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Abstract

A directed curve is a possibly singular curve with well-defined tangent lines along the
curve. Then the tangent surface to a directed curve is naturally defined as the ruled surface by
tangent geodesics to the curve, whenever any affine connection is endowed with the ambient
space. In this paper the local diffeomorphism classification is completed for generic directed
curves. Then it turns out that the swallowtails and open swallowtails appear generically for
the classification on singularities of tangent surfaces.

1 Introduction

Given a space curve, the ruled surface by its tangent lines is called a tangent surface or a
tangent developable to the curve. Tangent surfaces appear in various geometric problems and
applications (see for instance [2][8]). Even if the space curve is regular, its tangent surface has
singularities at least along the original curve, so called “the curve of regression”.

Let M be a general (semi-)Riemannian manifold, or more generally, a manifold M with an
affine connection ∇, of dimension m ≥ 3, and let γ : I → M any regular curve in M . If we
replace tangent lines by “tangent geodesics” in the definition of tangent surface, then we have
the definition of the ∇-tangent surface ∇-Tan(γ) : (I × R, I × {0}) → M as a map-germ along
I × {0}.

Ordinarily we try to classify certain generic singularities in a specific space, say, in the
Euclidian spaces, in the space forms, and so on. If we treat arbitrary spaces, it would become
hopeless to classify singularities of tangent surfaces that appear far away. However, it is possible
to find a local classification theorem which holds in general spaces. In the previous paper [9],
actually we have shown the following result on the singularities of ∇-tangent surfaces to generic
curves for arbitrary affine connection ∇:

Theorem 1.1 ([9]) The singularities of the ∇-tangent surface to a generic immersed curve in
M on a neighbourhood of the curve are only the cuspidal edges and the folded umbrellas if m = 3,
and the embedded cuspidal edges if m ≥ 4.

The above theorem provides a rare but an ultimate local classification of singularities associ-
ated with generic immersed curves in general spaces. The explanation on singularities is coming
later soon.

Now regarding the definition of general tangent surfaces, it seems to be very natural to
consider the genericity in the space of curves, not only for regular (immersed) curves, but also
for all singular curves with well-defined tangent directions, called directed curves, and to classify
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singularities of tangent surfaces for curves which is generic in such a class. In fact, as we show
in this paper, it is possible and we have the following general result:

Theorem 1.2 (Singularities of tangent surfaces to generic directed curves.) Let ∇ be any
affine connection on a manifold M of dimension m ≥ 3. The singularities of the ∇-tangent
surface to a generic directed curve in M on a neighbourhood of the curve are only the cuspidal
edges, the folded umbrellas and the swallowtails if m = 3, and the embedded cuspidal edges and
open swallowtails if m ≥ 4.

The genericity is exactly given using Whitney C∞ topology on an appropriate space of curves
(see Proposition 4.1).

A map-germ f : (R2, p) → M is locally diffeomorphic at p to another map-germ g : (R2, p′) →
M ′ if there exist diffeomorphism-germs σ : (R2, p) → (R2, p′) and τ : (M,f(p)) → (M ′, g(p′))
such that τ ◦ f = g ◦ σ : (R2, p) → (M ′, g(p′)).

The cuspidal edge is defined by the map-germ (R2, 0) → (Rm, 0), m ≥ 3,

(t, s) 7→ (t + s, t2 + 2st, t3 + 3st2, 0, . . . , 0),

which is diffeomorphic to (u,w) 7→ (u,w2, w3, 0, . . . , 0). The cuspidal edge singularities are
originally defined only in the three dimensional space. Here we are generalizing the notion of
the cuspidal edge in higher dimensional space. In Theorem 1.2, we emphasize it by writing
“embedded” cuspidal edge. In what follows, we call it just cuspidal edge for simplicity even in
the case m ≥ 4. The folded umbrella (or the cuspidal cross cap) is defined by the map-germ
(R2, 0) → (R3, 0),

(t, s) 7→ (t + s, t2 + 2st, t4 + 4st3),

which is diffeomorphic to (u, t) 7→ (u, t2 + ut, t4 + 2
3ut3). The swallowtail is defined by the

map-germ (R2, 0) → (R3, 0)

(t, s) 7→ (t2 + s, t3 + 3
2st, t4 + 2st2),

which is diffeomorphic to (u, t) 7→ (u, t3 + ut, t4 + 2
3ut2). The open swallowtail is defined by the

map-germ (R2, 0) → (Rm, 0), m ≥ 4,

(t, s) 7→ (t2 + s, t3 + 3
2st, t4 + 2st2, t5 + 5

2st3, 0, . . . , 0),

which is diffeomorphic to (u, t) 7→ (u, t3 + ut, t4 + 2
3ut2, t5 + 5

9ut3, 0, . . . , 0). The open swallow-
tail singularity was introduced by Arnol’d (see [1]) as a singularity of Lagrangian varieties in
symplectic geometry. Here we abstract its diffeomorphism class as the singularity of tangent
surfaces (see [4][7]).

cuspidal edge folded umbrella swallowtail open swallowtail
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Swallowtails and open swallowtails appear as singularities of tangent surfaces to singular
curves. It is observed that (open) swallowtails are destroyed by some perturbations of the
original curves which induce big changes of their tangent directions, and however that they
survive by any small perturbations which induce small changes of their tangent directions of the
singular but directed curves.

