map on (Kn, A) and an unfolding T : (Km+ℓ, (b, 0)) →
(Km+ℓ, (b, 0)) of the identity map on (Km, b) such that G ◦ Σ = T ◦ F.

Proposition 1.4.21 (Unfoldings and openings) Let f : (Kn, A) → (Km, b) be a
smooth map-germ and F : (Kn+ℓ, A × {0}) → (Km+ℓ, (b, 0)) be an unfolding of f .
Let i : (Kn, A) → (Kn+ℓ, A × {0}) be the inclusion, i(x) = (x, 0). Then we have:

(1) i∗RF ⊂ R f .
(2) If f is of corank ≤ 1 with n ≤ m, then i∗RF = R f . If 1,H1, . . . ,Hr generate

RF via F∗, then 1, i∗H1, . . . , i∗Hr generate R f via f ∗.

Proof For the mono-germ case the assertions are proved in Proposition 1.6 of [50],
Lemma 2.4 of [51]. Here we present the proof for the general case: (1) is clear. (2)
Let H ∈ RF . Then dH ∈ JF . Hence d(i∗H) = i∗(dH) ∈ i∗JF ⊂ Jf . Therefore
i∗H ∈ R f . Let f be of corank at most one. Suppose h ∈ R f . Then dh =

∑m
j=1 ajdfj

for some aj ∈ Oa. There exist Aj, Bk ∈ O(a,0) such that i∗Aj = aj and the 1-
form

∑m
j=1 Ajd(F1)j +

∑ℓ
k=1 Bkdλk is closed (cf. Lemma 2.5 of [52]). Then there

exists an H ∈ O(a,0) such that dH =
∑m

j=1 Ajd(F1)j +
∑ℓ

k=1 Bkdλk ∈ JF and
d(i∗H) = i∗(dH) = dh. Then there exists c ∈ R such that h = i∗H + c = i∗(H + c),
and H + c ∈ RF . Therefore h ∈ i∗RF . Since i∗ is a homomorphism over j∗ :
O(b,0) → Ob , where j : (Rm, 0) → (Rm+ℓ, 0) is the inclusion j(y) = (y, 0), we have
the consequence. □

Definition 1.4.22 An unfolding F : (Kn+ℓ, A × {0}) → (Km+ℓ, (b, 0)) of a map-
germ f : (Kn, A) → (Km, b) is called extendable if i∗RF = R f for the inclusion
i : (Kn, A) → (Kn+ℓ, A × {0}).

By Proposition 1.4.21, we have:

Corollary 1.4.23 ([52]) If corank of f is at most one, then any unfolding of f is
extendable. □
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In §1.4.3, we will see that there exist non-extendable unfoldings for map-germs of
corank ≥ 2. Therefore the opening constructions do not behave well under unfoldings
in general.

We will describe versal openings in the case of corank (kernel rank) one explicitly.
It is sufficient to treat the case of mono-germs, namely, germs f : (Kn, 0) → (Km, 0)
of corank one. Moreover, by Corollary 1.4.23, it is sufficient to treat the case that f
is stable, namely, f is a Morin map.

We present the normal forms of Morin maps. Let k ≥ 0,m ≥ 0 and consider
variables t, λ = (λ1, . . . , λk−1), µ =

(
µi j

)
1≤i≤m,1≤ j≤k and polynomials

F(t, λ) = tk+1 +

k−1∑
i=1

λj t j, Gi(t, µ) =
k∑
j=1

µi j t j, (1 ≤ i ≤ m).

Then the normal forms of Morn maps f : (Kk+km, 0) → (Km+k+km, 0) is given by

f (t, λ, µ) := (F(t, λ),G(t, µ), λ, µ).

For ℓ ≥ 0, we denote by F(ℓ),Gi(ℓ) the polynomials

F(ℓ)(t, λ) =
∫ t

0
sℓF(s, λ)ds, Gi (ℓ)(t, µ) =

∫ t

0
sℓGi(s, µ)ds.

Then we have

Proposition 1.4.24 (Theorem 3 of [49]) The ramification module R f of the Morin
map f is minimally generated over f ∗Om+k+km by the 1 + k + (k − 1)m elements

1, F(1), . . . , F(k), G1 (1), . . . , G1 (k−1), . . . , Gm (1), . . . , Gm (k−1).

The map-germ F : (Rk+mk, 0) → (Rm+k+km × Rk+(k−1)m, 0) = (R2(k+km), 0) defined
by

F =
(
f , F(1), . . . , F(k),G1 (1), . . . ,G1 (k−1), . . . ,Gm (1), . . . ,Gm (k−1)

)
is a mini-versal opening of f . □

Remark 1.4.25 It is shown in [36, 49] moreover that F is an isotropic map for a
symplectic structure on R2(k+km). □

In particular we have:

Lemma 1.4.26 Let ℓ be a positive integer and F = (F1(t, u), u) : (Rn, 0) → (Rn, 0)
an unfolding of f : (K, 0) → (K, 0), f (t) = F1(t, 0) = tℓ . Suppose H1, . . . ,Hr ∈
RF ∩mn. Then 1,H1, . . . ,Hr generate RF via F∗ if and only i∗H1, . . . , i∗Hr generate
mℓ+1

1 /m2ℓ
1 . In particular F1(1), . . . , F1(ℓ−1) form a system of generators of RF via F∗

over On.
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Proof It is easy to show that R f = R+m
ℓ
1 . By Proposition 1.4.13 (2), 1,H1, . . . ,Hr

generate RF as On-module via F∗ if and only if they generate RF/F∗(mn)RF over
R. Since RF/F∗(mn)RF � (R + mℓ

1)/( f ∗m1)(R + mℓ
1) � m

ℓ+1
1 /m2ℓ

1 , we have the
consequence. □

Now let f : (Rn, A) → (Rm, b) be a finite real analytic map-germ. Remember
that, in this survey, we denote by ORn,A (resp. ORm,b) the R-algebra of C∞-function-
germs at (Rn, A) (resp. (Rm, b). Then we denote by Oω

Rn,A (resp. Oω
Rm,b

) the germ of
sheaf of real analytic functions on (Rn, A) (resp. (Rm, b)). Besides with R f , here we
consider the sheaf

Rω
f := {h ∈ Oω

Rn,A | dh ∈ ⟨df1, . . . , dfm⟩Oω
Rn ,A

}

and the direct image f∗(Rω
f
) as Oω

Rm,b
-module. Then it can be proved that, in

particular, f∗(Rω
f
) is a finite Oω

Rm,b
-module. Thus we have that f∗(Rω

f
) is gen-

erated over Oω
Rm,b

by some 1, h1, . . . , hr ∈ Rω
f

. Moreover it can be proved that
F = ( f , h1, . . . , hr ) : (Rn, A) → (Rm+r, b × h(A)) is injective (See [50], Proposition
1.4.19).

Then we show the following

Proposition 1.4.27 Let f : (Rn, 0) → (Rm, 0) be a finite analytic mono map-germ.
Suppose 1, h1, . . . , hr generate Rω

f
over Oω

Rm,0 via f ∗ : Oω
Rm,0 → Oω

Rn,0. Then
1, h1, . . . , hr generate R f over ORm,0 via f ∗ : ORm,0 → ORn,0. That is, analytic
generators become C∞ generators.

