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Abstract

We introduce the basic symplectic invariants of singular curves and
surfaces: symplectic codimension, symplectic-isotropic codimension,
symplectic defect and the number of isotropic double points. Their
algebraic representations are constructed and relations between these
invariants are derived. For isotropic multi-germs of maps from C2 to
C4 the number of open umbrellas as a new invariant is introduced and
its relation with Segre number of the image variety is found.

1 Introduction

We consider the classification problem for mappings to the symplectic space.
The symplectomorphism classification problem is motivated naturally from
Hamilton dynamics, the theory of differential equations, and differential ge-
ometry ([1]). For instance, the symplectic classification of Hamilton-Jacobi
equations V ⊂ T ∗Rn = R2n is of importance in the theory of first or-
der PDE. Even for second order PDE, our classification problem appears
in the study of singularities for generalized geometric solutions to sym-
plectic Monge-Ampère equations: Given an n-form Ω on T ∗Rn = R2n,
f : (Rn, 0) → (T ∗Rn, 0) is called a generalized geometric solution to the
Monge-Ampère equation associated to Ω if f∗ω = 0, f∗Ω = 0, where ω is
the symplectic form. For example, for the MA-equation Hessian = constant,
we take Ω = c · dx1 ∧ · · · ∧ dxn − dp1 ∧ · · · ∧ dpn. Moreover, the investigation
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of singularities of special Lagrangian varieties requires the basic symplectic
singularity theory of parametrized Lagrangian varieties (cf. [6]). In fact
Ω =

∑n
i=1 dx1 ∧ · · · ∧ dpi ∧ · · · ∧ dxn − dp1 ∧ · · · ∧ dpn gives the MA-equation

Laplacian = Hessian of special Lagrangian varieties.
In general, in differential geometry, we represent a local solution sur-

face to a differential system I on a manifold M in a parametric form
f : (Rn, 0) → M which satisfies f∗I = 0. We identify solution surfaces up to
parametrizations (right equivalence). The solution surface is called regular
if it is represented by an immersion. Otherwise it is called singular. In the
case of symplectic Monge-Ampère equations as above, the system I is gener-
ated by the symplectic form ω and Ω. Thus we are motivated to investigate
the basic theory on singular parametric surfaces f : (Rm, 0) → (T ∗Rn, 0)
up to the natural equivalence relation, symplectic equivalence.

1.1 Symplectic equivalence.

Let ω =
∑n

i=1 dpi ∧ dxi be the standard symplectic form on K2n = T ∗Kn,
where K = R or C. Mappings are assumed to be real analytic or C∞ for
K = R and complex analytic for K = C. Multi-germs f : (Km, S) →
(K2n, 0) and f ′ : (Km, S′) → (K2n, 0) to the symplectic space are called
symplectomorphic (resp. diffeomorphic, homeomorphic) if the diagram

(Km, S)
f−→ (K2n, 0)

σ ↓ ↓ τ

(Km, S′)
f ′
−→ (K2n, 0)

is commutative for some diffeomorphism-germ σ and some symplectomorphism-
germ τ , τ∗ω = ω (resp. for some diffeomorphism-germs σ, τ , for some
homeomorphism-germs σ, τ). Here S, S′ are finite sets.

For a map-germ f : (Km, S) → (K2n, 0), the diffeomorphism class of the
pull-back form f∗ω on (Km, S) of the symplectic form ω is an obvious sym-
plectic invariant of f : If f and f ′ are symplectomorphic, then f∗ω and f ′∗ω
are diffeomorphic, that is, for a diffeomorphism σ : (Km, S) → (Km, S′), we
have σ∗(f ′∗ω) = f∗ω. We call f∗ω the geometric restriction of ω by f . In
this connection, we mention a theorem which contains the classical Darboux
theorem as the special case m = 0:

Theorem 1.1 (Darboux-Givental [4]) Two immersion-mono-germs f, f ′ :
(Km, 0) → (K2n, 0) are symplectomorphic if and only if the geometric re-
strictions f∗ω and f ′∗ω′ are diffeomorphic.
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Thus in the non-singular case (the case of immersion-mono-germs), the
classification problem is reduced to that of the geometric restrictions of
the symplectic form to the sources. Note that the pull-backs of symplectic
forms are not arbitrary. To explain this, recall the standard notions: A
submanifold M in the symplectic space (K2n, ω) is called coisotropic (resp.
isotropic, symplectic) if the skew-orthogonal in K2n to each tangent space
TpM , p ∈ M , to M contains TpM (resp. the geometric restriction ω|M is
zero, ω|M is symplectic). By the classical Darboux theorem, for a coisotropic
submanifold, the local diffeomorphism class of the geometric restriction ω|M
is determined by just the dimension of M . Moreover, we know that a non-
singular hypersurface is coisotropic. Then we have

Corollary 1.2 All non-singular hypersurface-germs in K2n are symplecto-
morphic. All coisotropic (resp. isotropic, symplectic) submanifold-germs of
fixed dimension in K2n are symplectomorphic.

Note that all immersion-germs on a fixed dimensional source are diffeo-
morphic in our sense.

In the singular case, however, even if f and f ′ are diffeomorphic and f∗ω
and f ′∗ω are diffeomorphic, f and f ′ are not necessarily symplectomorphic.
Therefore the symplectic classification is very different from the differential
classification.

A mapping f is called isotropic if f∗ω = 0, that is, if
∑n

i=1 d(pi ◦ f) ∧
d(xi ◦ f) = 0. If m = 1, then any germ f : (K, S) → (K2n, 0) is isotropic.
Moreover if f : Kn → K2n,m = n, then we often call isotropic f Lagrangian.

For the class of Lagrangian map-germs f : (Kn, 0) → (K2n, 0), the basic
theory is established by Givental [14].

Let N ⊂ (K2n, 0) be a germ of analytic variety. We assume the regular
locus of N is dense in N . Consider de Rham complex (Ω∗

2n, d), the algebra of
germs of differential forms on (K2n, 0) and the exterior differential d : Ω∗

2n →
Ω∗

2n. Then de Rham complex (Ω∗(N), d) for N is defined as the quotient
cochain complex of (Ω∗

2n, d) by the differential graded ideal I∗(N) consisting
of differential forms vanishing on the regular locus of N and the cohomology
algebra H∗(N) = H∗(Ω∗

2n, d) from the cochain complex (Ω∗(N), d).
We call (N,ω) is Lagrangian if dim N = n and the restriction of a sym-

plectic form ω to the regular locus of N vanishes. If (N,ω) is Lagrangian
and ω = dα, then we have the well-defined cohomology class [α] in H1(N),
which is called the characteristic class of (N,ω).