Let γ : I → M be any curve which is not necessarily a geodesic nor an immersed curve. The
first derivative (∇γ)(t) means just the velocity vector field γ′(t). The second derivative (∇2γ)(t)
is defined, in terms of covariant derivative along the curve γ, by

(∇2γ)(t) := ∇γ
∂/∂t(∇γ)(t).

Note that γ is a ∇-geodesic if and only if ∇2γ = 0. In general, we define k-th covariant derivative
of γ inductively by

(∇kγ)(t) := ∇γ
∂/∂t(∇

k−1γ)(t), (k ≥ 2).

Then we have:

Theorem 1.3 (Characterization.) Let ∇ be a torsion free affine connection on a manifold M .
Let γ : I → M be a C∞ curve from an open interval I.

(1) Let dim(M) = 3. If (∇γ)(t0), (∇2γ)(t0), (∇3γ)(t0) are linearly independent, then the
∇-tangent surface ∇-Tan(γ) is locally diffeomorphic to the cuspidal edge at (t0, 0) ∈ I × R.
If (∇γ)(t0), (∇2γ)(t0), (∇3γ)(t0) are linearly dependent, and (∇γ)(t0), (∇2γ)(t0), (∇4γ)(t0) are
linearly independent, then ∇-Tan(γ) is locally diffeomorphic to the folded umbrella at (t0, 0) ∈ I×
R. If (∇γ)(t0) = 0 and (∇2γ)(t0), (∇3γ)(t0), (∇4γ)(t0) are linearly independent, then ∇-Tan(γ)
is locally diffeomorphic to the swallowtail at (t0, 0) ∈ I × R.

(2) Let dim(M) ≥ 4. If (∇γ)(t0), (∇2γ)(t0), (∇3γ)(t0) are linearly independent, then the
∇-tangent surface ∇-Tan(γ) is locally diffeomorphic to the cuspidal edge at (t0, 0) ∈ I × R.
If (∇γ)(t0) = 0 and (∇2γ)(t0), (∇3γ)(t0), (∇4γ)(t0), (∇5γ)(t0) are linearly independent, then
∇-Tan(γ) is locally diffeomorphic to the open swallowtail at (t0, 0) ∈ I × R.

Some of characterizations in Theorem 1.3 have been shown already in [9].
The intrinsic characterizations of singularities found in [11][3] are useful for our treatment of

singularities in general ambient spaces. We apply to non-flat projective geometry the character-
izations and their some generalization via the notion of openings introduced by the first author
([7], see also [6]).

In §2 we introduce the notion of directed curves and define their tangent surfaces. We recall
the criteria of singularities in §3 and prove Theorem 1.3. In §4 we study on perturbations of
directed curves and prove Theorem 1.2.

In this paper all manifolds and mappings are assumed to be of class C∞ unless otherwise
stated.

This paper is a second half of the unpublished paper [10] which is divided into two shorter
papers, the paper [9] and the present paper. We utilize in the present paper, as the sequel of
[9], several detailed calculations performed in [9].
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2 Directed curves and their tangent surfaces

Let PTM = Gr(1, TM) denote the projective tangent bundle over the manifold M , and π :
PTM → M the natural projection. The fibre of π over x ∈ M is the projective space P (TxM)
of dimension m − 1.

A curve γ : I → M from an open interval I, which is not necessarily an immersion, is called
directed if there assigned a C∞ lifting γ̃ : I → PTM of γ for π which satisfies the integrality
condition γ′(t) ∈ γ̃(t) ⊂ Tγ(t)M for any t ∈ I. Here γ̃(t) ∈ P (Tγ(t)M) is regarded as a one-
dimensional linear subspace of Tγ(t)M . Then we regard the direction γ̃(t0) is assigned to each
point γ(t0) on γ. Note that if γ′(t0) 6= 0, then γ̃(t0) is uniquely determined by the tangent line
〈γ′(t0)〉R ⊂ Tγ(t0)M . The notion of directed curves is nothing but the notion of frontal maps
introduced in [9] in the case n = 1 with assignment of an integral lifting when the immersion
locus of γ is dense in I.

