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Abstract. We present new examples of non-singular developable hy-
persurfaces, which are algebraic and homogeneous, in real projective spaces.

Moreover we give a characterization of compact homogeneous developable

hypersurfaces, using the theory of isoparametric hypersurfaces.

0. Introduction

A C∞ hypersurface M in the n-dimensional real projective space RPn is
called developable if its Gauss map

γ : M → Gr(n,Rn+1) ∼= Gr(1, (Rn+1)∗) = RPn∗

defined by γ(x) = TxM̂ ⊂ Rn+1 (x ∈ M) has rank(γ) < dim(M) = n −
1. Here, we mean by M̂ the n-dimensional submanifold of Rn+1 − {0},
corresponding to M ⊂ RPn, and therefore TxM̂ is a linear hyperplane in
Rn+1. Moreover we mean by RPn∗ the dual projective space, and by rank(γ)
the maximum of the rank of differential maps γ∗ : TxM → TxRPn∗ (x ∈M)
of γ.

Remark that the developability is a notion of projective geometry; the
image of a developable hypersurface under a projective transformation is
again developable.

In this paper we treat mainly developable hypersurfaces. See [FW][W] for
developable submanifolds of arbitrary codimension.

It is well-known, as classical examples of developable surfaces in the three
dimensional space, cylinders, cones and tangent developables of space curves
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114 G. ISHIKAWA

[Cay][I]: Among them, only the planes have no singularities in the projective
space. Observing the singularities of developable hypersurfaces, we expect,
also in the general case, that non-singular compact developable hypersur-
faces are strictly restrictive. In fact, it is known that a non-singular complex
algebraic developable hypersurface in CPn is necessarily a projective hyper-
plane ([GH][W][L1]). Also in a real projective space, we have the following
restriction, via the geometrical investigation of homogeneous Monge-Ampère
equations based on projective duality:

Theorem 1 ([IM]). For a compact developable C∞ hypersurface M in RPn,
the maximal rank r = rank(γ) of the Gauss map γ : M → RPn∗ is an even
integer and satisfies the inequality n < (1/2)r(r + 3), provided r �= 0. In
particular, if r < 2, then M is necessarily a projective hyperplane of RPn.
Any compact developable C∞ hypersurfaces in RP 3 or RP 5 are projective
hyperplanes.

The rank condition appeared in Theorem 1 is essential in the real case; in
fact there exist non-trivial examples of compact developable hypersurfaces
in real projective spaces:

Proposition 2. For n = 4, 7, 13, 25, there exists a real algebraic cubic non-
singular developable hypersurface in RPn. These developable hypersurfaces
have the structure of homogeneous spaces of groups SO(3), SU(3), Sp(3), F4,
respectively. Their projective duals are linear projections of Veronese embed-
dings of projective planes KP 2, for K = R,C,H,O (the Cayley’s octoni-
ans, octanions or octonions). Each of these real algebraic developable hyper-
surfaces admits deformations to C∞ developable hypersurfaces with 2, 3, 5, 9
functional parameters, or more rigorously, with the space of sections of nor-
mal bundles to KP 2 ⊂ RPn as the infinitesimal space of C∞ developable
deformations.

Notice that it is classically known that a properly embedded developable
hypersurface in Rn of rank(γ) ≤ 1 is necessarily a cylinder (Hartman-
Nirenberg’s theorem [HN][Ste][Sto]). Similar result is known for Cn by
Abe [Ab]. For this direction, see the survey [B]. The first example of non-
cylindrical C∞ developable hypersurfaces in R4 is given by Sacksteder [Sac]:

M = {(x1, x2, x3, x4) ∈ R4 | x4 = x1 cosx3 + x2 sinx3}.

Mori [Mo] gives an example of families of non-cylindrical developable hyper-
surfaces in R4, in connection with the study of deformable submanifolds. On
the other hand, Akivis [Ak] proves the existence of C∞ complete developable
hypersurfaces in RP 4 which is not a projective hyperplane, using the theory
of differential systems. (See also [AG] Ch. 4, for the method of construction).
However notice that it is not given any concrete examples there. Recently,
Fischer and Wu ([FW][W]) study developable submanifolds in CPn,Cn and
Rn of higher codimension. In [W], it is introduced an (unpublished) ex-
ample of non-cylindrical real algebraic developable hypersurfaces in R4 by
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Bourgain:

M = {(x1, x2, x3, x4) ∈ R4 | x1x
2
4 + x2(x4 − 1) + x3(x4 − 2) = 0}.