We call N reduced if it is not a product of an analytic set and a non-
singular manifold of positive dimension. Then we have:
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Theorem 1.3 ([14]) Let (N,ω) be a reduced Lagrangian variety for a sym-
plectic form ω = dα on (K2n, 0). Then any Lagrangian variety (N,ω′) is
symplectomorphic to (N,ω), provided the symplectic form ω′ = dα′ is suffi-
ciently near ω and [α′] = [α] ∈ H1(N).

In general (N,ω) and (N ′, ω′) are called symplectomorphic if there exists
a diffeomorphism-germ T : (K2n, 0) → (K2n, 0) satisfying T (N) = N ′ and
T ∗ω′ = ω.

Moreover Givental ([14]) shows that, if N is quasi-homogeneous (for a
positive weight), then de Rham complex (Ω∗(N), d) is acyclic (see also [10]).
Therefore we have

Theorem 1.4 ([14]) Suppose N ⊂ (K2n, 0) is reduced and quasi-homogeneous.
Then any Lagrangian (N,ω) and (N,ω′) are symplectomorphic, provided
K = C.

Suppose, in the parametric form, two map-germs f, f ′ : (Km, 0) →
(K2n, 0) are diffeomorphic for a fixed symplectic form ω by (σ, τ). If f, f ′

are symplectomorphic, then (f(Kn), ω) and (f(Kn), τ∗ω) are symplectomor-
phic. Moreover, under the condition that f is a normalization of the image,
if (f(Kn), ω) and (f(Kn), τ∗ω) are symplectomorphic, then f and f ′ are
symplectomorphic (cf. [23]).

Corollary 1.5 Suppose two isotropic map-germs f, f ′ : (Cn, 0) → (C2n, 0)
are diffeomorphic. Assume that f is a normalization of the image, which is
reduced, and f, f ′ are quasi-homogeneous for the same weight. Then f and
f ′ are symplectomorphic.

Remark 1.6 Corollary 1.5 does not hold in the case K = R. As a trivial
example, (t3, t5) : (R, 0) → (R2, 0) is diffeomorphic but not symplectomor-
phic to (t3,−t5), since it is chiral (see [22]).

Example 1.7 ([19]) Let f : (K2, 0) → (K4, 0) be isotropic. Suppose f is
diffeomorphic to

fou(t, u) :=
(

t2, u, ut,
2
3
t3

)
= (x1, x2, p1, p2).

Then f is symplectomorphic to fou (Whitney’s open umbrella). Moreover for
any n there exists a class of open umbrellas characterised by the symplectic
structural stability, and for them the Darboux-type theorem holds.

Note that the Darboux-type theorem follows from Givental’s theory
(Corollary 1.5) directly in the case K = C. The method is applied also
to the case K = R.
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Another generalization of Darboux-Givental theorem ([4]) to a singular
case is given by the following result:

Theorem 1.8 ([11]) For any N,N ′ ⊂ K2n quasi-homogeneous, (N,ω) and
(N ′, ω′) are symplectomorphic if and only if the algebraic restrictions [ω]N
and [ω′]N ′ are diffeomorphic.

The algebraic restriction [ω]N is defined as the residue class of ω modulo
the differential ideal J∗(N) ⊂ Ω∗

2n generated by functions vanishing on N .
Note that J∗(N) ⊂ I∗(N). We set Ω∗

alg(N) = Ω∗
2n/J∗(N) and H∗

alg(N) =
H∗(Ω∗

alg(N), d). Therefore [ω]N ∈ H2
alg(N). Note that there exists the

canonical surjection π : Ω∗
alg(N) → Ω∗(N) of cochain complexes.

1.2 The problem of symplectic classification.

For the classification of curves in a symplectic space K2n (m = 1, n ≥ 2),
Arnold initiated the investigation on the difference between diffeomorphism
and symplectic classifications ([2]). Then Kolgushkin [29] has completed the
symplectic classification of simple multi-germs (C, S) → (C2n, 0). Moreover
Domitrz [9] has given several results on symplectic classification of multi-
germs of curves by the method of algebraic restrictions.

Restricting ourselves to the case m = n = 1, namely to planar mono-
curves (K, 0) → (K2, 0), we have given both symplectic and differential exact
classifications of differentially simple and uni-modal plane curve singulari-
ties, and clarified the difference between the differential and symplectic clas-
sifications ([22][24][26]). In our formulation, we do not fix diffeomorphism
types but fix homeomorphism types of plane curve singularities. Actually we
fix Puiseux characteristics and then we have symplectic classification results
in a unified manner (§2.1).

Roughly distinguishing the classification problems in the presence of var-
ious geometric structures, we observe that there are, at least, two types:
(V) Classification of mappings and varieties, and
(D) Classification of differential forms and dynamical systems.

For classifications of type (V), we have finite lists of simplest objects
and finite dimensional moduli for complicated objects. Moreover the finite
determinacy holds, except for an infinite codimensional set of objects.

On the other hand, for classifications of type (D), we have finite lists of
simplest objects, but functional moduli for complicated objects. The finite
determinacy does not hold for objects of finite codimension.
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Therefore, we ask whether our symplectic classification problem falls into
type (V) or (D). Actually, this depends on the class of mappings we treat:
The classification of isotropic (or Lagrangian) varieties (or mappings) under
symplectomorphisms falls into type (V), and, in fact, several finiteness theo-
rems are proved for them [20][22][23][24]. These results clarify the difference
between geometric and algebraic restrictions.

On the other hand the classification of coisotropic varieties under sym-
plectomorphisms falls into type (D). A map-germ f : (Km, S) → (K2n, 0)
to the symplectic space (K2n, ω) is called coisotropic if m ≥ n and f lifts
to an isotropic mapping f̃ : (Km, S) → (K2n × K2k, 0) = (K2m, 0), with
k = m − n. Here we regard K2m as a symplectic space with the symplectic
form ωª η = π∗

1ω−π∗
2η for the canonical symplectic form η of K2k = T ∗Kk

and projections π1 : K2n × K2k → K2n, π2 : K2n × K2k → K2k. Then
the classification of coisotropic map-germs (K3, 0) → (K, 0) has functional
moduli ([25]).

