Singular Legendre curves and Goursat systems

Goo ISHIKAWA

Department of Mathematics, Hokkaido University, JAPAN. ishikawa@math.sci.hokudai.ac.jp

The classification problem of Goursat systems is reduced to that of Legendre curves [1][4][2]. Conversely, the classification of Goursat systems gives an insight to that of each individual Legendre curve. We describe their correspondence from general viewpoint using the results in [3].

The present work is a part of joint projects with P. Mormul and M. Zhitomirskii.

Let E be a germ of differential system of rank 2 on a manifold N of dimension n $(n \ge 2)$ at $x_0 \in N$. This means that $E \subseteq TN$ is a subbundle of rank 2. We call E a *Goursat system* if $E^2 := E + [E, E]$ is of rank 3, namely, of corank n - 3, and, setting $E =: E_{n-2}, E^2 =: E_{n-3}$, if $E_{i-1} := (E_i)^2$ is of corank i - 1, for $i = n - 2, n - 3, \ldots, 2, 1$. **Fact**([3]) For any $n \ge 3$, there exist an n-manifold \mathbf{M}^n and a Goursat system \mathbf{E}_{n-2} ("Monster Goursat") on \mathbf{M} such that any Goursat germ (N^n, x_0, E) is isomorphic to $(\mathbf{M}, y_0, \mathbf{E})$ for some $y_0 \in \mathbf{M}$. The systems $(\mathbf{M}^n, \mathbf{E}_{n-2})$ are obtained by iterative prolongations from $\mathbf{M}^2 := \mathbf{R}^2, \mathbf{E}_0 := T\mathbf{R}^2$. Note that $\mathbf{M}^3 = PT^*\mathbf{R}^2$, the projective cotangent bundle of the plane with the canonical contact structure \mathbf{E}_1 .

Let $n \geq 3$. Then there exists the intrinsic projection $\pi_{n,3} : \mathbf{M}^n \to \mathbf{M}^3$. The projection $\pi \circ \gamma$ of an integral curve-germ $\gamma : (\mathbf{R}, 0) \to \mathbf{M}^n$ to \mathbf{E}_{n-2} ($\dot{\gamma}(t) \in \mathbf{E}_{n-2}, (t \in (\mathbf{R}, 0))$) is a Legendre curve in $PT^*\mathbf{R}^2$. Recall that a curve-germ $c : (\mathbf{R}, 0) \to PT^*\mathbf{R}^2$ is called a *Legendre curve* if the velocity vector $\dot{c}(t) \in \mathbf{E}_1$, for $t \in (\mathbf{R}, 0)$. Here we do not assume c is an immersion. A Legendre curve is called *of finite type* if it is of finite type as a space curve-germ, i.e. if it is determined by its finite jet up to diffeomorphisms. If $c : (\mathbf{R}, 0) \to \mathbf{M}^3$ is a Legendre curve of finite type, there exists a unique integral lifting $\tilde{c} : (\mathbf{R}, 0) \to \mathbf{M}^n$ to \mathbf{E}_{n-2} with $\pi \circ \tilde{c} = c$ for all $n \geq 3$.

Now we introduce an important invariant of Goursat systems: Let (N^n, x_0, E) be a germ of Goursat system of rank 2. Then there exists intrinsically the projection $\pi : (N^n, x_0) \to \mathbf{M}^3$ making E is the prolongation of the contact \mathbf{E}_1 . Then we define intrinsically

$$C_E = \left\{ \pi \circ \gamma \middle| \begin{array}{c} \gamma : (\mathbf{R}, 0) \to \mathbf{M}^n \text{ integral to } \mathbf{E}_{n-2}, \\ \gamma(0) = x_0, \pi \circ \gamma \text{ is of finite type} \end{array} \right\} / \sim,$$

where ~ means the contactomorphism equivalence: For two Legendre curves c, c': $(\mathbf{R}, 0) \rightarrow PT^*\mathbf{R}^2$, we set $c \sim c'$ if if there exist a diffeomorphism $\sigma : (\mathbf{R}, 0) \rightarrow (\mathbf{R}, 0)$ and a contactomorphism $\tau : (PT^*\mathbf{R}^2, c(0)) \rightarrow (PT^*\mathbf{R}^2, c'(0))$ such that $\tau \circ c = c' \circ \sigma$.

Theorem 1: (Legendre invariants of Goursat systems). Let (N^n, x_0, E) and (N'^n, x'_0, E') be germs of Goursat systems of rank two. Then the following conditions are equivalent to each other: (i) $(N, x_0, E) \cong (N', x'_0, E')$. (ii) $C_E = C_{E'}$. (iii) $C_E \cap C_{E'} \neq \emptyset$.

Let $c : (\mathbf{R}, 0) \to PT^*\mathbf{R}^2$ be a Legendre curve of finite type. Then we define G_c to be the set of isomorphism classes of germs of Goursat systems E satisfying $[c] \in C_E$. Actually G_c is realized, up to isomorphisms, by the prolongation-deprolongation infinite sequence of Goursat systems which is obtained by lifting of c.

Theorem 2: (Goursat-Legendre duality.) Let $c : (\mathbf{R}, 0) \to PT^*\mathbf{R}^2$ be a Legendre curve of finite type. Then the contactomorphism class [c] of c is recovered from the sequence G_c : In fact we have $\bigcap_{[E]\in G_c} C_E = \{[c]\}$. Conversely, let E be a germ of Goursat system of rank two. Assume E is not the contact system. Then the isomorphism class [E of E is recovered from C_E : In fact we have $\sup\{n \mid \#\pi_n(\bigcup_{[c]\in C_E} G_c) = 1\} = d(E)$, where d(E) denote the dimension of the base manifold of E, and π_n means the operation of taking isomorphism classes of Goursat systems over n-dimensional manifold. Moreover we have $\pi_{d(E)}(\bigcup_{[c]\in C_E} G_c) = \{[E]\}$.

References

 V.I. Arnold, First steps of local contact algebra, Canad. J. Math. 51-6 (1999), 1123-1134.

[2] G. Ishikawa, *Classifying singular Legendre curves by contactomorphisms*, to appear in Journal of Geometry and Physics (in Press).

[3] R. Montgomery, M. Zhitomirskii, Geometric approach to Goursat flags, Ann. Inst.
H. Poincaré, 18–4 (2001), 459–493.

 [4] M. Zhitomirskii, Germs of integral curves in contact 3-space, plane and space curves, Isaac Newton Inst. Preprint NI00043-SGT, (2000).