Proof First we may suppose hi(0) = 0, (1 ≤ i ≤ r). Then we remark that the opening

F = ( f1, . . . , fm, h1, . . . , hr ) : (Rn, 0) → (Rm+r, 0)

of f is injective.
Let Fp stand for the R-algebra of formal functions on (Rn, p), and set F̃n =∏
p∈(Rn,0) Fp . Then F̃ is faithfully flat over On (Cor. 4.13 of [91]). Define the formal

counterpart

R̃ f = {(ĥp)p∈(Rn,0) ∈ F̃n | dhp ∈ ⟨d f̂1,p, . . . , d f̂n,p⟩Fp
, p ∈ (Rn, 0)}

of R f . Then 1, h1, . . . , hr generate R̃ f over F̃m. Then, since F is injective, we have
R f ⊆ F∗Om+r by Gleaser’s type theorem (see [13]). Since F is an opening, we have
R f = F∗Om+r

Let π : (Rm+r, 0) → (Rm, 0) be the projection. Then π∗ : Om → Om+r is the
inclusion. Then regard F∗Om+r as an Om+r -module via F∗. By the preparation
theorem, 1, h1, . . . , hr generate F∗Om+r = R f as Om-module via F∗ ◦ π∗ = f ∗ if
1, h1, . . . , hr generate F∗Om+r/( f ∗mm)F∗Om+r over R. We will show

m
∞
n ∩ F∗Om+r ⊆ ( f ∗mm)F∗Om+r .



42 Goo Ishikawa

Set h =
∑m

i=1 f 2
i : (Rn, 0) → (R, 0). Since f is finite, h−1(0) = {0}, and moreover,

the norms of 1/h and its partial derivatives up to say ℓ are estimated from above
1/∥x∥α for some α = α(ℓ) > 0.

Now let k ∈ m∞
n ∩ F∗Om+r . Then k/h is regarded as a C∞ function on (Rn, 0)

and an element of m∞
n (see [91]). Moreover k/h ∈ F∗Om+r . Then

k = (
m∑
i=1

f 2
i )(k/h) =

m∑
i=1

fi( fik/h) ∈ ( f ∗mm)F∗Om+r .

Let h ∈ R f again. Then

h ≡ a0 ◦ f + a1 ◦ f · h1 + · · · + ar ◦ f · hr
≡ a0(0) + a1(0)h1 + · · · + ar (0)hr,

modulo ( f ∗mm)F∗Om+r +m
∞
n ∩ F∗Om+r ⊆ ( f ∗mm)F∗Om+r .

Thus we see 1, h1, . . . , hr generate F∗Om+r/( f ∗mm)F∗Om+r over R, and they
generate R f over ORm,0 via f ∗. □

Remark 1.4.28 By a theorem by Bierstone and Milman([13]), we have the following

Lemma 1.4.29 Suppose R f is formally generated by Rω
f

, namely, if, for any k ∈ R f

and for x ∈ (Rn, A), k̂x ∈ ⟨1, ĥ1, . . . , ĥr ⟩ f̂ ∗FRm, f (x)
. Then R f = ⟨1, h1, . . . , hr ⟩ f ∗ORm,b

and F = ( f , h1, . . . , hr ) is a versal opening of f . □

We can utilise both Lemma 1.4.29 and a direct method for the construction
concrete generators of R f and therefore for the construction of versal openings.

1.4.3 The cases of corank ≥ 2

The existence of versal openings of a smooth map-germ of corank ≥ 2 is still open.
One of the difficulties lies on the fact that if corank( f ) ≥ 2, then the restriction
of a versal opening of an unfolding of f is not necessarily a versal opening of f .
That phenomenon was observed already in [37, 52]. We utilise Proposition 1.4.27 if
necessary to treat the following examples.

Lemma 1.4.30 (cf. Example 1.4.14.) Let f : (K2, 0) → (K2, 0), f (t, s) = ( 1
2 t2, 1

2 s2) =
(z,w). Then R f is minimally generated by 1, t3, s3, t3s3 over f ∗OK2,0. Therefore if we
set F : (K2, 0) → (K5, 0) by

F(t, s) = (1
2

t2,
1
2

s2, t3, s3, t3s3),

then F is the mini-versal opening of f .

Here we give a concrete method to find the minimal generators as above.
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Proof Let h ∈ OK2,0 = O2. Then by the preparation theorem we have

h ≡ (a ◦ f )t + (b ◦ f )s + (c ◦ f )ts,mod. f ∗O2.

The condition that h ∈ R f is equivalent to that dh belongs to Jacobi module Jf .
Now assume that h ∈ R f . Then we calculate

dh ≡ (a ◦ f )dt + (b ◦ f )ds + (c ◦ f )(sdt + tds),mod.Jf ,

and set
(a ◦ f )dt + (b ◦ f )ds + (c ◦ f )(sdt + tds) = Atdt + Bsds,

for some function A, B ∈ O2. Again by the preparation theorem, we put

A = (a1 ◦ f ) + (a2 ◦ f )t + (a3 ◦ f )s + (a4 ◦ f )ts,
B = (b1 ◦ f ) + (b2 ◦ f )t + (b3 ◦ f )s + (b4 ◦ f )ts.

Then
At = (a1 ◦ f )t + (a2 ◦ f )t2 + (a3 ◦ f )ts + (a4 ◦ f )t2s
= 2(za2) + a1t + 2(za4)s + a3 ts,

Bs = (b1 ◦ f )s + (b2 ◦ f )ts + (b3 ◦ f )s2 + (b4 ◦ f )ts2

= 2(wb3) + 2(wb4)t + b1s + b2ts.

omitting “◦ f ”, where z = 1
2 t2 and w = 1

2 s2. Then we have

a + cs = 2za2 + a1t + (2za4)s + a3ts,
b + ct = 2wb3 + 2(wb4) + b1s + b2ts.

and therefore

(a − 2za2) + (−a1)t + (c − 2za4)s + (−a3)ts = 0,
(b − 2wb3) + (c − 2wb4)t + (−b1)s + (−b2)ts = 0.

Since O2 is free over f ∗O2 in this example, we have

a = 2za2, a1 = 0, c = 2za4, a3 = 0, b = 2wb3, c = 2wb4, b1 = 0, b2 = 0.

Therefore wb4 = za4 and hence b4 is divisible by z, and we can write b4 = zk(z,w)
for some function k ∈ O2. Then we have that a4 = wk(z,w) and that

h ≡ (2za2 ◦ f )t + (2wb3 ◦ f )s + (2zwk ◦ f )ts,mod. f ∗O2.

Thus we find a minimal system of generators 1, 2zt, 2ws, 2zwts, namely 1, t3, s3, t3s3

of R f over f ∗O2. □

Similarly we find the mini-versal openings in the following three cases. For details
see [57].

Lemma 1.4.31 Let g : (K3, 0) → (K3, 0) be a map-germ defined by
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g(t, s, u) = (z,w, u) = (1
2

t2 + us,
1
2

s2 + ut, u),

which is an unfolding of f in Example 1.4.30. Then Rg is minimally generated over
g∗OK3,0 by 1 and ψ3 = t3 + s3 + 3tsu, ψ5,0

5 = t5 + 5t3su − 12t2u3 + 9su4, ψ0,5
5 =

s5 + 5ts3u − 12s2u3 + 9tu4, ψ3,3
6 = t3s3 − 12t2s2u2 − 11t3u3 − 11s3u3 − 12tsu4. □

Therefore i∗Rg ⊊ R f , where i : (K2, 0) → (K3, 0), i(t, s) = (t, s, 0), and we see
that g is not an extendable unfolding of f .

The versal opening of g is given by G : (K3, 0) → (K7, 0) = (K3 × K4, 0),

G(t, s, u) = (g(t, s, u), t3 + s3 + 3tsu, t5 + 5t3su − 12t2u3 + 9su4,

s5 + 5ts3u − 12s2u3 + 9tu4, t3s3 − 12t2s2u2 − 11t3u3 − 11s3u3 − 12tsu4).

Then
G(x, y, 0) = (1

2
t2,

1
2

s2, t3 + s3, t5, s5, t3s3)

is not a versal opening of f = ( 1
2 t2, 1

2 s2). Note that the element ψ3 gives a Lagrange
immersion of type D+4 , which is a Lagrange stable lifting of g. Other elements are
obtained by operating lowerable vector fields of g to ψ3.