Then, M is non-singular in R4 and even in C4 after complexification, while
the Zariski closure M ⊂ RP 4 of M has singularities in RP 4. (The singular
loci is an RP 2 in the projective hyperplane at infinity).

In general, developable submanifolds has the Monge-Ampère foliation
so that the tangent spaces to the submanifold are constant along each leaf.
For instance, in the case of F4 in Proposition 2, the Gauss mapping is a
submersion and the Monge-Ampère foliation is given by the fiberwise Z/2Z
quotient of the fibration

OP 1 ∼= Spin(9)/Spin(8) → F4/Spin(8) → F4/Spin(9) ∼= OP 2,

arising from the filtration F4 ⊃ Spin(9) ⊃ Spin(8). Remark that there ex-
ists natural identification OP 1 ∼= S8, and the antipodal map induces the
involution on OP 1.

Now we give a characterization of compact homogeneous developable hy-
persurfaces under some assumption, by means of metric geometry.

We say M and M ′ ⊂ RPn are projectively equivalent if there is a
projective transformation ϕ : RPn → RPn with ϕ(M) = M ′.

A C∞ hypersurface M ⊂ RPn is called a Cartan hypersurface if,
n = 4, 7, 13 or 25, and M is projectively equivalent to one of examples in
Proposition 2. Since the developability is projectively invariant, Cartan hy-
persurfaces are developable.

Remark that a Cartan hypersurface in RPn is a G-orbit for a compact Lie
subgroup G ⊂ GL(n+1,R). In general, we call a (projectively) homogeneous
submanifold M ⊂ RPn of compact type if M is a G-orbit for a compact
Lie subgroup G of GL(n + 1,R), under the action on RPn induced by the
natural linear action on Rn+1. If M is of compact type, then M is compact.

In this paper we show the following result:

Theorem 3. Let M be a connected homogeneous developable hypersurface of
compact type. Then M is a projective hyperplane or a Cartan hypersurface.

By Theorem 3, we know that it is impossible to find other non-trivial
examples of developable hypersurfaces than Cartan hypersurfaces, among
quotients of compact groups of linear transformations.

In the next section, we recall the notion of projective duality and the sec-
ond fundamental form of submanifold in a projective space. In §3, we give
a direct proof of Proposition 2 within the framework of projective geometry.
The main tool for the construction of Proposition 2 is the real projective-
contact geometry [M1][M2] over Jordan algebras. In the last section, we
prove Theorem 3 using metric geometry. The proof shows clearly the power
of the theory of isoparametric hypersurfaces. However we wish to find alter-
native proof of Theorem 3 within the framework of projective geometry, since
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it would be most natural one and may work for just compact projectively
homogeneous developable hypersurfaces.

It is interesting to ask the connection between Cartan hypersurfaces and
the classification of Severi varieties in the projective spaces over algebraically
closed field of characteristic zero, for instance, over C, by Zak [Z] (cf. [FL][LV,
p.15]). See also [L1][L2][Kaj] for complex projective geometry on the second
fundamental forms and degenerate secant varieties, related to homogeneous
spaces and Clifford algebras.

The author would like to thank Professors H. Kaji, S. Kaneyuki, M.
Kimura, R. Miyaoka, H. Sato, H. Tazaki, K. Tsukada and K. Yamaguchi,
for valuable comments and helpful encouragement. The author is grateful to
Professors B. Komrakov and T. Morimoto, for organizing the workshop in
Kazan on September 1998.

1. Projective duality and second fundamental forms

Let M ⊂ RPn be a submanifold of dimension m, (m < n). Consider the
projective conormal bundle of M :

M̃ = {(p, q) ∈ RPn ×RPn∗ | p ∈M, TpM ⊂ q∨},

where q∨ is the projective hyperplane of RPn determined by q ∈ RPn∗,
and we identify TpM as the corresponding m-dimensional plane through p

in RPn. Then we see M̃ is a C∞ submanifold in RPn ×RPn∗ of dimension
n − 1. Let ρ : M̃ → RPn (resp. ρ′ : M̃ → RPn∗) denotes the projection
to the first (second) component. Then ρ(M̃) = M and ρ′(M̃) = M∨ is the
projective dual of M .