1.3 Basic invariants for classification.

For the exact classification problem of singularities, the notion of codimen-
sion is the most basic one to measure the complexity or degeneracy of sin-
gularities. For instance, the classification of a class of singularities of map-
pings proceeds from small codimension to large. In general, for a map-germ
f : (Kn, S) → (Kp, 0), the Ae-codimension of f is defined by

Ae-cod(f) = dimK Vf/[f∗(VS) + (Vp) ◦ f ],

the dimension of the quotient of the infinitesimal deformations of f by those
induced from right-left equivalences, f∗ = tf : VS → Vf , wf(η) = η ◦ f,
wf : Vp → Vf , [33][39]. We often write cod(f) = Ae-cod(f) briefly. The
codimension Ae-cod(f) is finite if and only if f is finitely A-determined.
Moreover the codimension is estimated by other geometric invariants such as
0-stable invariants in terms of “disentanglement” ([27][35][36]). For instance,
the Ae-codimension of an A-finite germ f : (C, S) → (C2, 0) is estimated as

Ae-cod(f) ≤ δ(f) − r + 1, · · · · · · (∗)

where r = #S and δ(f) = dimK OS/f∗O2, the number of double points
of f . Here OS (resp. On) denotes the K-algebra of C∞ or holomorphic
function-germs on (K, S) (resp. (Kn, 0)). Moreover the equality holds if
and only if f is quasi-homogeneous ([37]). See also [8][16].
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Let f : (Kn, S) → (K2n, 0) be a multi-germ of isotropic mapping (or
Lagrangian immersion with singularities). Then we set

sp-cod(f) = dimK V If/[f∗(VS) + (V H2n) ◦ f ],

and call it the symplectic codimension (or the symplectic-isotropic codimen-
sion) of f : (Kn, S) → (K2n, 0). Here V If is the space of infinitesimal
isotropic deformations of f :

V If = {v : (Km, S) → TK2n | v∗ω̇ = 0, π ◦ v = f},

for the natural symplectic lifting ω̇ of ω on TK2n, ω̇ =
∑n

i=1 dϕi ∧ dxi +
dpi∧dξi for the coordinates (x, p; ξ, ϕ) of TK2n, and π : TK2n → K2n is the
bundle projection. Moreover we denote by V H2n the space of holomorphic
Hamiltonian vector fields over (K2n, 0), and by VS the space of holomorphic
vector fields over (Kn, S). The symplectic codimension sp-cod(f) is regarded
as the minimal number of parameters for “the symplectically versal isotropic
unfolding”of f , if f is of corank one.

1.4 Symplectic classification of plane curves.

In the case n = 1, any planar curve f : (K, S) → (K2, 0) is isotropic and
the notion of the symplectic codimension of f is given by

sp-cod(f) = dimK Vf/[f∗(VS) + (V H2) ◦ f ].

It is introduced in [22] and shown to be equal to δ(f) = dimK O1/f∗O2, the
number of double points, in the case of mono-germs, r = 1. The result is
easily generalized to multi-germs, for general r, and in fact we have

sp-cod(f) = δ(f) − r + 1,

for a multi-germ f : (K, S) → (K2, 0). Therefore Mond’s formula (*) is
rewritten as

Ae-cod(f) ≤ sp-cod(f),

and the difference sd(f) = sp-cod(f) −Ae-cod(f) was called the symplectic
defect, which measures the difference of symplectomorphism and diffeomor-
phism classifications, i.e. the dimension of the symplectic moduli space. It
is also called the symplectic multiplicity in [11].
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A curve-germ f is called p-modal, for a non-negative integer p, if a finite
number of s-parameter families (0 ≤ s ≤ p) of diffeomorphism classes form
a neighborhood of f in the space of parametric curve-germs. A 0-modal
(resp. 1-modal, 2-modal) singularity is called a simple (resp. uni-modal,
bi-modal) singularity. Note that the notion of modality on the holomorphic
map-germs (C, 0) → (C2, 0) differs from that defined for function-germs on
their images (the modality on the space of equations (C2, 0) → (C, 0)). Let
F : (C × Cδ, 0) → (C2 × Cδ, 0) be a symplectically mini-versal unfolding.
Set F (t, u) = (fu(t), u)(u ∈ Cδ). Then the symplectic moduli space of f is
obtained as a quotient space of a component {u ∈ Cδ | δ(fu) = δ(f)} in Cδ

of the δ-constant locus in Cδ.
In [7], Bruce and Gaffney classified the simple singularities of parametric

plane curve-germs (under the diffeomorphism equivalence) into the classes
A2`, E6`, E6`+2, W12, W18 and W#

1,2`−1 (` = 1, 2, 3, . . . ). In [22][24][26],
following O. Zariski’s Puiseux expansion technique ([41]), we obtain the
symplectic classification of simple and uni-modal singularities of paramet-
ric plane-curve germs, i.e. we construct the orbit structure of simple and
uni-modal diffeomorphism singularities under the symplectomorphic equiv-
alence. Some of results are reviewed in §2 in this paper.

The diffeomorphism classifications for simple multi-germs of curves are
developed in [3][30][31]. The symplectic classification of them has been
given in [29]. Moreover the notions of full-simplicity and full-modality have
been introduced by Zhitomirskii [42], which is natural via global problem
of mappings. Then it would be natural to ask the symplectic classifica-
tion of full-simple and full-uni-modal singularities of multi-germs of curves
(C, S) → (C2n, 0).

1.5 New symplectic invariants in higher dimensions.

For n ≥ 2, there is no such simple relation between the Ae-codimension
and the symplectic codimension, because the symplectic-isotropic codimen-
sion indicates the codimension in a subspace of map-germs of an orbit
of a subgroup of A. To measure the difference between symplectomor-
phism equivalence and diffeomorphism equivalence for isotropic map-germs
we introduce another symplectic invariant diff-cod(f) = diff-codI(f), the
differential-isotropic codimension instead of the symplectic-isotropic codi-
mension sp-cod(f) = sp-codI(f) of f . Then we set

sd(f) = sp-cod(f) − diff-cod(f).
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We give an algebraic description of sd(f) and show that both sp-cod(f) and
diff-cod(f) are A-invariants, hence so is sd(f).

In this paper, we consider new geometric symplectic invariants of isotropic
mappings for K = C. If a multi-germ of isotropic mapping f : (Cn, S) →
(C2n, 0) is of corank ≤ 1, and sp-cod(f) < ∞, then f can be perturbed to a
symplectically stable isotropic mapping f̃ whose singularities consist of open
umbrellas and transverse self-intersection points (double points). See §4.
The number of transverse self-intersection points of the perturbation f̃ does
not depend on the perturbation. It is called the number of isotropic double
points of f and denoted by δI = δI(f). Note that, for n = 1, δI(f) = δ(f).

We give a relation between the two symplectic invariants sp-cod(f) =
sp-codI(f) and δI(f) for isotropic map-germs f : (Cn, S) → (C2n, 0). More-
over, we introduce another invariant uI(f), the number of open umbrellas,
for isotropic map-germs f : (C2, S) → (C4, 0) and provide a relation of δI(f)
and uI(f) with the Segre number of the image variety of f using Gaffney’s
result [13].