Let γ : I → M be a directed curve and γ̃ its integral lifting. Then there exists a C∞ frame
u : I → TM of γ̃ which satisfies γ̃(t) = 〈u(t)〉R, u(t) 6= 0 for any t ∈ I. Note that there
exists a unique function a(t) such that γ′(t) = a(t)u(t). Then define the ∇-tangent surface
f = ∇-Tan(γ) : V (⊂ I × R) → M by

f(t, s) := ϕ(γ(t), u(t), s),

using the family of ∇-geodesics ϕ = ϕ(x, v, s) and a frame u(t). Here ϕ(x, v, s) gives the
∇-geodesic parametrized by the parameter s through x with the velocity vector v at s = 0,
ϕ(x, v, 0) = x and ∂ϕ

∂s (x, v, 0) = v. In [9], the ∇-tangent surface for an immersed curve γ
was defined by the frame u(t) = γ′(t) and studied with the detail analysis of ∇-geodesics
ϕ = ϕ(x, v, s).

Lemma 2.1 If the immersion locus of a directed curve γ : I → M is dense in I, then the
integral lifting γ̃ is uniquely determined. The right equivalence class of the germ of ∇-Tan(γ) :
(I × R, I × {0}) → M for a directed curve γ is independent of the choice of the frame u.

Proof : The first half is clear because γ̃ is C∞, so is continuous. The second half is achieved by
the diffeomorphism (t, s) → (t, c(t)s) for another choice c(t)u(t), c(t) 6= 0. 2

In [9] we have introduced the notions of frontals and non-degenerate singular points of frontals
(§3 of [9]). Using those notions we have the following result:

Lemma 2.2 Let γ : I → M be a C∞ curve, t0 ∈ I, and k ≥ 1. Suppose that (∇iγ)(t0) = 0, 1 ≤
i < k and that (∇kγ)(t0), (∇k+1γ)(t0) are linearly independent. Then the germ of ∇-Tan(γ) is a
frontal with non-degenerate singular point at (t0, 0) and with the singular locus S(∇-Tan(γ)) =
{s = 0}.

To prove Lemma 2.2 we prepare

Lemma 2.3 Let k ≥ 2. Suppose (∇iγ)(t0) = 0, 1 ≤ i < k and (∇kγ)(t0) 6= 0. Then we have:
(1) For any coordinates of M around γ(t0), γ(i)(t0) = 0, 1 ≤ i < k and γ(k)(t0) = (∇kγ)(t0) 6=

0. Moreover we have γ(k+1)(t0) = (∇k+1γ)(t0).
(2) Set

u(t) =
1

k(t − t0)k−1
γ′(t).
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Then u is a C∞ vector field along γ on a neighbourhood of t0. The curve γ is directed on a
neighbourhood of t0 by the frame u.

(3) For any frame u(t) of the directed curve γ around t0, and for any ` ≥ 0,

(∇kγ)(t0), (∇k+1γ)(t0), . . . , (∇k+`γ)(t0)

are linearly independent if and only if

u(t0), (∇γ
∂/∂tu)(t0), . . . , ((∇γ

∂/∂t)
`u)(t0)

are linearly independent. In particular, for the frame in (2), we have

u(t0) =
1
k!

(∇kγ)(t0), (∇u)(t0) =
1

k · k!
(∇k+1γ)(t0), . . . , (∇`u)(t0) =

`!
k · (k + ` − 1)!

(∇k+`γ)(t0).

where ∇iu = (∇γ
∂/∂t)

iu.

Proof : (1) Let k = 2. Then γ′(t0) = (∇γ)(t0) = 0. By Lemma 2.4 of [9], we have γ′′(t0) =
(∇2γ)(t0) 6= 0, γ′′′(t0) = (∇3γ)(t0). Let k ≥ 3. Then (∇kγ)λ is a sum of (γ(k))λ and a polynomial
of Γλ

µν , their partial derivatives and γ(i), i < k, each monomial of which contains a γ(i) with
i ≤ k − 2 (cf. Lemma 2.4 of [9]). Thus we have γ(i)(t0) = (∇iγ)(t0) = 0, 1 ≤ i < k. Moreover
we have 0 6= (∇kγ)(t0) = γ(k)(t0) and (∇k+1γ)(t0) = γ(k+1)(t0).
(2) is clear.
(3) We have that c(t)u(t) = γ′(t) for some function c(t). If k ≥ 2, then c(t0) = 0. By operating
∇γ

∂/∂t to both sides of c(t)u(t) = γ′(t), we have

c′(t)u(t) + c(t)(∇γ
∂/∂t u)(t) = (∇2γ)(t).

If k ≥ 3, then c(t0) = 0, c′(t0) = 0. In general we have

c(t0) = c′(t0) = · · · = c(k−2)(t0) = 0, c(k−1)(t0) 6= 0,

and

c(k−1)(t)u(t) + (k − 1)c(k−2)(t)(∇u)(t) + k−1C2c
(k−3)(t)(∇2u)(t) + · · · = (∇kγ)(t)

c(k)(t)u(t) + kc(k−1)(t)(∇u)(t) + kC2c
(k−2)(t)(∇2u)(t) + · · · = (∇k+1γ)(t)

...
...

c(k+`−1)(t)u(t) + · · · + k+`−1Ck−1c
(k−1)(t)(∇`u)(t) + · · · = (∇k+`γ)(t).