We call M is developable if the Gauss map γ : M → Gr(m + 1,Rn+1),
defined by γ(x) = TxM̂ satisfies rank(γ) < dimM .

If M is developable and rank(γ) = r, then there exists an (m − r)-
dimensional foliation on Ω = {x ∈M | rankx(γ) = r}, which we call Monge-
Ampère foliation [D]. Moreover in this case, M∨ is ruled by r-parameter
(n−m− 1)-planes, and rank(ρ′) < dim M̃ = n− 1.

Remark that, if m = n− 1, then ρ is a diffeomorphism onto its image and
the Gauss map is decomposed as γ = ρ′ ◦ ρ−1.

Let g : W → RPn∗ be an immersion. For x ∈ W , the second funda-
mental form of g at x is a linear family of quadratic forms (Hessians) on
TxW parametrized by conormal vector space N∗ = (Tg(x)RPn∗/g∗(TxW ))∗

to g at x:
II∗ : N∗ → S2(T ∗

xM) (the symmetric product),

defined as follows: Let u ∈ N∗. Take an affine function v on an affine neigh-
borhood of g(x) such that the corresponding cotangent vector Tg(x)RPn∗ →
R vanishes on g∗(TxW ) and represents the conormal vector u. Then we de-
fine II∗(u) to be the Hessian at x of the composition v ◦ g. Then II∗(u) is
independent of the choice of v and depends only on u (cf. [L1],[L2],[Sas]).
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Now we recall the following fundamental result [IM], which we are going
to use for showing Proposition 2:

Lemma 4. For an immersed submanifold W of RPn∗ of codim ≥ 2, the
following conditions are equivalent to each other:

(i) W is a projective dual of a properly immersed hypersurface in RPn.
(ii) The second fundamental form at each point of W does not contain any

singular quadratic forms.
(iii) For any projective hyperplane H ⊂ RPn∗, each singular point of the

hyperplane section W ∩H on W is non-degenerate.

Proof. The condition (i) is equivalent to that ρ : W̃ → RPn is an immersion.
For a local equation

yr+1 = ϕr+1(y1, . . . , yr), . . . , yn = ϕn(y1, . . . , yr)

of W , W̃ is defined by F = ∂F/∂y1 = · · · = ∂F/∂yr = 0, where

F (X ; y1, . . . , yr) = X0ϕn + · · ·+Xn−r−1ϕr+1 +Xn−ryr + · · ·+Xn+1y1 +Xn,

for a homogeneous coordinates (X0, X1, . . . , Xn) of RPn. Then ρ is an im-
mersion on W̃ if and only if the second fundamental form

II∗(X0, . . . , Xn−r−1) =
n−r−1∑

k=0

Xk

(
∂2ϕn−k

∂yi∂yj

)
1≤i,j≤r

does not represent a singular matrix, provided (X0, . . . , Xn−r−1) �= (0, . . . , 0).
This condition is equivalent to (ii). The equivalence (ii) ⇔ (iii) is clear.

2. Proof of Proposition 2

First we show the construction of a cubic non-singular developable hyper-
surface M in RP 4. For this, first we construct the projective dual M∨, then
M is obtained as the dual of M∨.

Define ϕ : RP 2 → RP 4∗ by

ϕ([u, v, w]) = [
1
2
(u2 − v2),

1
2
(v2 − w2), uv, vw, wu],

which is an embedding obtained after a linear projection of the Veronese
embedding ψ : RP 2 → RP 5∗ defined by

ψ([u, v]) = [
1
2
u2,

1
2
v2,

1
2
w2, uv, vw, wu].

(See [Sas] Example 3, and [CDK]). Then we set M∨ = ϕ(RP 2). Further we
set

F = X0
1
2
(u2 − v2) +X1

1
2
(v2 − w2) +X2uv +X3vw +X4wu.
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Then the ρ-projection of the projective conormal bundle M̃∨ of M∨ is ob-
tained by eliminating u, v, w from

F =
∂F

∂u
=
∂F

∂v
=
∂F

∂w
= 0.