The authors would like to thank Peter Giblin for valuable remarks and
the anonymous referees for the helpful comment on the previous versions of
the manuscript to improve the present paper.

2 Singularities of planar curves

First we recall symplectic classification of planar curves obtained in the series
of papers [22][24][26] and related results to provide insights for the study of
the higher dimensional case. Let f : (K, S) → (K2, 0) be a multi-germ of
planar curve. We assume that the base point set S consists of r points.

Theorem 2.1 Let f : (K, S) → (K2, 0) be an A-finite plane curve with r
components. Then sp-cod(f) and δ(f) are both finite and we have

sp-cod(f) = δ(f) − r + 1,

where r = #S and δ(f) = dimC OS/f∗O2, the number of double points of a
stable perturbation of f .

Proof : We denote by JS ⊂ OS the ideal of OS consisting of the functions
which vanish on S, the Jacobson radical of OS . If S = {x0}, r = 1, then
JS = mx0 ⊂ Ox0 , the unique maximal ideal. For each v = v1

(
∂
∂x ◦ f

)
+
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v2

(
∂
∂p ◦ f

)
∈ Vf , we take the unique function h ∈ JS (“generating func-

tion”) such that

dh = v2d(x ◦ f) − v1d(p ◦ f) (= v∗θ̇),

the pull-back of the Louville 1-form on TK2 by v : (K, S) → TK2 ∼= T ∗K2.
Then the generating function h belongs to

Rf = {h ∈ OS | dh ∈ 〈d(x ◦ f), d(p ◦ f)〉OS
}.

Thus we have a linear mapping e : Vf → Rf ∩ JS . Clearly the mapping e is
surjective. Moreover we have e|f∗(VS) = 0 and e(XH ◦ f) = (H − H(0)) ◦ f ,
for the Hamiltonian vector field XH with the Hamiltonian H ∈ O2. Then
we have an exact sequence of vector spaces

0 →
V ′

f

f∗(VS)
→

Vf

f∗(VS) + (V H2) ◦ f
→

Rf ∩ JS

f∗m2
→ 0,

where V ′
f is the space of vector fields along f having zero generating func-

tions.
Let S = {s1, . . . , sr}. Denote by fi the germ of f at si. Assume that the

order of fi at si is equal to ki. Then we have V ′
f/f∗(VS) ∼= ⊕r

i=1V
′
fi

/fi∗(Vsi)
and it has dimension

∑r
i=1(ki − 1) over K. On the other hand OS/(Rf ∩

JS) ∼= ⊕r
i=1Osi/mki

si
and it has dimension

∑r
i=1 ki over K. Thus we have

sp-cod(f) = dimK
Vf

f∗(VS) + (V H2) ◦ f

= dimK

V ′
f

f∗(VS)
+ dimK

Rf ∩ JS

f∗m2

= dimK
OS

Rf ∩ JS
− r + dimK

Rf ∩ JS

f∗m2

= dimK
OS

f∗m2
− r = dimK

OS

f∗O2
− r + 1 = δ(f) − r + 1.

2

Remark 2.2 If we set

Gf = {h ∈ OS | dh ∈ 〈d(x ◦ f), d(p ◦ f)〉f∗O2},

then we have
Ae-cod(f) = dimK

OS

Gf
.

10



Moreover
sd(f) = dimK

Gf

f∗O2
− r + 1.

Note that OS ,Rf and Gf are defined via the exterior derivative and any
locally constant functions belong to them, which is not the case for f∗O2.

In general, for each homeomorphism class of planar curves, the symplec-
tic moduli space is mapped canonically onto the differential moduli space.
The dimension of the fiber over a diffeomorphism class [f ] equals sd(f). It
is known that sd(f) = µ(f) − τ(f), where µ(f) = 2δ(f) is the Milnor num-
ber of f and τ(f) is the Tyurina number of f ([38][32][10]). Let s(f) be
the symplectic modality, that is, the number of parameters in the symplec-
tic normal form of f . Moreover let c(f) be the codimension of the locus
in the parameter space corresponding to germs diffeomorphic to f . Then
s(f) − c(f) = sd(f). Thus we have the formula, even for multi-germs, for
the Tyurina number (by means of Varchenko-Lando’s formula):

τ(f) = 2δ(f) + c(f) − s(f).

See [24][26] for details.

2.1 Puiseux characteristics

Let f : (C, 0) → (C2, 0), f(t) = (x(t), y(t)), be a germ of holomorphic para-
metric plane curve. Let m be the minimum of the order of x(t) and that
of y(t) at t = 0. Then, using a re-parametrization and the symplectomor-
phism (x, y) 7→ (y,−x) if necessary, we see that f is symplectomorphic to
(tm,

∑∞
k=m akt

k). Suppose m ≥ 2, that is, f is not an immersion.
Set β1 = min{k | ak 6= 0,m - k} and let e1 be the greatest common

divisor of m and β1. Inductively set βj = min{k | ak 6= 0, ej−1 - k}, and let ej

be the greatest common divisor of βj and ej−1, j ≥ 2. Then eq−1 > 1, eq = 1
for a sufficiently large q, and we call (m = β0, β1, β2, . . . , βq) the Puiseux
characteristic of f . The Puiseux characteristic is a basic diffeomorphism
invariant, and it determines exactly the homeomorphism class of f ([41]).
For example, setting e0 = m, we have the number of double points δ(f)
described by δ(f) = 1

2

∑q
j=1(βj − 1)(ej−1 − ej) ([34][40]).

Then f is symplectomorphic to a germ of the form

(tm, tβ1 +
∞∑

k=β1+1

bkt
k).
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In [26], we characterize simple and uni-modal singularities by means of
their Puiseux characteristics using an infinitesimal method :

Lemma 2.3 Let f : (C, 0) → (C2, 0) be a curve-germ with Puiseux charac-
teristic (m, β1, . . . ). If m = 4 and β1 ≥ 13, or m = 5 and β1 ≥ 9, or m ≥ 6,
then the modality of f is at least 2.

2.2 Symplectic normal forms

Let f : (C, 0) → (C2, 0) be a holomorphic map-germ.
We briefly recall the theory developed in [22], which is applied to the

complex analytic case: The symplectic codimension of f is defined by

sp-cod(f) = dimC
Vf

tf(V1) + wf(V H2)

as an infinitesimal symplectic invariant of Mather’s type. Here Vf is the
space of germs of holomorphic vector fields v : (C, 0) → TC2 along f ,
which is the space of infinitesimal deformations of f , V1 the space of germs
of holomorphic vector fields over (C, 0) and V H2 the space of germs of
holomorphic Hamiltonian vector fields over (C2, 0). The homomorphisms
tf : V1 → Vf and wf : V H2 → Vf are defined by tf(ξ) := f∗(ξ), ξ ∈ V1 and
wf(η) := η ◦ f respectively as in §2.1. Here we do not assume ξ(0) = 0 nor
η(0, 0) = 0.