Lemma 1.4.32 (Hyperbolic case). Let h : (K4, 0) → (K4, 0) be the stable map-germ

h(t, s, λ, µ) = (z,w, λ, µ) = (1
2

t2 + sλ,
1
2

s2 + tµ, λ, µ).

of K-class I2,2 (V of [93], see also [108]). Then Rh is minimally generated over
h∗OK4,0 by 1 and φ4 = t3µ + s3λ + 3tsλµ, φ3,2

5 = t3s2 − 2t2sλµ + tλ2µ2, φ2,3
5 =

t2s3−2ts2λµ+ sλ2µ2, φ5,0
5 = t5+5t3sλ+15sλ3µ, φ0,5

5 = s5+5ts3µ+15tλµ3, φ6 =

t3s3 − 3tsλ2µ2.
We have the mini-versal opening H : (K4, 0) → (K4 × K6, 0) = (K10, 0) of h by

H = (h, φ4, φ
3,2
5 , φ2,3

5 , φ5,0
5 , φ0,5

5 , φ6).

□

Then we observe

j∗Rh ⊊ Rg(⊊ OK3,0), ( j ◦ i)∗Rh ⊊ i∗Rg ⊊ R f (⊊ OK2,0),

where j : (K3, 0) → (K4, 0), j(x, y, u) = (x, y, u, u). Thus the unfolding h of f is not
extendable, which is also not extendable regarded as an unfolding of g as well.

Similarly we have the following.

Lemma 1.4.33 (Elliptic case.) Let k : (K4, 0) → (K4, 0) be the stable map-germ
given by

k(t, s, λ, µ) = (1
2
(t2 − s2) + λt + µs, ts + µt − λs, λ, µ),
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ofK-class I I2,2. ThenRk is minimally generated over k∗O4 by 1 and ρ4, ρ
3,2
5 , ρ2,3

5 , ρ5,0
5 , ρ0,5

5 , ρ6,
where

ρ = a1t + a2s + 1
2 a3(t2 + s2),

a1 = 2zA1 + 2wA2 + (− 3
2λ

3 − 3
2λµ

2 − 3zλ − 3wµ)A3 + (− 3
2λ

2µ − 3
2 µ

3 − 3zµ + 3wλ)B3,

a2 = −2wA1 + 2zA2 + ( 3
2λ

2µ − 3
2 µ

3 + zµ − wλ)A3,+( 3
2λ

3 + 3
2λµ

2 − zλ − 3wµ)B3,

a3 = −λA1 − µA2 + (z − 1
2λ

2 + 1
2 µ

2)A3 + (w − λµ)B3,

and ρ = ρ4, ρ
3,2
5 , ρ2,3

5 , ρ5,0
5 , ρ0,5

5 , ρ6 respectively for (A1, A2, A3, B3) = (λ, µ, 0, 0), (0, z−
3
2λ

2+ 3
2 µ

2, 0, 3λ), (0,w−3λµ,−3λ, 0), (z− 3
2λ

2+ 3
2 µ

2, 0, 0,−3µ), (w−3λµ, 0, 3µ, 0), (0, 0, z−
3
2λ

2 + 3
2 µ

2,w − 3λµ)). □

From the above results, combined with known classification of stable germs
K4 → K4 of corank 2 under right-left equivalence [40], we have the following

Theorem 1.4.34 Any stable mono-germ (K4, a) → (K4, b), and therefore any stable
multi-germ (K4, A) → (K4, b) has a versal opening. □

1.5 Other topics

1.5.1 Relation to symplectic geometry

The notion of openings, studied in the previous section, has a close relation also to
the singularity theory on “isotropic” map-germs in a symplectic space (see [37, 38,
55, 64, 65, 66]).

In classical mechanics, the canonical one-form, or Liouville one form θ and the
symplectic two-formω = dθ on the cotangent bundle over a configuration space play
basic roles [1]. For the canonical coordinates p1, . . . , pn; x1, . . . , xn on the cotangent
bundle T∗Km of Km, θ and ω are given by

θ =

m∑
i=1

pidxi, ω =

m∑
i=1

dpi ∧ dxi .

Recall that a smooth map-germ L : (Kn, A) → T∗Km = K2m is called isotropic
if L∗ω = 0. Moreover if n = m, L is called a Lagrange map. We denote by In,m
(resp, Ln) the set of all isotropic (resp. Lagrangian) map-germs (Kn, A) → T∗Km.
If L ∈ In,m, then L∗ω = 0, so d(L∗θ) = 0. Then there exists a function-germ e :
(Km, A) → K such that de = L∗θ =

∑m
i=1(pi ◦ L)d(xi ◦ L). Note that e is determined

up to an addition of locally constant functions. We set f = (x1 ◦ L, . . . , xm ◦ L) :
(Kn, A) → Km and recall the ramification module
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R f := {h ∈ O(Kn,0) | dh =
n∑
i=1

aidfi, for some ai ∈ O(Kn,A), 1 = 1, 2, . . . , n}.

Then e ∈ R f . Therefore ( f , e) is an opening of f . See §1.4.1. Recall that, if the locus
of immersion Reg( f ) of f is dense in Kn near A, then ( f , e) : (Kn, A) → Km+1 is a
proper (fair) frontal.

Note that, for a smooth map-germ f : (Kn, A) → (Km, b), R f is equal to the set
of generating functions of isotropic liftings (Kn, A) → T∗Km of f .

Example 1.5.1 (1) Define L : (K2, 0) → T∗K2 by

L(u, v) = (x1 ◦ L, x2 ◦ L, p1 ◦ f , p2 ◦ L) = (u, v2 + uv,−1
2
v2, v)

Then L is a Lagrangian immersion and e = 3
4v

4 + 1
2 uv2 is a generating function of

L.
(2) Define L : (K2, 0) → T∗K2 by

L(u, v) = (u, v2 + uv,− 3
10

v5 − 1
6

uv3,
3
4
v4 − 1

2
uv2).

Then L is a Lagrangian map-germ and is called the open swallowtail, which is
introduced by Arnol’d ([4]).

Suppose n = m. Then The Grassmann lift (Legendre lift) of ( f , e) is given by
(L, e) : (Kn, A) → T∗Kn × K. The mapping (L, e) is called a Legendrisation of L.
For example the Legendrisation of a open Whitney umbrella is a Legendre lift of the
folded umbrella.

Let T∗Km = K2m be the 2m-dimensional symplectic space with coordinates
x1, . . . , xm; p1, . . . , pm such that symplectic form ω =

∑m
i=1 dpi ∧ dxi . A multi-

germ of mapping L : (Kn, A) → T∗Km = K2m is called isotropic if L∗ω =∑m
i=1(pi ◦ L)d(xi ◦ L) = 0. Then, since L∗ω = 0, we have that

∑m
i=1(pi ◦ L)d(xi ◦ L)

is closed, so it is exact by Poincaré’s lemma, and therefore there exists e ∈ OKn,A

such that

de =
m∑
i=1

(pi ◦ L)d(xi ◦ L).

Set f : (Kn, A) → Km by f (x) = (x1◦L(x), . . . , xm◦L(x)). Then e ∈ R f . Conversely,
given e ∈ R f , we have de =

∑m
i=1 aidfi for some functions a1, . . . , am ∈ OKn,A, and

we obtain an isotropic multi-germ L : (Kn, A) → K2m by defining pi◦L = ai, xi◦L =
gi, (1 ≤ i ≤ m). Thus we obtain, associated to L, an opening ( f , e) : (Kn, A) → Km+1

of f from L. Moreover ( f , e) has the Legendre lift (L, e) : T∗Km × K ⊂ PT∗Km+1

and ( f , e) is a frontal. We call (L, e) a Legendrisation of L. For example, associated
to open Whitney umbrella L : (K2, 0) → T∗K2 ([52]), we obtain the folded umbrella
and its Legendre lift called the open folded umbrella appears also as a “frontal-
symplectic singularity”[63].
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Here we make clear the relation of generalised frontals and openings with a
generalisation of symplectic geometry, which is called poly-symplectic geometry
([11, 12, 54]).