Evaluating at t0, we have the result. 2

Proof of Lemma 2.2. The case k = 1 is proved in Lemma 3.1 of [9]. Therefor we suppose k ≥ 2.
Let u(t) be a frame around t0 of the directed curve γ and c(t)u(t) = γ′(t), u(t0) 6= 0. (For
instance c(t) = k(t − t0)k−1). Since f(t, s) = γ(t) + su(t) + 1

2s2h(γ(t), u(t), s), we have

∂f

∂t
= γ′ + su′ +

1
2
s2 (γ′)µ ∂h

∂xµ
(γ, u, s) +

1
2
s2 (u′)ν ∂h

∂vν
(γ, u, s),

∂f

∂s
= u + s h(γ, u, s) +

1
2
s2 ∂h

∂s
(γ, u, s).
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Then we see that S(f) ⊇ {s = 0} and the kernel field of f∗ along {s = 0} is given by η =
∂
∂t − c(t) ∂

∂s . Let s 6= 0. Then

1
s
(
∂f

∂t
− c(t)

∂f

∂s
) = u′ +

1
2
s (γ′)µ ∂h

∂xµ
(γ, u, s) +

1
2
s (u′)ν ∂h

∂vν
(γ, u, s)

− c(t)h(γ, u, s) − 1
2
sc(t)

∂h

∂s
(γ, u, s).

We define F (t, s) by the right hand side. Then F (t, s) = 1
s (∂f

∂t − c(t)∂f
∂s ) if s 6= 0. Moreover F is

C∞ also on s = 0 and
F (t, 0) = u′(t) − c(t)h(γ(t), u(t), 0).

By Lemmas 2.1 and 2.2 of [9],

F (t, 0) = u′(t) + c(t)Γλ
µν(γ(t)) (u(t))µ(u(t))ν = (∇γ

∂/∂tu)(t).

By Lemma 2.3 (3), if (∇kγ)(t0), (∇k+1γ)(t0) are linearly independent, then ∂f
∂s (t, s) and F (t, s)

are linearly independent around (t0, 0). Moreover they satisfies

(
∂f

∂t
∧ ∂f

∂s
)(t, s) = −s(

∂f

∂s
∧ F )(t, s).

Therefore we see that ∂f
∂s (t, s) and F (t, s) define an integral lifting of f , f is frontal with non-

degenerate singular point at (t0, 0), and that S(f) = {s = 0}. 2

3 Swallowtails and open swallowtails

Let g : (Rn, p) → (R`, q) be a map-germ. A map germ f : (Rn, p) → R`+r is called an opening
of g if f is of form f = (g, h1, . . . , hr) for some functions h1, . . . , hr : (Rn, p) → R satisfying

dhi =
∑̀
j=1

aijdgj ,

for some functions aij : (Rn, p) → R, (1 ≤ i ≤ r, 1 ≤ j ≤ `) (see for example [7]). If ` = n,
then the condition on h is equivalent to that f is frontal associated with an integral lifting
f̃ : (Rn, p) → Gr(n, TRn+r) having Grassmannian coordinates (aij) such that f̃(p) projects
isomorphically to Tg(p)Rn by the projection Rn+r = Rn × Rr → Rn.

Based on results in [11] and [7], we summarize the characterization results on openings of
the Whitney’s cusp map-germ:

Theorem 3.1 Let f : (R2, p) → Mm,m ≥ 2 be a germ of frontal with a non-degenerate singular
point at p, V1, V2 : (R2, p) → TM an associated frame with f̃ with V2(p) 6∈ f∗(TpR2), and
η : (R2, p) → TR2 an extension of a kernel field along of f∗. Let c : (R, t0) → (R2, p) be a
parametrization of the singular locus of f . Set γ = f ◦ c : (R, t0) → M . Suppose (∇γ)(t0) = 0
and (∇2γ)(t0) 6= 0. Then f is diffeomorphic to an opening of Whitney’s cusp, the germ defined
by (u, t) 7→ (u, t3 + ut). Moreover we have

(0) Let m = 2. Then f is diffeomorphic to Whitney’s cusp.
(1) Let m = 3. Then f is diffeomorphic to the swallowtail if and only if

V1(c(t0)), V2(c(t0)), (∇f
ηV2)(c(t0))
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are linearly independent in Tf(p)M .
(2) Let m ≥ 4. Then f is diffeomorphic to the open swallowtail if and only if

(V1 ◦ c)(t0), (V2 ◦ c)(t0), ((∇f
ηV2) ◦ c)(t0), (∇γ

∂/∂t((∇
f
ηV2) ◦ c))(t0)

are linearly independent in Tf(p)M .
Here ∇f

η means the covariant derivative by a vector field η along a mapping f (see [9][10]).