Then we have ∣∣∣∣∣∣
X0 X2 X4

X2 −X0 +X1 X3

X4 X3 −X1

∣∣∣∣∣∣ = 0,

which is the equation of required M ⊂ RP 4.
In fact, M is the projectivization of the set of real symmetric matrices

of determinant zero and of trace zero. Since SO(3) acts on M transitively,
we see M is non-singular and M ∼= SO(3)/H, where H is the subgroup of
SO(3) of order 8:

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ ,

⎛
⎝ 1 0 0

0 −1 0
0 0 −1

⎞
⎠ ,

⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠ ,

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠

⎛
⎝ 0 1 0

1 0 0
0 0 −1

⎞
⎠ ,

⎛
⎝ 0 1 0

−1 0 0
0 0 1

⎞
⎠ ,

⎛
⎝ 0 −1 0

1 0 0
0 0 1

⎞
⎠ ,

⎛
⎝ 0 −1 0

−1 0 0
0 0 −1

⎞
⎠ .

In general, we set K = R,C,H,O. Then dimR K = 2i−1, i = 1, 2, 3, 4.
Consider

J = {A ∈M3(K) | A∗ = A},
the space of “Hermitian” matrices of size 3 ([H][Y]). Each element A of J
has the form

A =

⎛
⎝ ξ1 z1 z3
z̄1 ξ2 z2
z̄3 z̄2 ξ3

⎞
⎠ , ξj ∈ R, zj ∈ K, j = 1, 2, 3.

We see
dimR J = 3 · 2i−1 + 3 = 6, 9, 15, 27.

For A,B ∈ J , we define the Jordan product

A ◦B =
1
2
(AB +BA) ∈ J .

Moreover we set trA = ξ1 + ξ2 + ξ3 ∈ R and

detA = ξ1ξ2ξ3 + 2Re((z2z̄3)z1) − ξ1z2z̄2 − ξ2z3z̄3 − ξ3z1z̄1 ∈ R,
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for A ∈ J . The bilinear form tr(A ◦B) on the real vector space J is positive
definite and induces the isomorphism between J and its dual vector space
J ∗.

Set
Σ = {A ∈ J | detA = 0}.

Then the projectivization PΣ ⊂ PJ = (J −O)/R× ∼= RP 3·2i−1+2 is a real
cubic hypersurface. Setting

J0 = {A ∈ J | trA = 0},

we will see

M = PJ0 ∩ PΣ ⊂ PJ0 = RP 4,RP 7,RP 13,RP 25,

is a non-singular real cubic developable hypersurface. The projective dual
M∨ = KP 2 is embedded in PJ ∗

0 = RP 4∗,RP 7∗,RP 13∗,RP 25∗, as a linear
projection of the Veronese embedding of KP 2 in PJ ∼= PJ ∗. Remark that
rank(γ) = 2, 4, 8, 16 and the dimension of the Monge-Ampère foliation is
1, 2, 4, 8, respectively.

Recall that the projective plane over K is defined by

KP 2 = {X ∈ J | X2 = X, trX = 1},
= {xx∗ | tx = (x1, x2, x3) ∈ K3 − 0, ‖x‖ = 1, x1(x2x3) = (x1x2)x3}

which is embedded in PJ . The embedding KP 2 ↪→ PJ is called the
Verenose embedding [F1][F2][H, Lemma 14.90][L2][Z]. This definition fits
in the ordinary one in cases K = R,C,H by the correspondence

KP 2 � [x1, x2, x3] = [tx] �→ 1
‖x‖2 xx∗.

In cases K = R,C,H, we set G = O(3),U(3), Sp(3). Then G acts on J
by f(A) = P−1AP, (f = P ∈ G). In the case K = O, we take as G the
exceptional simple Lie group

F4 = {f : J → J , R-linear isomorphism | f(A ◦B) = f(A) ◦ f(B)}.

Then G preserves the Jordan product, the trace and the determinant, so G
naturally acts on PJ0, PΣ, so on M = PJ0 ∩PΣ, as well as it acts on OP 2.
Furthermore G acts on M transitively. In fact, for A ∈ J , there exists f ∈ G

such that f(A) =

⎛
⎝ ξ1 0 0

0 ξ2 0
0 0 ξ3

⎞
⎠ , for some ξ1, ξ2, ξ3 ∈ R. Moreover the

diagonals are permuted freely by an element of G. Then, an A ∈ J0 ∩ Σ is
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transformed into f(A) =

⎛
⎝ 0 0 0

0 ξ 0
0 0 −ξ

⎞
⎠ , by some f ∈ G, for some ξ ∈ R.