Let M be a manifold of dimension m. For a positive integer k, consider the
Whitney sum

T∗(k)M := T∗M ⊕ · · · ⊕ T∗M → M,

endowed with the system of closed 2-forms ωi = dθi , 1 ≤ i ≤ k, where θi is the Li-
ouville 1-form on the i-th factor. Given a system of local coordinates x1, . . . , xm on M ,
we have the system of local coordinates x1, . . . , xm ; p11, . . . , p1m ; . . . ; pk1, . . . , pkm,
on T∗(k)M . Then θi =

∑m
j=1 pi jdxj and ωi =

∑m
j=1 dpi j ∧ dxj .

A smooth mapping φ : N → T∗(k)M from an n-dimensional manifold N with
k = m − n is called isotropic if φ∗ωi = 0, 1 ≤ i ≤ r . If we take the universal
covering ρ : Ñ → N of N , then there exist functions ei : Ñ → K such that
dei = (φ ◦ ρ)∗θi, 1 ≤ i ≤ r . We define the graph of φ by f = (π ◦ φ ◦ ρ, e1, . . . ek) :
Ñ → M ×Kk =: W . If Σ( f ) is nowhere dense in M̃ , then f is frontal: The Legendre
lift is given by

f̃ = (φ ◦ ρ, e) : N −→ T∗(r)M × Kk ↪→ Gr(n,T M).

We compare equivalence relations for isotropic mappings, integral mappings and
frontal mappings.

Two isotropic mappings φ, φ′ : N → T∗(k)M are called Lagrange equivalent
if there exist diffeomorphisms σ : N → N and τ : T∗(k)M → T∗(k)M such that
τ∗ωi = ωi, 1 ≤ i ≤ r, τ covers a diffeomorphism τ : M → M with respect to
π : T∗(k)M → M , and that τ ◦ φ = φ′ ◦ σ.

Two integral mappings L, L ′ : N → T∗(k)M ×Kk are called s-Legendre equiva-
lent if there exist diffeomorphisms σ : N → N and τ̃ : T∗(k)M ×Kk → T∗(k)M ×Kk

such that τ preserves the canonical distribution and the fibration Π : T∗(k) × Kk →
M × Kk and that τ̃ ◦ L = L ′ ◦ σ.

Two frontal mappings f , f ′ : N → M × Kk are called s-equivalent if there
exist diffeomorphisms σ : N → N and κ : M × Kk → M × Kk of the form
κ(y, z) = (τ(y), z + ρ(y)), and that κ ◦ f = f ′ ◦ σ.

Then we are naturally led to the following, the proof of which is left to the readers.
See also [76].

Proposition 1.5.2 Let φ : N → T∗(k)M be an isotropic mapping with nowhere dense
singular set Σ(π ◦ φ). Then the following conditions are equivalent to each other:
(1) Isotropic mappings φ and φ′ : N → T∗(r)M are Lagrange equivalent.
(2) Legendre lifts f̃ , f̃ ′ : Ñ → T∗(r)M × Kk are s-Legendre equivalent.
(3) Frontal mappings f , f ′ : M̃ → M × Kk are s-equivalent. □
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1.5.2 Frontal jets

In this subsection, we present some unpublished joint works with K. Hashibori. The
details will be given in a forthcoming paper.

Recall that two map-germs f , g : (Kn, 0) → (Km, 0) are said to define the same
r-jet if they have the same partial derivatives at 0 up to order ≤ r . The equivalence
class of f is called an r-jet of f at 0 and written by jr f (0).

Let Jr (n,m) denote the space of r-jets of map-germs (Kn, 0) → (Km, 0).

Definition 1.5.3 A jet z ∈ Jr (n,m), n ≤ m is called a frontal jet if there exists a
frontal f : (Kn, 0) → (Km, 0) such that z = jr f (0).

Let Lr (n) denote the real algebraic group consisting of r-jets of diffeomorphism-
germs on (Kn, 0). Then the group Lr (n) × Lr (m) acts on Jr (n,m) by

( jrσ(0), jrτ(0))( jr f (0)) := jr (τ ◦ f ◦ σ−1)(0),

which induces Ar -equivalence on Jr (n,m).
The property that a germ is frontal, is invariant under the right-left equivalence,

however the frontality condition for a germ is “transcendental", i.e. not finitely
determined by its jet, provided the germ is not immersive.

Proposition 1.5.4 Let f : (Kn, 0) → (Kn+1, 0) be a frontal of corank 1 and s ∈ N.
Suppose f is non-immersive. Then there exist r ∈ N and a smooth map-germ
g : (Kn, a) → (Kn+1, b) such that s ≤ r , jrg(a) = jr f (a) and that g is not a frontal.

Proof We may suppose that f : (Kn, 0) → (Kn+1, 0), f = (t1, . . . , tn−1, h(t), k(t)),
∂h
∂tn

(0) = 0 and that ∂k
∂tn

∈ ∂h
∂tn

On. Since dimK On/ ∂h
∂tn

On = ∞, there exists a
monomial function ℓ(t) of degree ≥ s such that ℓ < ∂h

∂tn
On. Then, by taking a

monomial m(t) with ∂m
∂tn
= ℓ, we may put g = (t1, . . . , tn−1, h, k + m), which is not a

frontal. □

Example 1.5.5 Recall that a smooth map-germ f : (K2, 0) → (K3, 0) is called a
cuspidal edge if f is right-left equivalent to the germ (u, v) 7→ (u, 1

2v
2, 1

6v
3).

Since d( 1
6v

3) = 1
2v

2dv and d( 1
2v

2) = vdv, we can take (ν1, ν2, ν3) = (0,− 1
2v, 1).

Therefore any cuspidal edge is a front. Moreover g = (u, 1
2v

2, 1
6v

3 + cur−1v) is not
a frontal for any r ≥ 2 and c , 0.

In what follows in this subsection, we treat only the case n = 2,m = 3. First we
observe

Lemma 1.5.6 (1) Any 1-jet is a frontal jet.
(2) Any jet z ∈ Jr (2, 3) of corank 0 i.e. immersive jet is a frontal jet. Moreover any
germ f with jr f (0) = z is a frontal. (z is “absolutely frontal".)
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Proof (1) Any 1-jet is realised by a linear map, which is a frontal. (2) states simply
that any immersion is a frontal. □

By simple calculations we have

Proposition 1.5.7 2-jets of corank 1 in J2(2, 3) are classified up to A2-equivalence
into the following 4-classes: j2(u, v, 0)(0), j2(u, 1

2v
2, 0)(0), j2(u, uv, 0)(0), and

j2(u, 1
2v

2, uv)(0) : Whitney umbrella. □

A 2-jet z ∈ J2(2, 3) of corank 1 is a frontal jet if and only if z is not A2-equivalent
to that of Whitney umbrella.

Whitney umbrella.

Proposition 1.5.8 Let z = j3 f (0) ∈ J3(2, 3). Suppose j2 f (0) is A2-equivalent to
j2(u, 1

2v
2, 0)(0) (2-jet of space fold). Then z is A3-equivalent to

j3(u, 1
2v

2, 0)(0) : frontal,
j3(u, 1

2v
2, 1

6v
3)(0) : 3-jet of cuspidal edge, frontal,

j3(u, 1
2v

2, 1
2 u2v)(0) : non-frontal, or

j3(u, 1
2v

2, 1
6v

3 ± 1
2 u2v)(0) : 3-jet of Mond’s S±

1 ([96]), non-frontal. □

Bifurcation from Mond’s S+1 to Mond’s S−
1 .