Proof : The assertion (0) follows from Whitney’s theorem (also see [14][13][12]). (1) follows
from Proposition 1.3 of [11]. In general cases m ≥ 2, we see that there exists a submersion
π : (M,f(p)) → (R2, 0) such that π−1(0) is transverse to f̃(0) ⊂ Tf(p)M , π ◦f satisfies the same
condition with f , namely, that π ◦ f is a frontal with the non-degenerate singular point at p
and with the same singular locus with f and η(c(t0)) and c′(t0) are linearly independent, but
m = 2. Thus by the assertion (0), the map-germ π ◦ f is diffeomorphic to the Whitney’s cusp.
Moreover we see f is an opening of Whitney’s cusp because f is frontal.

Let f(u, t) = (u, t3 + ut, h1(u, t), . . . , hr(u, t)),m = 2 + r and dhi = aidu + bid(t3 + ut) =
(ai + tbi)du + (3t2 + u)bidt, for some functions ai = ai(u, t), bi = bi(u, t), 1 ≤ i ≤ r. Then we
have

∂f

∂u
= (1, t, a1 + tb1, . . . , ar + tbr),

∂f

∂t
= (0, 3t2 + u, (3t2 + u)b1, . . . , (3t2 + u)br),

a frame V1 = ∂f
∂u , V2 = 1

3t2+u
∂f
∂t = (0, 1, b1, . . . , br) of the frontal f , and a kernel field η = ∂

∂t of
f∗. We have

V1(0, 0) = (1, 0, a1(0, 0), . . . , ar(0, 0)), V2(0, 0) = (0, 1, b1(0, 0), . . . , br(0, 0)),

(∇f
ηV2)(0, 0) = (0, 0,

∂b1

∂t
(0, 0), . . . ,

∂br

∂t
(0, 0)).

Let c(t) = (−3t2, t). Then γ(t) = f(c(t)) = (−3t2,−2t3, h1(−3t2, t), . . . , hr(−3t2, t)) and

∇f
ηV2(c(t)) = (0, 0,

∂b1

∂t
(c(t)), . . . ,

∂br

∂t
(c(t))).

Then we have

∇γ
∂/∂t((∇

f
ηV2) ◦ c)|t=0 = (0, 0,

∂2b1

∂t2
(0, 0), . . . ,

∂2br

∂t2
(0, 0)).

Thus the condition of (2) is equivalent, in our case, to that f is a versal opening of π ◦ f and
then we see f is diffeomorphic to the open swallowtail (see Proposition 6.8 (3) ` = 3 of [7]).
Thus we have the characterization (2). 2

Proof of Theorem 1.3. Theorem 1.3 (1) is proved in [9] in regular case (§7 of [9]). Suppose that
γ : I → M is not an immersion at t0, γ′(t0) = 0, but γ′′(t0) 6= 0. Let c(t)u(t) = γ′(t), u(t0) 6= 0.
Then the ∇-tangent surface is defined by f(t, s) = ϕ(γ(t), u(t), s) using the geodesics ϕ(x, v, s)
on TM . Then we have the frame

V1(t, s) =
∂f

∂s
(t, s), V2(t, s) = F (t, s) =

1
s
(
∂f

∂t
− c(t)

∂f

∂s
).

We set η = ∂
∂t − c(t) ∂

∂s . Then, by Lemma 5.1 of [9], we have (∇f
ηF )(t, 0) = (∇γ

∂/∂t
2
u)(t).

Therefore we have ∇γ
∂/∂t((∇

f
ηF )(t, 0)) = (∇γ

∂/∂t
3
u)(t). Now, by Lemma 2.3,

V1(t0, 0), V2(t0, 0), (∇f
ηF )(t0, 0)

7



are linearly independent if and only if u(t0), (∇γ
∂/∂tu)(t0), (∇γ

∂/∂t
2
u)(t0) are linearly independent,

and the condition is equivalent to that (∇2γ)(t0), (∇3γ)(t0), (∇4γ)(t0) are linearly independent.
Then in the case m = 3, by Theorem 3.1 (1), we have Theorem 1.3 (1) for non-regular case as
well.

Let m ≥ 4. Then V1(t0, 0), V2(t0, 0), (∇f
ηF )(t0, 0),∇γ

∂/∂t((∇
f
ηF )(t, 0))|t=t0 are linearly inde-

pendent if and only if u(t0), (∇γ
∂/∂tu)(t0), (∇γ

∂/∂t
2
u)(t0), (∇γ

∂/∂t
3
u)(t0) are linearly independent,

and the condition is equivalent to that (∇2γ)(t0), (∇3γ)(t0), (∇4γ)(t0), (∇5γ)(t0) are linearly
independent. By Theorem 3.1 (2), we have Theorem 1.3 (2).

4 Perturbations of directed curves

To treat directed curves (see §2), we consider PTM = Gr(1, TM) with the natural projection
π : PTM → M and the tautological subbundle D ⊂ TPTM on the tangent bundle of PTM :
For any (x, `) ∈ PTM and for any v ∈ T(x,`)PTM , v ∈ D(x,`) if and only if π∗(v) ∈ ` ⊂ TxM .
A curve γ̃ : I → PTM is called integral if γ̃∗(∂/∂t) ∈ D

eγ(t), for any t ∈ I. Recall that γ = π ◦ γ̃
with the lifting γ̃ is called a directed curve.