An unfolding F : (C × Cr, (0, 0)) → (C2 × Cr, (0, 0)) of f , F (t, u) =

(fu(t), u), is symplectically versal if
∂fu

∂u1
(t, 0), . . . ,

∂fu

∂ur
(t, 0) generate Vf , over

C, up to the space tf(V1)+wf(V H2) of deformations which are covered by
symplectomorphisms ([22], Proposition 7.1).

For example, a symplectically versal unfolding of the germ f(t) = (t5, t6)
of type N20, δ(f) = 10, is given by{

x = t5 + µ1t
3 + µ2t

2 + µ3t,
y = t6 + λ1t

8 + λ2t
9 + λ3t

14 + ν1t
4 + ν2t

3 + ν3t
2 + ν4t,

with 10-parameters µ1, µ2, µ3, λ1, λ2, λ3, ν1, ν2, ν3, ν4.
The symplectically mini-versal unfolding is unique up to symplectomor-

phism of unfoldings.
In general, some parameters of the symplectically versal unfolding cor-

respond to deformations into less singular germs, and the remaining param-
eters provide the symplectic normal form within a given equi-singular class
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up to discrete symplectomorphic equivalence. For instance, in the above
example, setting µ1 = µ2 = µ3 = 0, ν1 = ν2 = ν3 = ν4 = 0, we have the
symplectic normal form for N20.

Let f be of Puiseux characteristic (m, β1, . . . , βq). A monomial basis of
O1/f∗O2 can be calculated by considering the order semigroup

S(f) = {ord(k) | k ∈ f∗O2} ⊆ N.

In fact {tr | r ∈ N \ S(f), r > 0} forms a monomial basis of O1/f∗O2.
Then we have the following general result ([26]) on symplectic classifica-

tion via the order semigroup:

Theorem 2.4 Let f : (C, 0) → (C2, 0), f(t) = (tm, tβ1 +
∑∞

k=β1+1 bkt
k), be

a germ of Puiseux characteristic (m,β1, . . . , βq). Let r1+m, . . . , rs+m(r1 <
· · · < rs) be all elements of N \ S(f) with rj > β1(1 ≤ j ≤ s). Then f is
symplectomorphic to

fλ(t) = (tm, tβ1 + λ1t
r1 + λ2t

r2 + · · · + λst
rs)

for some λ = (λ1, . . . , λs) ∈ Cs.

A family fλ(t)(λ ∈ Cs), is called a symplectic normal form for the
Puiseux characteristic (m,β1, . . . , βq) if any plane curve-germ of Puiseux
characteristic (m,β1, . . . , βq) is symplectomorphic to fλ(t) for some λ ∈ Cs.
And those λ ∈ Cs for which fλ is symplectomorphic to a given plane branch
form a discrete subset of Cs.

If there exists a symplectic normal form, then we have a surjective map-
ping of Cs into the space of symplectic moduli with discrete fibers.

Then we have the following results on symplectic normal forms

Proposition 2.5 Under the same notation as in Theorem 2.4, we have the
following:

(1) If the Puiseux characteristic is (m,β1), then the family

fλ(t) = (tm, tβ1 + λ1t
r1 + · · · + λst

rs),

λ = (λ1, . . . , λs) ∈ Cs, is a symplectomorphic normal form.
(2) If the Puiseux characteristic is (4, 6, 2` + 5), then s = ` + 1 and

r1 = 7, r2 = 9, . . . , r`−1 = 2` + 3, r` = 2` + 5, r`+1 = 2` + 7. Within the
family

fc(t) = (t4, t6 + c1t
7 + c2t

9 + · · · + c`−1t
2`+3 + c`t

2`+5 + c`+1t
2`+7),
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the subfamily
fλ(t) = (t4, t6 + λ1t

2`+5 + λ2t
2`+7),

λ = (λ1, λ2) ∈ C2, λ1 6= 0, is a symplectic normal form.
(3) If the Puiseux characteristic is (4, 10, 2` + 9), then s = ` + 4 and

r1 = 11, r2 = 13, r3 = 15, . . . , r`−1 = 2`+7, r` = 2`+9, r`+1 = 2`+11, r`+2 =
2` + 13, r`+3 = 2` + 17, r`+4 = 2` + 21. Within the family

fc(t) = (t4, t10 + c1t
11 + c2t

13 + c3t
15 + · · · + c`−1t

2`+7

+c`t
2`+9 + c`+1t

2`+11 + c`+2t
2`+13 + c`+3t

2`+17 + c`+4t
2`+21),

the subfamily

fλ(t) = (t4, t10 + λ1t
2`+9 + λ2t

2`+11 + λ3t
2`+13 + λ4t

2`+17 + λ5t
2`+21),

λ = (λ1, λ2, λ3, λ4, λ5) ∈ C5, λ1 6= 0, is a symplectic normal form.

The above Proposition 2.5 implies the following exact list of normal forms
under symplectomorphic equivalence:

Theorem 2.6 A simple or uni-modal singularity f : (C, 0) → (C2, 0) is
symplectomorphic to a germ which belongs to one of the following families
(called “symplectic normal forms”):

A2` : (t2, t2`+1),
E6` : (t3, t3`+1 +

∑`−1
j=1 λjt

3(`+j)−1),
E6`+2 : (t3, t3`+2 +

∑`−1
j=1 λjt

3(`+j)+1),
W12 : (t4, t5 + λt7),
W18 : (t4, t7 + λt9 + µt13),
W#

1,2`−1 : (t4, t6 + λt2`+5 + µt2`+9), λ 6= 0(` = 1, 2, . . . ),

N20 : (t5, t6 + λ1t
8 + λ2t

9 + λ3t
14),

N24 : (t5, t7 + λ1t
8 + λ2t

11 + λ3t
13 + λ4t

18),
N28 : (t5, t8 + λ1t

9 + λ2t
12 + λ3t

14 + λ4t
17 + λ5t

22),
W24 : (t4, t9 + λ1t

10 + λ2t
11 + λ3t

15 + λ4t
19),

W30 : (t4, t11 + λ1t
13 + λ2t

14 + λ3t
17 + λ4t

21 + λ5t
25),

W#
2,2`−1 : (t4, t10 + λ1t

2`+9 + λ2t
2`+11 + λ3t

2`+13 + λ4t
2`+17 + λ5t

2`+21),
λ1 6= 0 (` = 1, 2, . . . ).