Let z = jr f (0) ∈ Jr (2, 3), f (u, v) = ( f1(u, v), f2(u, v), f3(u, v)). We set, for i, j ∈
{1, 2, 3},

λi j := fiu fjv − fiv fju .

Note that the (r − 1)-jet of λi j depends only on r-jet z of f .

Lemma 1.5.9 Let z = j2 f (0) ∈ J2(2, 3) = R15 be a jet of corank 1. Then z is
a frontal jet if and only if there exists a permutation (i, j, k) of (1, 2, 3) such that(
λi juλikv − λi jvλiku

)
(0) = 0. □

Lemma 1.5.10 Let z = j2 f (0) ∈ J2(2, 3) be a jet of corank 2. Then z is a frontal jet
if and only if ������ f1uu f1uv f1vv

f2uu f2uv f2vv
f3uu f3uv f3vv

������ (0) = 0
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□

Definition 1.5.11 A 2-jet z ∈ J2(2, 3) is called a space fold 2-jet if z isA2-equivalent
to j2(u, 1

2v
2, 0)(0).

Proposition 1.5.12 A 2-jet z ∈ J2(2, 3) is a space fold 2-jet if and only if
there exists a permutation (i, j, k) of (1, 2, 3) such that

(
fiuλi jv − fivλi ju

)
(0) ,

0,
(
λi juλikv − λi jvλiku

)
(0) = 0,

Let f = ( f1, f2, f3) : (K2, p) → K3 be a smooth map-germs. we put, for i, j ∈
{i, 2, 3}, λi j := fiu fjv − fiv fju .

Proposition 1.5.13 Let z = j3 f (0) ∈ J3(2, 3). Suppose j2 f (0) is A2-equivalent to
j2(u, 1

2v
2, 0)(0) (space fold 2-jet). Then the 3-jet z is a frontal jet if and only if there

exists a permutation (i, j, k) of (1, 2, 3) such that(
λi jvλikuλi juv + λ

2
i jvλikuu + λi juλikvλi juv + λ

2
i juλikvv

)
(0)

=
(
λi jvλikvλi juu + 2λi juλi jvλikuv + λi juλikuλi jvv

)
(0)

□

We set ηi = − fiv ∂
∂u + fiu ∂

∂v .
By rewriting Kokubu-Rossman-Saji-Umehara-Yamada’s recognition theorem of

cuspidal edges ([85]), we have

Proposition 1.5.14 Let f : (K2, 0) → K3 be a frontal-germ. Then f is a cuspidal
edge, i.e. right-left equivalent to the (K2, 0) → (K3, 0), (u, v) 7→ (u, 1

2v
2, 1

6v
3), if and

only if the 3-jets of f at 0 satisfies the following conditions :
There exists a permutation (i, j, k) of (1, 2, 3) such that (∗1i) ( fiu, fiv)(0) , (0, 0),
(∗1i j) λi j(0) = 0, (∗1ik) λik(0) = 0, (∗2i j) ηiλi j(0) , 0,
(∗3i j, j k) {(ηiλi j)(ηiηiλjk) − (ηiλjk)(ηiηiλi j)}(0) , 0, or
(∗3i j, ik) {(ηiλi j)(ηiηiλik) − (ηiλik)(ηiηiλi j)}(0) , 0. □

Proposition 1.5.15 A 3-jet z = j3 f (0) ∈ J3(2, 3) is the jet of a cuspidal edge if and
only if the following conditions (*):
There exists a permutation (i, j, k) of (1, 2, 3) such that (∗1i) ( fiu, fiv)(0) ,
(0, 0), (∗1i j) λi j(0) = 0, (∗1ik) λik(0) = 0, (∗2i j) ηiλi j(0) , 0, (∗2i j k)(
λi juλikv − λi jvλiku

)
(0) = 0,

(∗3i j k) (λi jvλikuλi juv + λ2
i jvλikuu + λi juλikvλi juv + λ

2
i juλikvv)(0)

=
(
λi jvλikvλi juu + 2λi juλi jvλikuv + λi juλikuλi jvv

)
(0), and

(∗3i j, j k) {(ηiλi j)(ηiηiλjk) − (ηiλjk)(ηiηiλi j)}(0) , 0, or
(∗3i j, ik) {(ηiλi j)(ηiηiλik) − (ηiλik)(ηiηiλi j)}(0) , 0. □

Then we have

Corollary 1.5.16 The subset of 3-jets of cuspidal edges in J3(2, 3) = K27,

{z = j3 f (0) ∈ J3(2, 3) | f : (K2, 0) → (K3, 0) is any frontal-germ},
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is a semi-algebraic set of J3(2, 3), which can be explicitly expressed as a union of at
most 12 sets defined by systems of algebraic equalities and non-equalities of degree
at most 7. □

1.5.3 Cofrontals

Any frontal map-germ f : (Kn, a) → (Km, b), n ≤ m, has the characteristic property
that the Jacobi ideal Jf is principal (Propositions 1.2.12, 1.3.23). Then it is natural to
consider the class of map-germs f : (Kn, a) → (Km, b) with principal Jacobi ideal
in the case n ≥ m,

A related notion has been introduced in [60], which we are going to review briefly.
For details consult the original paper [60]. We treat only the case K = R.

Let N, M be smooth manifolds of dimension n and m respectively with n ≥ m.

Definition 1.5.17 (Cofrontal map-germ, kernel field.) A map-germ f : (N, a) →
(M, b) is called a cofrontal if there exists an integrable vector-subbundle K = K f of
T N of corank m which satisfies the condition (K f )x ⊆ Ker(Tx f ) for any x ∈ (N, a).

Then K is called a kernel field or a co-Legendre field of the cofrontal f .

We have imposed the integrability condition on K in addition. Recall that a
subbundle (distribution) K ⊂ T N is called integrable if [K,K] ⊂ K for the Lie
bracket [ , ]. The kernel field is regarded as a section K : (N, a) → Gr(n − m,T N)
satisfying (df )(Kx) = {0}, x ∈ (N, a).

If f is proper or fair (Definition 1.5.27), i.e. the singular locus of the confrontal
f has no interior point nearby a ∈ N , then the integrability of the germ K follows
automatically. In this case, moreover we have that K is uniquely determined by the
cofrontal f (Lemma 1.5.29).

In some sense, cofrontal is the dual notion to frontal: Frontals are mappings such
that the images of differentials are well-behaved, and cofrontals are mappings such
that the kernels of differentials are well-behaved.

Definition 1.5.18 (Cofrontal mapping.) A global mapping f : N → M is called a
cofrontal if all germs fa : (N, a) → (M, f (a)) of f at every a ∈ N are cofrontal.

Important examples of cofrontals are obtained as mappings which are constant
along Seifert fibres ([10], cf. Example 1.5.30).

We see that frontals and cofrontals are not a stable mapping except for the trivial
cases, immersions and submersions and far from generic classes in the space of all
C∞ mappings. Nevertheless we see that they enjoy rather interesting properties to
be studied. For example, we see that any smooth map is approximated by a frontal
or a cofrontal in C0-topology, at least if the source manifold is compact (Proposition
1.5.31).

Example 1.5.19 (1) Any immersion is a frontal. The Legendre lift is given by f̃ :=
(Tt f (TtN))t∈(N,a). Any submersion is a cofrontal. The kernel field K is given by
K := (KerTx f ))x∈(N,a).
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(2) Any map-germ (N, a) → (M, b) between same dimensional manifolds (n = m)
is a frontal and a cofrontal simultaneously. In fact the Legendre lift is given by
f̃ (t) := Tf (t)M, t ∈ (N, a) and the kernel field K is given by the zero-section of T N .