(See, for K = O, [H] Page 313, [Y] Page 35). Also the action of G on KP 2

is transitive. ([H] Theorem 14.99, [Y] Theorem 2.21).
Now set

Q = {([A], [B]) ∈ PJ × PJ | tr(A ◦B) = 0},
the incidence hypersurface of projective duality ([Sch][IM]). Then G acts
on Q naturally by f([A], [B]) = ([f(A)], [f(B)]). Since the action on M

is transitive, the action on M̃ is also transitive. Here we remark that M̃
projects diffeomorphically to M by ρ. Then the key fact is the following:

Lemma 5. The projective conormal bundle of KP 2 ⊂ PJ ∗ is described by

˜KP 2 = PT ∗
KP 2PJ ∗ = {([A], [X ]) ∈ Q | X ∈ KP 2, A ◦X = O}.

Moreover its projection S = ρ(PT ∗
KP 2PJ ∗) by ρ : PT ∗

KP 2PJ ∗ → PJ onto
the first component coincides with

PΣ = {[A] ∈ PJ | detA = 0}.

Proof. We show for K = O; other cases are treated similarly. Let x =
(x1, x2, x3) ∈ K3 − 0. Write xi =

∑7
j=0 xijej , i = 1, 2, 3, with the standard

basis e0 = 1, e1, . . . , e7 and xij ∈ R. Then the linear subspace Tx0OP
2 ⊂ J

of the tangent space to OP 2 at x0 = t(1, 0, 0) is generated over R by

∂

∂x10
=

⎛
⎝ 2 0 0

0 0 0
0 0 0

⎞
⎠ ,

∂

∂x20
=

⎛
⎝ 0 1 0

1 0 0
0 0 0

⎞
⎠ ,

∂

∂x2i
=

⎛
⎝ 0 −ei 0
ei 0 0
0 0 0

⎞
⎠ ,

∂

∂x30
=

⎛
⎝ 0 0 1

0 0 0
1 0 0

⎞
⎠ ,

∂

∂x3i
=

⎛
⎝ 0 0 −ei

0 0 0
ei 0 0

⎞
⎠ , 1 ≤ j ≤ 7,

while ∂
∂x1j

= O, 1 ≤ j ≤ 7. Set A =

⎛
⎝ ξ1 w1 w3

w̄1 ξ2 w2

w̄3 w̄2 ξ3

⎞
⎠. Then the condition

that A annihilates Tx0OP
2 via the inner product tr(A ◦ B), namely that

tr(A ◦ ∂
∂xij

) = O, i = 1, 2, 3, 0 ≤ j ≤ 7, is equivalent to that ξ1 = 0, w1 =

0, w3 = 0. This is equivalent to that

A ◦
⎛
⎝ 1 0 0

0 0 0
0 0 0

⎞
⎠ =

1
2

⎛
⎝ 2ξ1 w1 w3

w̄1 0 0
w̄3 0 0

⎞
⎠

equals to O. By the transitivity we have the first half. The second half
follows from the following Lemma.
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Lemma 6. For A ∈ J , (1) A ◦X = O, for some X ∈ KP 2, if and only (2)
detA = 0.

Proof. (1) ⇒ (2): Choose f ∈ G such that f(X) = X0 =

⎛
⎝ 1 0 0

0 0 0
0 0 0

⎞
⎠.

Then, since f(A) ◦X0 = f(A ◦X) = O, we see detA = det f(A) = 0. (2) ⇒
(1): Take f ∈ G such that

f(A) =

⎛
⎝ ξ1 0 0

0 ξ2 0
0 0 ξ3

⎞
⎠ ,

for some ξ1, ξ2, ξ3 ∈ R. Then det f(A) = detA = 0, so ξ1ξ2ξ3 = 0, thus
ξi = 0, for some i. Changing f if necessary, we may assume ξ1 = 0. Then
A ◦ f−1(X0) = f(A) ◦X0 = O. �

Thus we see the projective dual of the hyperplane section M = S∩PJ0 ⊂
PJ0 is the linear projection of KP 2 ⊂ PJ ∼= PJ ∗ from the point in PJ ∗

corresponding to the hyperplane PJ0 ⊂ PJ .
Set

A0 =

⎛
⎝ 0 0 0

0 1 0
0 0 −1

⎞
⎠ ∈ J0 ∩ Σ, and, X0 =

⎛
⎝ 1 0 0

0 0 0
0 0 0

⎞
⎠ ∈ OP 2 ⊂ J .