Considering the symplectomorphism equivalence, we have given the clas-
sification of uni-modal planar curve-germs and we observe that there exists
the difference (or “quotient”) between differential and symplectic classifica-
tions:
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Theorem 2.7 ([24]) For planar curves f : (K, 0) → (K2, 0), symplectic
moduli appear from Ae-codim = 5 on (E12); while differential moduli appear
from Ae-codim = 8 on (N20).

We can say that symplectic moduli appear earlier than differential mod-
uli.

For a detailed symplectic classification of planar-mono-germs see [24][26].

3 Symplectic-isotropic codimension

Let κ be a germ of 2-form on (Km, S), S being finite. Then we denote
by Oκ

m,2n the set of map-germs f : (Km, S) → (K2n, 0) with the geometric
restriction f∗ω = κ.

A deformation ft of f0 = f ∈ Oκ
m,2n is called isotropic if ft ∈ Oκ

m,2n, i.e.
f∗

t ω = f∗ω (= κ). Then we set

sp-cod(f) = dimC V If/[f∗(VS,κ) + (V H2n) ◦ f ],

and call it the symplectic codimension (or the symplectic-isotropic codimen-
sion) of f : (Cm, S) → (C2n, 0). Here we set

VS,κ = {ξ ∈ VS | Lξκ = 0},

the space of vector fields which leave κ invariant. Note that VS,κ = VS if
κ = 0.

Example 3.1 A germ f is coisotropic if and only if f∗ω = g∗η for some
g : (Km, S) → (K2k, 0). A coisotropic map-germ f : (Km, S) → (K2n, 0)
is a coisotropic map-germ with regular reduction if g can be taken to be a
submersion. Then κ = g∗η is of constant rank and the coisotropic defor-
mation of f is investigated by studying the space Oκ

m,2n. The characteristic
foliation Ff is generated by the kernel field defined by f∗ω = g∗η. Then
any vector field in VS,κ preserves Ff .

Now, for an isotropic f : (Kn, S) → (K2n, 0), we define

diff-cod(f) = dimK
V If

f∗(VS) + (V2n ◦ f) ∩ V If
,
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while
sp-cod(f) = dimK

V If

f∗(VS) + V H2n ◦ f
,

and
Ae-cod(f) = dimK

Vf

f∗(VS) + V2n ◦ f
.

Moreover we set

sd(f) = sp-cod(f) − diff-cod(f) (≥ 0),

the symplectic defect or symplectic multiplicity of f .
Note that, for n = 1, we have V If = Vf : any infinitesimal deformation

is isotropic.

We define subspaces OS ⊇ Rf ⊇ Gf ⊇ f∗O2n by

Rf = {e ∈ OS | de ∈ OS · f∗(Ω1
2n)},

Gf = {e ∈ OS | de ∈ f∗(Ω1
2n)},

where de is the exterior differential of the function e, Ω1
2n is the space of

1-forms on (K2n, 0). Then we have algebraic formulae for symplectic invari-
ants.

Theorem 3.2 Let n ≥ 2. Let f : (Kn, S) → (K2n, 0) be isotropic. If f is
a normalization of its image and the codimension of non-immersive locus
codCΣ(f) ≥ 2, then

sp-cod(f) = dimK
Rf

f∗O2n
− r + 1,

diff-cod(f) = dimK
Rf

Gf
,

sd(f) = dimK
Gf

f∗O2n
− r + 1,

where r = #S.

Remark 3.3 The mono-germ case of Theorem 3.2 is proved in [23].

Proof of Theorem 3.2: We refer to the proof of Theorem 2.1 in the case
n = 1. Each isotropic vector field v ∈ V If has the unique generating
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function h ∈ Rf ∩ JS such that dh = v∗θ̇. If we denote by V I ′f is the space
of isotropic vector fields with zero generating function, we have the exact
sequence

0 → V I ′f → V If → Rf ∩ JS → 0,

which induces the exact sequence

0 →
V I ′f

f∗(VS)
→

V If

f∗(VS) + (V H2n) ◦ f
→

Rf ∩ JS

f∗m2n
→ 0.

Since the singular locus of f is of codimension ≥ 2, we have V I ′f = f∗(VS).
Thus we see that

V If

f∗(VS) + (V H2n) ◦ f
∼=

Rf ∩ JS

f∗m2n
.

We claim that

dimK
Rf ∩ JS

f∗m2n
= dimK

Rf

f∗O2n
− r + 1.

In fact, we consider the linear map Rf → Kr = {S → K} defined by
h 7→ h|S , and the induced exact sequence

0 → Rf ∩ JS → Rf → Kr → 0.

The last sequence induces the exact sequence

0 →
Rf ∩ JS

f∗m2n
→

Rf

f∗O2n
→ Kr/K ∼= Kr−1 → 0,

where Kr/K is the quotient by the diagonal translations.
An isotropic vector field v along f belongs to (V2n ◦ f)∩V If if and only

if its generating function belongs to Gf ∩ JS . Furthermore any element of
Gf ∩ JS is a generating function of (V2n ◦ f) ∩ V If . Therefore we have

V If

f∗(VS) + (V2n ◦ f) ∩ V If

∼=
Rf ∩ JS

Gf ∩ JS
.

Moreover we see that the inclusion Rf ∩ JS → Rf induces an isomorphism

Rf ∩ JS

Gf ∩ JS

∼=
Rf

Gf
.

Thus we have the remaining equalities. 2

Since Rf ,Gf are defined independently of the symplectic structure, we
have:

17



Corollary 3.4 For isotropic map-germs f : (Kn, S) → (K2n, 0), sp-cod(f)
and diff-cod(f) are differential invariants. Namely, if f, f ′ are diffeomor-
phic, then sp-cod(f) = sp-cod(f ′) and diff-cod(f) = diff-cod(f ′).

4 Symplectic codimension and double points

In what follows we suppose K = C.
We recall the Artin-Nagata formula (Mumford’s formula) [5]: For an

A-finite map-germ f : X = (Cn, S) → Y = (C2n, 0), the number of double
points is given by δ(f) = 1

2 dimC ε, where ε = Ker(OX×Y X → OX) is the
kernel of the induced morphism from the diagonal map X → X ×Y X to
the fiber product of f . For a map-germ f : (Cn, 0) → (C2n, 0), we have as
in [13]:

δ(f) = dimC
〈x1 − x̃1, . . . , xn − x̃n〉O2n

〈f1(x) − f1(x̃), . . . , f2n(x) − f2n(x̃)〉O2n

.

Also we have δ(f) = 1
2 dimC OX ⊗f∗OY

(OX/f∗OY ) . See also [28].

For n ≥ 2, the inequality Ae-cod(f) ≤ δ(f) − r + 1 does not hold in
general.