Let u : I → TM be a vector field along a curve γ : I → M . For t0 ∈ I, we set

bi := inf
{

k
∣∣∣ rank

(
u(t0), (∇γ

∂/∂tu)(t0), . . . , ((∇γ
∂/∂t)

k−1u)(t0)
)

= i
}

.

We have 1 ≤ b1 < b2 < · · · < bm, if each bi < ∞. Then we call the strictly increasing sequence
(b1, b2, . . . , bm) of natural numbers the ∇-type of u at t0.

Moreover the ∇-type of a curve γ : I → M itself is defined by the ∇-type of the velocity
vector field γ′ : I → TM along γ.

Let γ : (R, t0) → M be a germ of directed curve with an integral lifting γ̃ : (R, t0) → PTM
generated by a frame u : (R, t0) → TM , u(t0) 6= 0. Then b1 = 1 for u, since u(t0) 6= 0.

Then we have

Proposition 4.1 Let M be a manifold of dimension m with an affine connection ∇. Then there
exists an open dense subset O in the space of C∞ integral curves I → PTM with Whitney C∞

topology such that for any γ̃ ∈ O and for any t0 ∈ I, γ = π ◦ γ̃ : I → M is of ∇-type

(1, 2, 3), (1, 2, 4), or (2, 3, 4),

if m = dim(M) = 3, and

(1, 2, 3, 4, . . . ,m − 1, m), (1, 2, 3, 4, . . . ,m − 1,m + 1), or (2, 3, 4, 5, . . . ,m,m + 1).

if m ≥ 4, at t0.

To show Proposition 4.1, we use the following generalization of Lemma 2.3 (3):

Lemma 4.2 If ∇-type of u is (1, b2, . . . , bm) and the order of c at t0 is `, that is, c(t0) = · · · =
c(`−1)(t0) = 0, c(`)(t0) 6= 0, then γ is of ∇-type (a1, a2, . . . , am) = (1 + `, b2 + `, . . . , bm + `).
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Proof : By taking covariant derivative ∇ `-times of the both sides of c(t)u(t) = γ′(t), we have
(∇γ)(t0) = · · · = (∇`γ)(t0) = 0, (∇`+1γ)(t0) = c(`)(t0)u(t0) 6= 0. Then

rank
(
(∇γ)(t0), . . . , (∇`γ)(t0), (∇`+1γ)(t0)

)
= rank

(
c(`)(t0)u(t0)

)
= 1,

and we have a1 = 1 + `. Moreover we have

rank
(
(∇γ)(t0), . . . , (∇`γ)(t0), (∇`+1γ)(t0), (∇`+2γ)(t0)

)
= rank

(
(∇`+1γ)(t0), (∇`+2γ)(t0)

)
= rank

(
c(`)(t0)u(t0), c(`+1)(t0)u(t0) + (` + 1)c(`)(t0)∇u(t0)

)
= rank (u(t0),∇u(t0)) .

In general, we have inductively

rank
(
(∇γ)(t0), (∇2γ)(t0), . . . , (∇kγ)(t0)

)
= rank

(
u(t0), (∇u)(t0), . . . , (∇k−`−1u)(t0)

)
,

for any k ≥ 1 + `. Therefore we have ai = bi + `, 1 ≤ i ≤ m. 2

We need also the following lemma on local perturbations of integral curves.

Lemma 4.3 Let a < t1 < t2 < b and γ̃, α̃ : (a, b) → PTRm be integral curves. Then there exists
an integral curve β̃ : (a, b) → PTRm such that β̃(t) = α̃(t), a < t ≤ t1 and β̃(t) = γ̃(t), t2 ≤ t <
b. If α̃ is sufficiently close to γ̃ on [t1, t2] in Whitney C∞ topology, then β̃ can be taken to be
close to γ̃ on (a, b) in Whitney C∞ topology.

Proof : Let x = (xλ) be a system of coordinates of Rm and (x, ξ) = (xλ, ξλ) be the associated
system of coordinates of TRm. Let (x ◦ γ̃)′(t) = c(t)u(t), (x ◦ α̃)′(t) = e(t)v(t), for some
c, e : (a, b) → R and u, v : (a, b) → Rm \ {0}. Then we take a function f : (a, b) → R and
w : (a, b) → Rm such that f(t) = e(t) on (a, t1], f(t) = c(t) on [t2, b), w(t) = v(t) on (a, t1],
w(t) = u(t) on [t2, b) and∫ t2

t1

f(t)w(t)dt = (x ◦ γ̃)(t1) − (x ◦ α̃)(t1) +
∫ t2

t1

c(t)u(t)dt.

Then we have the required β̃ by (ξ ◦ β̃)(t) = w(t) and

(x ◦ β̃)(t) = (x ◦ α̃)(t1) +
∫ t

t1

f(t)w(t)dt, (a < t < b).