(3) Any constant map-germ (N, a) → (M, b) is a frontal if n ≤ m and a cofrontal
if n ≥ m. In fact we can take any family of n-planes along the germ as a Legendre
lift and any subbundle K ⊂ T N of rank n − m as a kernel field.

We have that cofrontals have a common characteristic property to frontals (see
also Propositions 1.2.12 and 1.3.23).

Proposition 1.5.20 (Criterion of cofrontality, [60], Lemma 2.3 of [61]) Let f :
(N, a) → (M, b) be a map-germ with n = dim(N) ≥ m = dim(M). If f is a cofrontal,
then there exists a germ of submersion π : (N, a) → (N, a) to an m-dimensional
manifold N and a smooth map-germ f : (N, a) → (M, b) such that f = f ◦ π.
Moreover the Jacobi ideal Jf of f is principal, i.e. it is generated by one element. In
fact Jf is generated by λ = π∗(λ) for the Jacobian determinant λ of f .

Conversely, if the Jacobi ideal Jf is principal and the singular locus

S( f ) = {x ∈ (N, a) | rank(Tx f : TxN → Tf (x)M) < m}

of f is nowhere dense in (N, a), then f is a cofrontal.

Definition 1.5.21 (Reductions of cofrontals.) We call f a reduction of the cofrontal-
germ f . A germ of cofrontal f : (N, a) → (M, b) is called reduction-finite if a
reduction f : (N, a) → (M, b) of f is K-finite (or finite briefly), i.e. the dimension
of Q f := ON,a/ f

∗(mb) is finite, where f
∗

: OM,b → ON,a is the R-algebra ho-
momorphism defined by f

∗(h) = h ◦ f , and mb ⊂ OM,b is the maximal ideal of
function-germs vanishing at b (see [93][40][118][9]).

The notion of reductions can be considered as the dual notion to openings (§1.4).

Remark 1.5.22 If f : (Rm, 0) → (Rm, 0) is K-finite, then the zero set of f is isolated
and any nearby germ of f has the same property. The number of fibres of f is
uniformly bounded by dim(Q f ) (Propositions 2.2, 2,4 of Ch.VII in [40], see also
[22][84]).

Regarding the importance of Proposition 1.5.20 we repeat its proof here.

Proof of Proposition 1.5.20. Let f be a cofrontal and K be a kernel field of f .
Since K is integrable subbundle of T N of rank n − m, there exists a submersion
π : (N, a) → (Rm, 0) such that Kx = Ker(π∗ : TxN → Tπ(x)R

m) for any x ∈ (N, a),
i.e. π-fibres form the foliation induced by K . Take any curve γ : (R, 0) → N
in a fibre of π. Then ( f ◦ γ)′(t) = (Tγ(t) f )(γ ′(t)) = 0. Therefore f is constant
along the curve γ. Hence f is constant on π-fibres. Then there exists a map-germ
f : (Rm, 0) → (M, b) such that f = f ◦π. Take a smooth section s : (Rm, 0) → (N, a).
Then f = f ◦ π ◦ s = f ◦ s. Therefore f is a smooth map-germ.
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Take a system of local coordinates x1, . . . , xm, xm+1, . . . , xn of N around a such
that π is given by π(x1, . . . , xm, xm+1, . . . , xn) = (x1, . . . , xm), and therefore Kx is
generated by ∂/∂xm+1, . . . , ∂/∂xn in TxN . Then f is expressed as

f (x1, . . . , xn) = ( f1(x1, . . . , xm), . . . , fm(x1, . . . , xm)).

Then Jf is generated by one element

det(∂ fi/∂xj)1≤i, j≤m = π∗(det(∂ f i/∂xj)1≤i, j≤m) = π∗(λ)

and therefore Jf is a principal ideal in ON,a.
Conversely suppose Jf is a principal ideal generated by one element λ ∈ Jf

and S( f ) is nowhere dense. Denote by Γ the set of subsets I ⊆ {1, 2, . . . , n} with
#(I) = m. For a map-germ f : (N, a) → (M, b), n ≥ m and I ∈ Γ, we set DI =

det(∂ fi/∂xj)1≤i≤m, j∈I for some coordinates x1, . . . , xn of (N, a) and y1, . . . , ym of
(M, b)with fi = yi ◦ f . For any I ∈ Γ, there exists hI ∈ Oa such that DI = kIλ. Since
S( f ) is nowhere dense, there exists I0 ∈ Γ such that DI0 , 0. Since λ ∈ Jf , there
exists ℓI ∈ Oa for any I ∈ Γ such that λ =

∑
I ∈Γ ℓI DI . Then (1−∑

I ∈Γ ℓI kI )λ = 0. If
kI (a) = 0 for any I ∈ Γ, then 1 − ∑

I ∈Γ ℓI kI is invertible in Oa, therefore λ = 0 and
then we have Jf = 0. This contradicts to the assumption that S( f ) is nowhere dense.
Hence there exists I0 ∈ Γ such that (ℓI0 kI0 )(a) , 0. Then kI0 (a) , 0. Therefore
Jf is generated by DI0 . Hence DI = hI DI0 for any I ∈ Γ with hI0(a) = 1. Then
the Plücker-Grassmann coordinates (hI )I ∈Γ give a smooth section K : (Rn, a) →
Gr(n − m,T N) � Gr(m,T∗Rn), which is regarded as a subbundle K ⊆ T N of rank
n−m and Kx ⊆ Ker(Tx f ) for any x ∈ (N, a). Moreover Kx coincides with Ker(Tx f )
for x ∈ (N \ S( f ), a) and therefore K is integrable outside of S( f ). Since S( f ) is
nowhere dense, K is integrable. Thus f is a cofrontal map-germ with the kernel field
K . □

Corollary 1.5.23 Let f : (N, a) → (M, b) be a map-germ. Suppose f is analytic
and Jf , 0. Then f is a frontal or a cofrontal if and only if Jf is a principal ideal.

Proof By Proposition1.3.23 and Lemma 1.5.20, if f is a frontal or a cofrontal, then
Jf is principal. If Jf is principal, Jf , 0 and f is analytic, then S( f ) is nowhere
dense. Thus f is a frontal if n ≤ m or a cofrontal if n ≥ m. □

Example 1.5.24 Let f : (R3, 0) → (R2, 0) be the map-germ given by f (x1, x2, x3) =
(x2

1 + x2
2 + x2

3, 0). Then f is analytic and Jf = 0 is principal. However f is not a
cofrontal. In fact, suppose f is a cofrontal and K a kernel field of f of rank 1. Let

ξ(x) = ξ1(x)∂/∂x1 + ξ2(x)∂/∂x2 + ξ3(x)∂/∂x3, ξ(0) , 0,

be a generator of K . Then ξ1(x)x1+ξ2(x)x2+ξ3(x)x3 is identically zero in a neighbor-
hood of 0 inR3. In particular we have ξ1(x1, 0, 0)x1 = 0 and therefore ξ1(x1, 0, 0) = 0,
so ξ1(0, 0, 0) = 0. Similarly we have also ξ2(0, 0, 0) = 0 and ξ3(0, 0, 0) = 0. This leads
a contradiction.
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Definition 1.5.25 (Jacobians of frontals and cofrontals.) Let f : (N, a) → (M, b) be
a frontal or a cofrontal. Then a generator λ ∈ Oa of Jf is called a Jacobian (or a
singularity identifier) of the cofrontal f , which is uniquely determined from f up
to multiplication of a unit in Oa.

Remark 1.5.26 Let f : (N, a) → (M, b) be a cofrontal and K a kernel field of f . Set

K⊥
x := {α ∈ T∗

x N | α(v) = 0 for any v ∈ Kx}.