Example 4.1 ([5]): Let f : (C2, S) → (C4, 0) be an immersion whose
image consists of three planes intersecting transversely to each other at
0 ∈ C4. Then Ae-cod(f) = 2, δ(f) = 3, #S = r = 3,

This example (Mumford example) was constructed so that δ(f) 6=
dimC On/f∗(O2n). In fact, dimC On/f∗(O2n) = 4 for that example.

On the other hand, Gaffney [13] showed the following: For an A-finite
map-germ f : (Cn, 0) → (C2n, 0),

δ(f) =
1
2

[ Segre2n〈f1(x) − f1(x̃), . . . , f2n(x) − f2n(x̃)〉O2n

−Whitney(π ◦ f : (Cn, 0) → (C2n−1, 0))
]

is half of [the Segre number of the ideal defining the double points in O2n =
OCn×Cn minus the number of Whitney umbrellas of a generic projection
π : Cn → C2n−1 composed with f ].

Now we consider symplectic-isotropic singularities: If an isotropic map-
germ f : (Cn, S) → (C2n, 0) is of corank one and is stable among isotropic

18



perturbations under symplectomorphisms, then f is symplectomorphic to an
open umbrella, which can be explicitly represented as a polynomial normal
form, and projects to the Whitney umbrella (Theorem 1.7, [19]). Note that,
though the result was stated in the real C∞ case, even in the holomorphic
and local case, similar results follow.

If an isotropic map-germ f : (Cn, S) → (C2n, 0) is of corank ≤ 1 and
sp-cod(f) < ∞, then f can be perturbed to a symplectically stable isotropic
mapping f̃ whose singularities consist of “open umbrellas”(singularities of
codimension 2) and transverse self-intersection points (double points). The
number of transverse self-intersection points of the perturbation f̃ does not
depend on symplectically stable perturbations. It is called the number of
isotropic double points of f and denoted by δI = δI(f).

We set
Bε = {x ∈ C2n | |x| < ε}.

Then we have

Proposition 4.2 Let f : (Cn, S) → (C2n, 0) be a multi-germ of an isotropic
mapping of corank ≤ 1 and sp-cod(f) < ∞. Then a representative f :
f−1(Bε) → C2n can be perturbed to a symplectically stable isotropic map-
ping f̃ : f̃−1(Bε) → C2n whose singularities consist of open umbrellas and
transverse double points. The number of double points is independent of the
perturbation, provided ε > 0 is sufficiently small.

We need to show the following to get an algebraic formula for the number
of double points after isotropic stable perturbations.

Lemma 4.3 Let f : (Cn, S) → (C2n, 0) be a multi-germ of an isotropic
mapping. If f is of corank ≤ 1 and the isotropic codimension sp-cod(f) <
∞, then f is a finite mapping, and the sheaf f∗Rf/O2n is a coherent O2n-
module.

Proof : Suppose f is isotropic and sp-cod(f) = dimC V If/[f∗(VS) + V H2n ◦
f ] < ∞. Then

dimC Rf/f∗O2n = dimC(Rf ∩ JS)/(f∗m2n) − r + 1

is finite dimensional over C. Note that the above equality was used in the
proof of Theorem 3.2, but it holds under the assumption that f is isotropic.
Thus we deduce that Rf is a finite O2n-module. Moreover suppose that f
is of corank ≤ 1. Then we see that f is a finite mapping (see the proof of
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Proposition 2.3 of [19] and Remark 2.3 of [17]). Now consider the de Rham
complex (Ω, d) of holomorphic differential forms on (Cn, S) defined by the
exterior differential d, and the differential ideal I generated by the exterior
differentials of components of f . Then the induced complex (Ω/I, d) is a
coherent On-module. Then, by the finite coherence theorem (see for instance
[15]), (f∗(Ω/I), d) is a coherent O2n-module. Thus the 0-th cohomology
f∗Rf is also a coherent O2n-module. (see Proposition 1.1 of [18]). Therefore
f∗Rf/O2n is a coherent O2n-module as required. 2

Example 4.4 Let f : (Cn, S) → (C2n, 0), S be a set of transverse double
points, #S = r = 2. Then dimC Rf/f∗O2n = 1.

Example 4.5 For an open umbrella f : (C2, 0) → (C4, 0) (Theorem 1.7), f
is of corank one and its singular locus is of codimension 2. Moreover we have
Ae-cod(f) = 1, δ(f) = 1. The open umbrella is symplectically stable under
isotropic deformations. Therefore we have diff-cod(f) = sp-cod(f) = 0 and
δI(f) = 0.

Theorem 4.6 For an isotropic map-germ f : (Cn, S) → (C2n, 0) of corank
one and with sp-cod(f) < ∞, we have

dimC
Rf

f∗O2n
≥ δI(f).

Therefore we have

diff-cod(f) ≤ sp-cod(f) ≥ δI(f) − r + 1.

Proof : For a stable isotropic perturbation f̃ of f , the support of the sheaf
f̃∗Rf̃/O2n is the set of double points of f̃(f̃−1Bε) = Ṽ ([12]). Therefore
δI(f) is obtained as the sum of the dimensions of f̃∗Rf̃/O2n at the double
points. Let F : (Cn × C, (S, 0)) → (C2n × C, (0, 0)), F (x, t) = (ft(x), t),
f0 = f , be an isotropic unfolding of f which induces a stable isotropic
perturbation. We denote by DF the closure of the locus of double points
of F . Denote by π : DF → C the projection to the parameter space C.
Then π is a finite mapping. Moreover the stalk F∗RF /O2n+1 at a point
(y, t) ∈ C2n+1 is C-isomorphic to (ft)∗Rft/O2n at y ∈ C2n. Therefore δI(f)
is obtained as the sum of the dimensions of F∗RF /O2n+1 on π−1(t) ⊂ DF
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for t 6= 0. Thus we have

dimC Rf/f∗O2n = dimC π∗ (F∗RF /O2n+1)0
≥ dimC π∗ (F∗RF /O2n+1)t

=
∑

y∈π−1(t) dimC (F∗RF /O2n+1) = δI(f).

2

Again we remark that, in the inequality sp-cod(f) ≥ δI(f) − r + 1,
equality holds in the case n = 1, but not in general for n ≥ 2. Therefore,
setting

i(f) = sp-cod(f) − (δI(f) − r + 1),

it is natural to ask for the interpretation of i(f) in symplectic terms. We
remark that the numbers δ(f)−r+1 and δI(f)−r+1 have a clear topological
meaning.