2

Proof of Proposition 4.1. Let γ̃ : (R, t0) → PTM be a germ of integral curve with γ = π ◦ γ̃.
Let c(t)u(t) = γ′(t) for some frame u : (R, t0) → TM along γ, u(t0) 6= 0, and for some function
c : (R, t0) → R. Note that γ̃ is determined by the frame u. The frame u is determined up to the
multiplication of functions b(t) with b(t0) 6= 0. Given the initial point q = γ(t0), the pair (u, c)
determines the directed curve γ uniquely. Moreover (∇ku)(t0) = u(k)(t0) + Q, by a polynomial
Q of u(i)(t0), c(i)(t0), 0 ≤ i < k and (∂αΓλ

µν/∂xα)(q), |α| ≤ k−1. In particular (∇ku)(t0) depends
only on k-jet of (c, u) and just on the position q = γ(t0).
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Let us consider the r-jet bundle Jr(I,R× (TM \ ζ)) over I ×R× (TM \ ζ), where ζ is the
zero-section. For the projection I×R×(TM \ζ) → I×M , take the fibre Jr(I,R×(TM \ζ))(t0,q)

over a (t0, q) ∈ I × M , and consider the set

S∇ := {jr(c, u)(t0) | u(t0), (∇u)(t0), . . . , (∇m−1u)(t0) are linearly dependent

and u(t0), (∇u)(t0), . . . , (∇m−2u)(t0), (∇mu)(t0) are linearly dependent}.
S′
∇ := {jr(c, u)(t0) | u(t0), (∇u)(t0), . . . , (∇m−1u)(t0) are linearly dependent

and c(t0) = 0}
S′′
∇ := {jr(c, u)(t0) | c(t0) = c′(t0) = 0}.

Then, for any but fixed system of local coordinates around q of M , S∇, S′
∇, S′′

∇ are algebraic
sets of codimension ≥ 2. Let S∇(I,M), S′

∇(I,M), S′′
∇(I,M) be the corresponding subbundle of

Jr(I,R × (TM \ ζ)) over I × M . For any subinterval J ⊂ I, we set

ÕJ := {(c, u) : I → R × (TM \ ζ) | jr(c, u) : I → Jr(I,R × (TM \ ζ))
is transverse to S∇(I,M), S′

∇(I,M), S′′
∇(I,M) over J}.

Then Õ = ÕI is open dense in Whitney C∞ topology. Let (c, u) ∈ Õ and t0 ∈ I. Then
jr(c, u)(t0) 6∈ S∇∪S′

∇∪S′′
∇. Since jr(c, u)(t0) 6∈ S∇, we have that the ∇-type of u is (1, 2, . . . ,m−

1, m) or (1, 2, . . . ,m − 1,m + 1). Since jr(c, u)(t0) 6∈ S′
∇, if c(t0) = 0 then ∇-type of u must

be (1, 2, . . . ,m − 1,m). On the other hand, since jr(c, u)(t0) 6∈ S′′
∇, we have that c(t0) 6= 0 or

c(t0) = 0, c′(t0) 6= 0, i.e. the order of c at t0 is 0 or 1. We set

OJ := {γ̃ : I → PTM integral | ∃(c, u) ∈ ÕJ , γ̃(t) = 〈u(t)〉R, (π ◦ γ̃)′(t) = c(t)u(t)}.

We will show, for any compact subinterval J ⊂ I, that OJ is open dense and O = OI is open
dense in the space of integral curves with Whitney C∞ topology.

That OJ and O are open is clear, since Õ is open.
We will show OJ is dense. Let γ̃ : I → PTM be any integral curve and I be any open

neighbourhood of γ̃. We will show OJ ∩ I 6= ∅. Set γ = π ◦ γ̃ : I → M . Take any frame u
associated to γ̃. Then there exists uniquely c : I → R which satisfies c(t)u(t) = γ′(t), t ∈ I. Take
a compact subinterval J ′ ⊂ I such that J ( J ′. We approximate (c, u) by some (e, v) ∈ ÕJ and
that (e, v) = (c, u) outside of J ′. Then v generates a curve ρ : I → PTM, ρ(t) = 〈v(t)〉R, which
approximates γ̃, however ρ may not be an integral curve. Consider the vector field ( ∂

∂t , ev) along
the graph of π ◦ ρ in I × M . Extend ( ∂

∂t , v(t)) to a vector field ( ∂
∂t , V (t, x)) over I × M with a

support contained in I × K for some compact K ⊂ M . Take t0 ∈ J . Take the integral curve
α : I → M of the vector field ( ∂