Then K⊥ is a germ of subbundle of the cotangent bundle T∗N of rank m. Let
α1, α2, . . . , αm be a local frame of K⊥. Then there is a unique λ ∈ Oa such that

df1 ∧ df2 ∧ · · · ∧ dfm = λα1 ∧ α2 ∧ · · · ∧ αm.

Then λ generates Jf and therefore λ is a Jacobian of the cofrontal f .

Definition 1.5.27 (Fair frontals and cofrontals.) A frontal or a cofrontal f :
(N, a) → (M, b) is called fair or proper if the singular locus S( f ) is nowhere
dense in (N, a).

Remark 1.5.28 A cofrontal f is fair if and only if a reduction f (Definition 1.5.21)
is fair. In fact if f = f ◦ π for a submersion-germ π : (N, a) → (Rm, 0), we have
S( f ) = π−1(S( f )), and therefore S( f ) is nowhere dense in (N, a) if and only if S( f )
is nowhere dense in (Rm, 0). If a cofrontal f is reduction-finite (Definition 1.5.21),
then f is fair, since a reduction f is K-finite so is necessarily fair.

Lemma 1.5.29 Let f : (N, a) → (M, b) be a fair cofrontal or dim(N) = dim(M).
Then the kernel filed K of f is uniquely determined and the reduction f of f
(Definition 1.5.21) is uniquely determined up to right equivalence. □

Example 1.5.30 (1) Any submersion is a cofrontal. Any immersion is a frontal.
(2) Any constant mapping N → M is a cofrontal of a frontal depending on

dim(N) ≥ dim(M) or dim(N) ≤ dim(M).
(3) Let F be a foliation of codimension m on a manifold N of dimension n. If a

mapping f : Nn → Mm is constant on any leaf of F , then f is a cofrontal.
(4) As a motivating example from symplectic geometry, consider a Lagrangian

foliation L on a symplectic manifold N2n and a system of functions f1, . . . , fn on N .
Then f = ( f1, . . . , fn) : N → Rn is a cofrontal if f is constant along each leaf of L.

We observe “unfair" (co)frontal maps are not so restrictive in topological or ho-
motopical sense. The following can be shown by the standard theory of stratifications.

Proposition 1.5.31 (C0-approximation. [60]) Let N be compact. Then any smooth
(C∞) map f : N → M is C0-approximated by a frontal or a cofrontal g : N → M ,
i.e., for any open neighborhood U of f , for C0-topology on the space C∞(N, M)
of all C∞ mappings, there exists a frontal or a cofrontal g which belongs to U.
Moreover any smooth map f : N → M is homotopic to a frontal or a cofrontal
g : N → M . □
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Example 1.5.32 Let S2 ⊂ R3 be the unit sphere and g : S2 → R the height function,
i.e. g(x1, x2, x3) = x3. Then g is not a cofrontal. Let ε > 0. Let φ : [−1, 1] → [−1, 1]
be any smooth map satisfying that φ(y) = −1(−1 ≤ y − 1+ ε), φ(y) = 1(1− ε ≤ y ≤
1), and that φ is a diffeomorphism from (−1 + ε, 1 − ε) to (−1, 1). Then f = φ ◦ g is
a cofrontal. See the figure: In the right picture, f restricted to the north (resp. south)
gray part is constant.

-1

1

1

f

graph of φ. A cofrontal on the sphere.

Note that f can be taken to be arbitrarily near g in C0-topology.
Similar construction can be applied to any proper Morse function g : N → R and

we have a cofrontal which is a C0-approximation to g.

Contrary to the case of “unfair" cofrontals, the following lemma show that the
sauce space of a fair cofrontal must be very restrictive.

Lemma 1.5.33 ([60]) Let N be compact, f : N → M a fair cofrontal and K the
kernel field of f . Let F be the foliation induced by the integrable subbundle K of
T N of rank n − m. Then the closure of any leaf of F is nowhere dense in N . □

A classification results of cofrontals of fibre-dimension one is given in [60].

1.6 Problems

1.6.1 Problems on frontals

It is interesting to study frontals from differential topology, though we have not
discussed on global results on frontals in §1.2. For example, we may impose, as a
problem, to study topological embeddings of a given manifold into Euclidean space
as frontal hypersurfaces.

Problem 1.6.1 (Global frontal mappings to Euclidean space. ) Find a condition on
a C∞ manifold N for the existence of a proper frontal mapping f : N → Rn+1. Is it
able to take f to be of integral corank ≤ 1 (and frontally stable) ? Is it possible to
take f to be a topological embedding ?

See also Definition 1.6.9.
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In a short but important paper [37], A. B. Givental gave a conjecture on singular
Lagrangian surfaces in the symplectic R4 = T∗R2 that any isotropic map from a
surface to R4 is approximated by an isotropic map of corank ≤ 1 everywhere on the
surface.

V. M. Zakalyukin gave a substantial contribution to the conjecture in [130]. How-
ever, as far as author knows, Givental’s conjecture is not solved yet. The conjecture
is generalised in higher dimensional cases naturally. The conjecture for Lagrangian
(isotropic) maps in symplectic geometry have Legendre (integral) counter-part in
contact geometry as follows:

Conjecture 1.6.2 (Frontal-Legendre version of generalised Givental’s conjecture)
(1) Let f : (Kn, a) → (Kn+1, b) be a frontal-germ of integral corank ≥ 2, K = R
or C. Then there exists a frontal deformation F : (Kn × K, (a, 0)) → (Kn+1, b)
of f , F = ( fu) such that corank( f̃u) ≤ 1, for any sufficiently small u , 0, for a
representative of F.
(2) Let f : N → Rn+1 be a frontal mapping. Suppose f has a global Legendre lift
f̃ : N → PT∗Rn+1. Then, for any neighborhood U of f̃ for Whitney C∞ topology
([40]), f is approximated by a frontal f ′ : N → Rn+1 such that f ′ has a Legendre
lift f̃ ′ is of corank ≤ 1 and f̃ ′ ∈ U.

In other words, Conjecture 1.6.2 (1) claims that it is possible to eliminate singular-
ities of integral corank ≥ 2 by a frontal deformation. The conjecture (2) claims that
any frontally stable frontal is of integral corank ≤ 1 necessarily. See also [38, 39].

Problem 1.6.3 Prove or disprove the generalised Givental’s conjecture of frontal-
Legendre version in any form as above.

In Theorem 1.2.33, we have given the characterisation on frontal stability of
frontals of integral corank ≤ 1.

Problem 1.6.4 (Characterisation of frontal stability in general.) Give the character-
isation of frontal stability in the case of integral corank ≥ 2.

In the papers [100, 101], the notion of frontalisations is introduced. It is interesting
to find an intrinsic formulation of “frontalisations” of map-germs.

Problem 1.6.5 (Geometric formulation of frontalisations.) Give any intrinsic for-
mulation of frontalisations.

1.6.2 Problems on general frontals

In §1.3.3, we have discussed on frontal stability for frontal multi-germs in the case
of corank ≤ 1.

Problem 1.6.6 (Characterisation of frontal stability via multi-transversality.) De-
scribe Theorem 1.3.17 on the infinitesimal characterisation of frontal stability in
general case via multi-transversality.
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Problem 1.6.7 (General characterisation of frontal stability.) Give a characterisation
of frontal stability of frontal germs (Kn, A) → (Km, b) in the case of corank ≥ 2 with
m ≥ n + 2.

In Example 1.3.3, we have introduced two frontals the product of cusps and
the complex cusp. The complex cusp C = R2 → C2 = R4 is frontally stable
in holomorphic category K = C. The author assumes also the product of cusps
possesses a kind of stability. Then the following problem concerns on their frontal
stability within frontals R2 → R4.