Proposition 4.7 For A-finite f : (Cn, S) → (C2n, 0), the disentanglement
(the image of a stable perturbation) is homotopically equivalent to the bou-
quet of δ(f) − r + 1 circles. For an isotropic f : (Cn, S) → (C2n, 0) of
corank ≤ 1 with sp-cod(f) < ∞ the isotropic disentanglement (the image of
an isotropically stable perturbation) is homotopically equivalent to the bou-
quet of δI(f) − r + 1 circles.

Proof : The image of each 2n-ball of f̃−1Bε has, as a deformation retract, a
finite tree with vertices which are double points of f̃ . Thus the perturbed im-
age is homotopically equivalent to a compact 1-dimensional complex. There-
fore f̃(f̃−1Bε) is homotopically equivalent to

∨m S1 for some m. Moreover
we have

χ(f̃(f̃−1Bε)) = rχ(D2n) − δ = r − δ.

Hence χ = 1 − m. Thus we have m = δ − r + 1. 2

Remark 4.8 Any open umbrella V ⊂ (C2n, 0) has local trivial topology:
(C2n, V, 0) is homeomorphic to (C2n,Cn, 0).

5 Symplectic invariants of surfaces

First we observe

Lemma 5.1 For an isotropic map-germ f : (C2, S) → (C4, 0) of corank
≤ 1, sp-cod(f) < ∞ if and only if Ae-cod(f) < ∞.
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Remark 5.2 The similar result to Lemma 5.1 for f : (Cn, S) → (C2n, 0)
with n ≥ 3 never hold. In fact the three dimensional open umbrella f :
(C3, 0) → (C6, 0) has 1-dimensional singular locus, therefore Ae-cod(f) =
∞, while sp-cod(f) = 0 ([19]). Note that map-germs (Cn, S) → (C2n, 0)
with Ae-cod(f) < ∞ must be immersive off S.

Proof of Lemma 5.1 : The condition Ae-cod(f) < ∞ is characterized by
Gaffney’s criterion: For any y ∈ C2n near 0 and for any finite S ⊂ f−1(y),
the multi-germ f : (Cn, S) → (C2n, y) is A-stable. (For the finite determi-
nacy of map-germs, see the seminal paper [39]). In our case a multi-germ is
A-stable if and only if it is an embedding with at most one transversal self-
intersection. Actually we have that f satisfies Ae-cod(f) < ∞ if and only
if f is an embedding off S. For an isotropic map-germs of corank ≤ 1, the
symplectic stability is described by the transversality in isotropic jet space
to the symplectic orbit as in the ordinary case ([20]). Then, f is perturbed
to an isotropic map-germ which is multi-transversal off S to symplectic or-
bits by an isotropic perturbation of arbitrary higher order. A multi-germ of
isotropic mapping is symplectically stable if and only if it is an embedding
with at most one transversal self-intersection or at most one open Whitney
umbrella (Example 1.7). Actually we have that f satisfies the condition
sp-cod(f) < ∞ if and only if f is an embedding off S, in the case n ≤ 2. 2

For an isotropic f : (C2, S) → (C4, 0) of corank ≤ 1, we can define “the
number of open umbrellas” uI = uI(f), in addition to δI = δI(f). Then
the sum of the number of open umbrellas uI(f) and the number of isotropic
double points δI(f) is equal to the number of double points δ(f):

δI(f) + uI(f) = δ(f),

because δ = 1 for each open umbrella. Moreover, by the isotropic nature of
f , we have

Lemma 5.3 Let f : (C2, S) → (C4, 0) be an isotropic map-germ of corank
≤ 1. Here corank(f) = maxs∈S coranks(f). Then,

uI(f) = Whitney(π ◦ f),

the number of Whitney umbrellas of a generic projection π : C4 → C3

composed with f .

Proof : Suppose f is of corank 1 at s1, . . . , sr′ and is immersive at sr′+1, . . . , sr.
Let `i = f∗(TsiC

2) ⊂ T0C4, 1 ≤ i ≤ r′. Take the skew-orthogonal `⊥i = {v ∈
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T0C4 | ω(v, `i) = 0} to `i, which is of dimension 3. Then take any line
` ⊂ T0C4 such that

(`⊥1 ∪ · · · ∪ `⊥r′ ∪ Πr′+1 ∪ · · · ∪ Πr) ∩ ` = {0},

where Πj = f∗(TsjC
2), and take the projection along ` as a generic projec-

tion. Then, for any isotropic perturbation f̃ , the tangent space f̃∗(TpC2), p ∈
(C2, S). does not contain `. In fact, f̃∗(TpC2) contains a line `′ (6= `)
near `1, . . . , `r′ , Πr′+1, . . . , Πr. Moreover ` 6⊂ (`′)⊥. If ` ⊂ f̃∗(TpC2), then
ω(`, `′) 6= 0. This leads to a contradiction, since f̃ is isotropic. Therefore any
singular point of π ◦ f̃ comes from a singular point of f̃ . Thus the number
of Whitney umbrellas of π ◦ f̃ is equal to the number of open umbrellas of
f̃ . 2

Therefore we have, by Gaffney’s formula,

Proposition 5.4 For an isotropic map-germ f : (C2, 0) → (C4, 0) with
sp-cod(f) < ∞, we have

Segre4 = 2δI + 3uI .

Proof : By Gaffney’s formula 2δ = Segre4 −Whitney(π ◦ f). We have shown
that δ = δI + uI and uI = Whitney(π ◦ f). Therefore we have

Segre4 = 2δ + Whitney(π ◦ f) = 2(δI + uI) + uI = 2δI + 3uI .

2

Example 5.5 Consider again the isotropic map-germ

fou := (x1, x2, p1, p2) =
(

t2, u, ut,
2
3
t3

)
: (C2, 0) → (C4, 0)

as in Theorem 1.7. Then we have Rf = Gf = f∗O4. Moreover we have
sp-cod(fou) = 0, sd(fou) = 0, δI = 0, uI = 1, δ = 1, Segre4 = 3.

Example 5.6 (multiple open umbrella): The isotropic map-germ
f±
mou(t, u) := (t2, u, t3 ± u2t, 4

3ut3) : (C2, 0) → (C4, 0), has isolated singu-
larity at 0 and is quasi-homogeneous for the weights w(t) = 1 and w(u) = 2.
By Corollary 1.5, sd(f±

mou) = 0. In fact, we have Rf ) Gf = f∗O2n and
sp-cod(f±

mou) = 1. Moreover f±
mou is isotropically perturbed into two open

umbrellas and one double point, and therefore δI = 1, uI = 2, δ = 3,
Segre4 = 8.
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Remark 5.7 An algebraic formula for the number uI of open umbrellas is
known ([21]): For f : (C2, 0) → (C4, 0), we have

uI = dimC
O2

Jf
,

where Jf is the ideal generated by the 2-minors of the Jacobi matrix of f .
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