Then ([A0], [X0]) ∈ M̃ . Let K = O and G = F4. Then the isotropy group
for [X0] ∈ PJ of the F4-action is isomorphic to Spin(9) ([H] Theorem 14.99,
[Y] Theorem 2.10). Further the isotropy group for A0 ∈ J of the F4-action
on J is

{f ∈ F4 | f(Ei) = Ei, i = 1, 2, 3},
which is isomorphic to Spin(8). Here Ei is the 3×3 matrix with (i, i)-element
1 which is the only non-zero element. (So E1 = X0, A0 = E2−E3). ([H] Page
313, [Y] Theorem 2.7). Then the isotropy group for [A0] inM is isomorphic to
a Z/2Z-extension of Spin(8). Thus we see that the Monge-Ampère foliation
is in fact a fibration γ : M → OP 2 described as in §0.

Similarly we have, in cases K = R,C,H, that the Monge-Ampère foliation
is given by the fibration γ : M → KP 2 which is described as the fiberwise
Z/2Z-quotient with respect to the antipodal involution of KP 1 ∼= S2i−1

(i =
1, 2, 3) of the following fibration: For K = R,

RP 1 ∼= O(2)/O(1)×O(1) → O(3)/O(1)×O(1) ×O(1) →
→ O(3)/O(2)×O(1) ∼= RP 2,

For K = C,

CP 1 ∼= U(2)/U(1) × U(1) → U(3)/U(1) × U(1) × U(1) →
→ U(3)/U(2)× U(1) ∼= CP 2,
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and for K = H,

HP 1 ∼= Sp(2)/Sp(1) × Sp(1) → Sp(3)/Sp(1) × Sp(1) × Sp(1) →
→ Sp(3)/Sp(2) × Sp(1) ∼= HP 2.

In particular, M ∈ RPn, (n = 3 · 2i−1 + 1, i = 1, 2, 3, 4) is a homogeneous
space of SO(3), SU(3), Sp(3) and F4, respectively.

The last statement of Proposition 2 is clear, since the condition (ii) of
Lemma 4 is an open condition for immersions KP 2 → RPn∗.

3. Proof of Theorem 3

Let M be a connected developable homogeneous hypersurface of compact
type. By definition, M is an orbit of a compact Lie subgroup G of GL(n+
1,R). We take a G-invariant metric on Rn+1. Then, after a projective
transformation on RPn, we may assume G ⊂ O(n+ 1) and now we use the
metric geometry.

Let π : Sn → RPn be the natural double covering from the unit sphere
Sn ⊂ Rn+1 and endow with RPn the induced metric from Sn.

A hypersurface in RPn or Sn is called isoparametric if its principal
curvatures are constant (see [CR]). The following fact is suggested by K.
Tsukada to the author:

Lemma 7. M ⊂ RPn is developable if and only if 0 is a principal curvature
of M at each point in M .

Proof. The condition that M is developable is equivalent to that the shape
operators are degenerate at any points x ∈ M . The latter is equivalent to
that 0 is a principal curvature at each point in M . �

NowM is a G-orbit and G acts on RPn isometrically. SoM is a connected
compact isoparametric hypersurface.

Actually, we are going to show the following, which completes the proof
of Theorem 3.

Proposition 8. Let M ⊂ RPn be projectively equivalent to a connected
compact isoparametric hypersurface in RPn. If M is developable, then M is
a projective hyperplane or a Cartan hypersurface.

Remark 9: It is known that there exist compact isoparametric hypersur-
faces in spheres which are not (isometrically) homogeneous with g = 4 [OT].
Recently Reiko Miyaoka [Mi] has proved that every compact isoparametric
hypersurfaces in spheres with g = 6 are necessarily homogeneous, as well as
the cases g ≤ 3.