Problem 1.6.8 (Frontal stability of the product of cusps and the complex cusps.)
Prove or disprove that the product of cusps and the complex cusp are frontally stable.

Compare with evolutions of fronts (R2, 0) → (R3, 0). It is known a projection of
the product of cusps (resp. the complex cusp) to R3 is never frontally stable. See [3].

Here we propose a definition of global frontal stability in general cases.

Definition 1.6.9 (Global frontal stability of generalised frontals.) Let N, M be real
C∞ manifolds of dimension n,m respectively with n ≤ m. Let f : N → M be a C∞

frontal mapping with n ≤ m. (see Definition 1.3.7). Then f is called frontally stable
if there exist an open covering {Uλ}λ∈Λ of N , Legendre lifts f̃λ : Uλ → Gr(n,T M)
of f |Uλ , r ∈ N and open neighbourhoods Wλ of jr f̃λ in Jr (Uλ,Gr(n,T M)), λ ∈ Λ,
such that if a frontal map g : N → M satisfies that for any point t0 ∈ N , there exist
an open neighborhood V0 of t with V0 ⊂ Uλ for some λ ∈ Λ, and a Legendre lift g̃
with jr g̃(V0) ⊂ Uλ, then g is right-left equivalent to f .

Problem 1.6.10 (Characterisation of global frontal stability.) Give a characterisation
of global frontal stability of proper (= inverse image of any compact set is compact)
frontal mapping in infinitesimal languages and/or in terms of multi-transversality.

Problem 1.6.11 (Existence of global frontally stable frontals.) Given C∞ manifolds
N, M , find a condition on the existence of a frontally stable C∞ mapping f : N → M .

Also it interesting to ask on frontals from a differential geometric aspect. A
symmetric positive semi-definite (0, 2)-tensor field on a manifold is called a singular
metric.

Problem 1.6.12 (Realisations of singular metrics by frontals). Given a germ of
singular metric g on (Rn, a), find a frontal f : (Rn, a) → (Rm, b) and a Riemannian
(resp. Euclidean) metric G on (Rm, b) such that the pull-back metric f ∗G is equal to
g. Is it possible take m = n or m = n+ 1, etc. ? What is the minimum of embedding
dimensions m ? Is it possible to take the frontal f frontally stable for the geometric
realisation ?

Let f : N → M be a frontal from an n-dimensional manifold N to an m-
dimensional manifold with n ≤ m. Suppose there exists a global Legendre lift
f̃ : N → Gr(n,T M). Consider the pull-back bundle
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f ∗T M := {(t, v) | t ∈ N, v ∈ Tf (t)M}

over N by f . Then we have the subbundle

D := {(t, v) ∈ f ∗T M | v ∈ f̃ (t)}

of f ∗T M of rank n. Moreover we have the bundle homomorphism df : T N → D
defined by df (t,w) := (t, df (w)) for any (t,w) ∈ T N . The related notion of coherent
tangent bundles is introduced in [113] in the context of differential geometry of
singular surfaces. See also [111]. Then we present
Problem 1.6.13 (Realisation of vector bundles by frontals). Characterise a bundle
homomorphism φ : T N → D to a vector bundle D over N of rank dim(N) which
is realised by a frontal f : N → M such that φ = df . Consider the similar problem
when D is endowed with a metric.

1.6.3 Problems on openings

Here we mention several problems related to openings.
In §1.4, the notion of extendability of unfoldings is introduced (Definition 1.4.22).

In Corollary 1.4.23, we have seen that if corank of f is at most one, then any unfolding
of f is extendable. In §1.4.3, we have seen that there exist non-extendable unfoldings
for map-germs of corank ≥ 2.
Problem 1.6.14 (Characterisation of extendable unfoldings). Given a map-germ of
corank ≥ 2, find a sufficient and/or necessary condition that an unfolding of the
map-germ is extendable.

The existence of versal openings of a smooth map-germ of corank ≥ 2 in C∞ is
still open.
Problem 1.6.15 (Existence of versal openings in general.) Study on the existence
of versal openings of germs of corank ≥ 2 in the real C∞ case.

We have given calculations of ramification modules of several typical examples
of map-germs in §1.4.3. It is natural to expect these considerations will be useful to
show the frontal stability of typical examples of frontals. For instance we propose
Problem 1.6.16 (Frontal stability and opennings.) Prove or dis-prove that the prod-
uct of cusps (resp. the complex cusps) (K2, 0) → (K4, 0) (Example 1.3.3) is frontally
stable from the aspect of openings, if possible.

1.6.4 Problems on other topics

Related to the study of parametrised Lagrangian maps, we consider the following
construction.
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Let g : (Kn, A) → (Km, b) be a map-germ. Denote by g∗ : O(Km,b) → O(Kn,A),
the induced K-algebra homomorphism by g. Recall that the g∗O(Km,b)-subalgebra
Rg of O(Kn,A) is defined by

Rg = {k ∈ O(Kn,A) | dk ∈
m∑
i=1

O(Kn,A) · dgi}.

We set R(−1)
g = O(Kn,A),R(0)

g = Rg and inductively,

R(i)
g = {k ∈ O(Kn,A) | dk ∈

p∑
i=1

R(i−1)
g · dgi},

(i = 1, 2, . . . ). Then we have the sequence of g∗OKm,b-subalgebras,

O(Kn,A) = R(−1)
g ⊇ R(0)

g ⊇ R(1)
g ⊇ · · · ⊇ g∗OKm,b .

Problem 1.6.17 (Characterisation of composite differentiable functions.) Given a
map-germ, characterise composite differentiable functions in terms of restricted
ramification modules as above. Is

∩∞
i=1 R

(i)
g equal to g∗O(Km,B) ?

In §1.5.2 we have given a result on jets which are realised by frontal map-germs,
in particular, studied on the set of 3-jets in J3(K2,K3) which are realised by cuspidal
edges. Then we pose

Problem 1.6.18 (Characterisation of frontal jets.) Characterise frontal jets explicitly.
Namely, provide an explicit criterion whether a jet is frontal or not.

Problem 1.6.19 (Description of 4-jets of swallowtails,) Describe 4-jets which are
realised by swallowtails.

Related to Proposition 1.5.4, we propose the following

Conjecture 1.6.20 (Existence of “dis-frontalisations”). Let f : (Kn, a) → (Km, b)
be a non-immersive frontal-germ and s ∈ N. Then there exist r ∈ N and a smooth
map-germ g : (Kn, a) → (Km, b) such that s ≤ r , jrg(a) = jr f (a) and that g is not
a frontal.

Problem 1.6.21 Prove or dis-prove the above Conjecture 1.6.20.

As is described in §1.5.3, the study on structures of cofrontal map-germs is
reduced to the case of mappings between equi-dimensional manifolds.

Problem 1.6.22 (Classification of cofrontal singularities.) Apply the classification
results of map-germs (Rm, 0) → (Rm, 0), in particular in the case m = 2 (see
[120, 107, 109, 83] for instance), to classifications of cofrontals.

In §1.2 and §1.3, we have studied on stability of frontals under deformations
through frontals. Then we propose
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Problem 1.6.23 (Cofrontal deformations.) Study on deformations of cofrontals and
the stability of cofrontals.

In this survey we treat cofrontals only in the real case K = R and give a global
classification result of cofrontal mappings with one-dimensional fibres, n = m + 1.

Problem 1.6.24 (Cofrontals with higher dimensional fibres.) Study global cofrontals
in cases n ≥ m + 2.

For the local study on cofrontals in the complex case K = C goes in parallel to
that in the real case. Then we naturally ask

Problem 1.6.25 (Global complex cofrontal mappings.) Study on global complex
analytic cofrontal mappings.
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