∂t , e(t)V (t, x)) through (t0, α(t0)). Then α′(t) = e(t)V (t, α(t)).
Define the vector field w : I → TM over α by w(t) = V (t, α(t)). Then we have α′(t) = e(t)w(t).
If we choose (e, v) sufficiently close to (c, u), then w(t) 6= 0 and (e, w) ∈ ÕJ . However the
integral curve α̃ defined by w may not belong to I, which is an open set for Whitney C∞

topology. Further we modify the perturbation (e, v) over J ′ \ J and the extension V over
(J ′ \ J)×M to obtain an integral curve β̃ such that β̃ = α̃ on J and β̃ = γ̃ outside of J ′, using
the method of Lemma 4.3. Then the integral curve β̃ approximates γ̃ and belongs to I, while
(e, w) ∈ ÕJ . Since β̃(t) = 〈w(t)〉R and (π ◦ β̃)′(t) = e(t)w(t), we have β̃ ∈ OJ ∩I. Thus we have
seen that OJ is dense, for any compact subinterval J ⊂ I.

Since O = ∩J⊂IOJ , the intersection over compact subintervals J ⊂ I, we have that O is
residual, and therefore that O is dense in Whitney C∞ topology [5].

Thus we have that O is open dense in Whitney C∞ topology. Then, using Lemma 4.2, we
have the required result. 2
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Remark 4.4 By the same method as above, we have that the codimension of jets of integral
curves such that the projections are of ∇-type (a1, a2, . . . , am) is given by

` +
m∑

i=1

(bi − i) = a1 − 1 +
m∑

i=2

(ai − a1 − i + 1),

for any affine connection ∇. Note that the codimension is calculated in Theorem 5.6 of [7] in
the flat case (cf. Theorem 5.8, Theorem 3.3 of [7]).

Proof of Theorem 1.2. We observe that the equation on geodesics

∂2ϕ

∂s2

λ

(x, v, s) + Γλ
µν(ϕ(x, v, s))

∂ϕ

∂s

µ

(x, v, s)
∂ϕ

∂s

ν

(x, v, s) = 0,

is symmetric on the indices µ, ν. Therefore the geodesics ϕ(x, v, s) and the tangent surfaces
∇-Tan(γ) remain same if the connection Γλ

µν is replaced by the torsion free connection 1
2(Γλ

µν +
Γλ

νµ), in other word, if ∇ is replaced by the torsion free connection ∇̃, defined by ∇̃XY =
∇XY − 1

2T (X,Y ). Thus we may suppose ∇ is torsion free. Then Theorem 1.3 and Proposition
4.1 imply Theorem 1.2. 2

References

[1] V.I. Arnol’d, Lagrangian manifold singularities, asymptotic rays and the open swallowtail, Funct.
Anal. Appl., 15 (1981). 235–246.

[2] J.W. Bruce, P.J. Giblin, Curves and singularities, A geometrical introduction to singularity theory,
2nd ed., Cambridge Univ. Press, (1992).

[3] S. Fujimori, K. Saji, M. Umehara, K. Yamada, Singularities of maximal surfaces, Math. Z. 259
(2008), 827–848.

[4] A.B. Givental, Whitney singularities of solutions of partial differential equations, J. Geom. Phys.
15–4 (1995), 353–368.

[5] M. Golubitsky, V. Guillemin, Stable Mappings and Their Singularities, Graduate Texts in Mathe-
matics 14, Springer-Verlag, (1973).

[6] G. Ishikawa, Symplectic and Lagrange stabilities of open Whitney umbrellas, Invent. math., 126–2
(1996), 215–234.

[7] G. Ishikawa, Singularities of tangent varieties to curves and surfaces, Journal of Singularities, 6
(2012), 54–83.

[8] G. Ishikawa, Y. Machida, M. Takahashi, Asymmetry in singularities of tangent surfaces in contact-
cone Legendre-null duality, Journal of Singularities, 3 (2011), 126–143.

[9] G. Ishikawa, T. Yamashita, Singularities of tangent surfaces to generic space curves,
arXiv:1602.02458 [math.DG], to appear in Journal of Geometry.

[10] G. Ishikawa, T. Yamashita, Affine connections and singularities of tangent surfaces to space curves,
arXiv:1501.07341 [math.DG], (unpublished).

[11] M. Kokubu, W. Rossman, K. Saji, M. Umehara, K. Yamada, Singularities of flat fronts in hyperbolic
space, Pacific J. of Math. 221-2 (2005), 303–351.

[12] K. Saji, Criteria for singularities of smooth maps from the plane into the plane and their applications,
Hiroshima Math. J. 40 (2010), 229–239.

11



[13] K. Saji, M. Umehara, K. Yamada, Ak singularities of wave fronts, Math. Proc. Camb. Philos. Soc.
146-3 (2009), 731–746.

[14] H. Whitney, On singularities of mappings of Euclidean spaces I, Mappings of the plane into the
plane, Ann. of Math. 62 (1955), 374–410.

Goo ISHIKAWA,
Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan.
e-mail : ishikawa@math.sci.hokudai.ac.jp

Tatsuya YAMASHITA,
Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan.
e-mail : tatsuya-y@math.sci.hokudai.ac.jp

12