Proof of Proposition 8. Take a connected component of π−1(M) and denote
it by M̄ . Then M̄ is a connected compact isoparametric hypersurface of Sn.
Moreover, by Lemma 7, 0 is a principal curvature of M and therefore of M̄ .

Let λ1, . . . , λg be the disjoint principal curvatures of M̄ . Set λi = cot θi, 0 <
θi < π, with θ1 < θ2 < · · · < θg. Moreover denote by mi the multiplicity
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of the principal curvature λi. Then, by the general theory of isoparametric
hypersurfaces [CR], we have the following:

(a) θi = θ1 + i− 1
g π, 1 ≤ i ≤ g.

(a’) mi = mi+2, (subscripts mod. g).
(b) g = 1, 2, 3, 4, 6, (Münzner).
Now 0 is a principal curvature, so θk = π

2 , for some k, 1 ≤ k ≤ g. Then,
by (a), g must be odd and {θi}1≤i≤g are symmetric with respect to π2 . Then,
by (a’), all multiplicities are same. Further, we see that the mean curvature
of M̄ is identically zero, namely, M̄ is minimal. Besides, by (b), we have
g = 1 or 3.

When g = 1, M̄ must be a great sphere in Sn. Then M is a projective
hypersurface.

Let g = 3. É. Cartan [Car] gave the complete classification of isoparamet-
ric hypersurfaces with three distinct principal curvatures (with same multi-
plicity) in spheres, up to isometry. Those are given by level hypersurfaces of
f = det |Sn : Sn → R. Here det : J0 → R is the determinant and Sn ⊂ J0 is
the unit sphere with respect to the metric tr( · ) : J0×J0 → R. Among them,
minimal hypersurfaces are only f−1(0) ∈ Sn. Hence M̄ ⊂ Sn is isometric to
f−1(0) = {A ∈ Sn | det(A) = 0}. Now an isometry of Sn is induced by an
element O(n+ 1) ⊂ GL(n+ 1,R). Thus M is projectively equivalent to an
example of Proposition 2. Therefore M is a Cartan hypersurface. �

This completes the proof of Theorem 3. �
Remark 10: There are known several alternative proofs of Cartan’s theorem
[Car]: See, for instance, [Kar], [KK], [CO].
Remark 11: It is suggested by H. Tazaki to the author, that Theorem 3 can
be shown directly, using the concrete classification of (isometrically) homo-
geneous hypersurfaces in spheres by Hsiang and Lawson [HL], (see also [OT],
[Ya]), and the formula of principal curvatures due to Takagi and Takahashi
[TT].
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in Geometry and Topology of Submanifolds, ed. by J.-M. Morvan and L. Verstrae-

len, World Scientific, 1989, pp. 49–72.

[FW] G. Fischer, H. Wu, Developable complex analytic submanifolds, International J.
Math. 6–2 (1995), 229–272.

[F1] H. Freudenthal, Oktaven, Ausnahmegruppen und Oktavengeometrie, Utrecht, 1951.

= reprinted in Geom. Dedicata 19 (1985), 7–63.

[F2] H. Freudenthal, Zur ebenen Oktavengeometrie, Proc. Kon. Ned. Ak. v. Wet., Ser.

A 56–3 (1953), 195–200.

[FL] W. Fulton, R. Lazarsfeld, Connectivity and its applications in algebraic geometry,
Lecture Notes in Math., 862, Springer-Verlag, Berlin and New York, 1981, pp. 26–

92.

[GH] P. Griffiths, J. Harris, Algebraic geometry and local differentiable geometry, Ann.
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111–135.

[KK] N. Knarr, L. Kramer, Projective planes and isoparametric hypersurfaces, Geome-
triae Dedicata 58 (1995), 193–202.

[L1] J.M. Landsberg, On second fundamental forms of projective varieties, Invent.

Math. 117 (1994), 303–315.

[L2] J.M. Landsberg, On degenerate secant and tangential varieties and local differen-

tial geometry, Duke Math. Journal 85–3 (1996), 605–634.

[LV] R. Lazarsfeld, A. Van de Ven, Topics in the Geometry of Projective Space, Recent
Work of F.L. Zak, Birkhäuser Verlag, 1984.
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